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Abstract. Several lines of evidence have shown that the 
incidence of cognitive impairment in diabetic patients is 
significantly higher than that in healthy individuals, but the 
exact pathogenesis has not been fully elucidated. Furthermore, 
it has been suggested that leptin may have a therapeutic effect 
in cognitive dysfunction. The aim of the present study was 
to observe the effect of leptin on cognitive dysfunction in 
streptozotocin (STZ)‑induced diabetic rats, and to explore 
whether adenosine monophosphate‑activated protein kinase 
(AMPK) activation was involved in any potential therapeutic 
effect of leptin. Compared with control rats, STZ rats exhibited 
decreased levels of AMPK and a poor performance in the 
Morris water maze, while these changes were reversed by leptin. 
Furthermore, Compound C, an AMPK antagonist, significantly 
attenuated the leptin‑induced cognitive function improvement 
in the STZ rats. In conclusion, these results suggest that AMPK 
activation may play a critical role in the leptin‑induced attenu-
ation of STZ‑induced cognitive impairment.

Introduction

Diabetes mellitus is a common disease in older individuals, 
affecting ~20% of the population aged >65 years  (1,2). It 
has been reported that diabetes has a close association with 
the reduced performance in numerous domains of cognitive 
function (1,3‑5). A clinical study by Arvanitakis et al (1) has 
indicated that diabetes may be associated with an increased 
risk of Alzheimer's disease development and may eventually 
affect cognitive function; however, the underlying mechanisms 

of diabetes‑induced cognitive dysfunction have not been fully 
elucidated.

Numerous studies have focused on diabetes‑induced 
cognitive impairment, while the majority have focused 
on fat metabol ism and vascula r dementia  (6 ‑8). 
Jafari Anarkooli et  al  (9) demonstrated that Bcl‑2 family 
gene expression and caspase‑3 activity were altered in the 
streptozotocin (STZ)‑induced diabetic rat hippocampus. 
Furthermore, Revsin et al  (10) found that a glucocorticoid 
receptor antagonist normalized hippocampal alterations and 
cognitive impairment in STZ‑induced diabetic mice. Our 
previous study (11), however, found that intraperitoneal injec-
tion of a single dose of 60 mg/kg STZ could cause cognitive 
dysfunction and increase inflammatory cytokine levels and 
oxidative activity in the rat hippocampus. Notably, leptin 
levels in the rat hippocampus significantly decreased.

Leptin, which is a hormone‑like protein secreted from 
fat cells, plays a critical role in regulating food intake and 
energy metabolism (12,13). It has been reported that leptin is a 
potential cognitive enhancer (14). Several studies have shown 
that leptin is the upstream activator of the adenosine mono-
phosphate‑activated protein kinase (AMPK) pathway (15,16). 
Yi et al (17) observed that acute and chronic exercise could 
indirectly activate the leptin‑AMPK signaling pathway, while 
a study by Namkoong et al (18) showed that leptin and insulin 
deficiencies in diabetes led to increased hypothalamic AMPK 
activity.

The aim of the present study was to investigate the effect 
of leptin on cognitive dysfunction in STZ‑induced diabetic 
rats and to explore whether AMPK activation was involved in 
any potential therapeutic effects of leptin. An AMPK antago-
nist, Compound C, was selected to investigate the potential 
involvement of AMPK in the leptin‑induced therapeutic effect 
in cognitive impairment.

Materials and methods

Animals. Male Wistar rats weighing 220‑300 g were purchased 
from the Shanghai Animal Center (Shanghai, China). Six rats 
were housed per cage with food and water available ad libitum 
and maintained under a 12‑h light/dark cycle (lights on at 
7:00 a.m.). Animal care was approved by the Animal Use and 
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Protection Committee of Soochow University (Changzhou, 
China). Thirty‑six rats were randomly divided into three 
groups (n=12 each). The rats were intraperitoneally pretreated 
with either a single injection of saline or STZ (Sigma‑Aldrich, 
St. Louis, MO, USA) at a dose of 60 mg/kg. One month later, the 
rats were either intracerebroventricularly injected with saline or 
10 µg leptin (Sigma‑Aldrich) dissolved in 5 µl Tris‑HCl. For the 
second experiment, a further 36 rats were randomly divided 
into three groups (n=12 each). The rats were intraperitoneally 
pretreated with either a single injection of saline or STZ at a 
dose of 60 mg/kg according to the first protocol. One month 
later, the rats were either intracerebroventricularly injected with 
saline, 10 µg leptin or 10 µg leptin plus intraperitoneal injection 
of 1 mg/kg Compound C (Tocris Bioscience, Bristol, UK).

Morris water maze test. According to our previous study (11), 
cognitive function was assessed using the Morris water maze 
test system between 9:00 a.m. and 3:00 p.m. The maze was 
80 cm deep and 100 cm in diameter and was filled with water 
to a depth of 30 cm. The maze was divided into four quadrants 
of equal size on the monitor screen of a computer, and the 
water temperature was maintained at 23‑24˚C. The swim-
ming paths of the rats were recorded by a video camera and 
analyzed by VideoMot software (Huaibei Zhenghua Biologic 
Apparatus Facilities Co., Ltd., Huaibei, China). The trials were 
conducted for four consecutive days in order to observe the 
escape latency of the rats and the time spent in each quadrant. 
The escape latency and the proportion of time spent in the 
target quadrant were recorded.

Leptin and tumor necrosis factor‑α (TNF‑α) measurement. 
Leptin and TNF‑α levels were determined using ELISA 
kits. According to the manufacturer's instructions (Wuhan 
Huamei Bioengineering Co., Ltd., Wuhan, China), microtiter 
plates were coated for overnight incubation with the samples 
diluted 1:2 in sample diluent. The plates were then washed 
three times with sample diluent, and the primary antibody 
(monoclonal anti‑leptin or ‑TNF‑α), diluted 1:1,000 in sample 
diluent, was added to each well and incubated for 3 h at room 
temperature. Subsequent to washing, a peroxidase‑conjugated 
anti‑rabbit antibody (diluted 1:10,000; Nanjing Sunshine 
Biotechnology Co., Ltd.) was added to each well and incubated 
at room temperature for 1 h. Streptavidin enzyme, substrate and 
stop solution were then added, and the leptin and TNF‑α levels 
were determined by measuring the absorbance at 450 nm. In 
addition, total protein was measured using the Lowry method 
with bovine serum albumin as a standard.

Amyloid‑β (Aβ) measurement. The animals were sacrificed 
immediately by decapitation and the protein concentrations 
were determined using a bicinchoninic acid assay kit (cat. 
no. P0012S; Beyotime Institute of Biotechnology, Haimen, 
China). The samples were then centrifuged at 3,000 x g at 
4˚C for 30 min to obtain the supernatants. The proteins were 
separated using SDS‑PAGE and transferred onto polyvinylidene 
difluoride membranes. Subsequent to blocking with 5% non‑fat 
milk, the membranes were incubated with rabbit anti‑Aβ 
primary antibody (1:200; Sigma‑Aldrich). The membranes were 
then incubated for 1 h at room temperature with anti‑rabbit 
horseradish peroxidase‑conjugated immunoglobulin  G 

secondary antibody (1:20,000; CWBIO, Beijing, China). The 
labeled protein was detected using enhanced chemilumines-
cence reagents (GE Healthcare Life Sciences, Little Chalfont, 
UK) and the band intensity was analyzed using ImageJ software 
(National Institutes of Health, Bethesda, MD, USA).

Malondialdehyde (MDA) measurement. According to our 
previous study (11), the samples were mixed with 1 ml 10% 
trichloroacetic acid and 1 ml 0.67% thiobarbituric acid, and 
were then heated in a boiling water bath for 30 min. MDA 
equivalents were determined in the tissue and submitochon-
drial particles of the rat brain using a spectrophotometer at an 
absorbance of 532 nm.

Blood glucose measurement. The rats were anesthetized 
with 10% chloral hydrate (0.4 ml/100 g, intraperitoneal) and 
blood samples were then collected from the carotid artery. 
Blood glucose levels were determined with a blood glucom-
eter (OneTouch® UltraEasy®; Johnson & Johnson, Inc., New 
Brunswick, NJ, USA).

Statistical analysis. Data are expressed as the mean ± standard 
deviation. Statistical analyses were performed by one‑way 
analysis of variance, and post hoc analyses were conducted 
using Fisher's least significant difference tests. All statistical 
analyses were carried out using SPSS version 17.0 software 
(SPSS, Inc., Chicago, IL, USA). In the Morris water maze 
test, the percentage of time spent in the target quadrant was 
evaluated using χ2 tests. P<0.05 was considered to indicate a 
statistically significant difference.

Figure 1. Effect of STZ and/or leptin on (A) the escape latency of the rats 
and (B) the proportion of time spent in the target quadrant in the Morris 
water maze test. *P<0.05 and **P<0.01 vs. control; #P<0.05 vs. STZ. STZ, 
streptozotocin.
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 B
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Results

Effect of STZ and/or leptin on the escape latency of the rats 
and the proportion of time spent in the target quadrant in 
the Morris water maze test. The results of the Morris water 
maze test demonstrated that STZ administration significantly 
increased the escape latency as compared with the control 
group, and decreased the percentage of time spent in the 
fourth quadrant (P<0.05 or 0.01). Compared with the STZ 
group, however, rats in the STZ plus leptin group exhibited 
significantly decreased escape latencies, and an increased 
percentage of time spent in the fourth quadrant (P<0.05) 
(Fig. 1).

Effect of STZ and/or leptin on the expression of AMPK in 
the rat hippocampus. A single injection of STZ significantly 
decreased the protein expression of AMPK in the rat hippo-
campus (P<0.05). By contrast, leptin administration could 
abrogate the STZ‑induced decrease in AMPK expression in 
the hippocampus (P<0.05) (Fig. 2).

Effect of Compound C, an AMPK inhibitor, on the escape 
latency of STZ‑induced diabetic rats and the percentage of 
time spent in the target quadrant in the Morris water maze 
test. Compound C, which acts as an AMPK inhibitor, signifi-
cantly increased the escape latency as compared with the 
leptin group, and decreased the percentage of time spent in the 
fourth quadrant (P<0.05 or 0.01) (Fig. 3A and B).

Effect of Compound C on the leptin‑induced changes in the 
expression of TNF‑α, Aβ and MDA and the blood glucose 
levels. Compared with the saline group, leptin administra-
tion caused a significant decrease in the serum TNF‑α and 

Figure 2. Effect of STZ and/or leptin on the expression of AMPK in the rat 
hippocampus. *P<0.05 vs. control; #P<0.05 vs. STZ. STZ, streptozotocin; 
AMPK, adenosine monophosphate‑activated protein kinase.

Figure 3. Effect of Compound C on (A) the escape latency of the STZ‑induced 
diabetic rats and (B) the proportion of time spent in the target quadrant in the 
Morris water maze test. *P<0.05 and **P<0.01 vs. STZ; #P<0.05 vs. leptin. 
STZ, streptozotocin.

 A

 B

Figure 4. Effect of Compound C on the leptin‑induced changes in the expres-
sion of (A) TNF‑α, (B) Aβ, (C) MDA and (D) blood glucose. *P<0.05 and 
**P<0.01 vs. saline; #P<0.05 vs. leptin. STZ, streptozotocin; TNF‑α, tumor 
necrosis factor‑α; Aβ, amyloid‑β; MDA, malondialdehyde.
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Aβ levels in the rat hippocampus (P<0.05), and a significant 
increase in the MDA levels (P<0.01). Compared with the leptin 
group, Compound C abrogated the leptin‑induced changes in 
the expression of TNF‑α, Aβ and MDA (P<0.05), but did not 
affect the blood glucose levels (P>0.05) (Fig. 4A‑D).

Discussion

In the present study, the results demonstrated that leptin could 
attenuate STZ‑induced cognitive impairment, which was char-
acterized by the poor performance of the rats in the Morris 
water maze test. Compound C, an AMPK inhibitor, signifi-
cantly abrogated the protective effects of leptin against the 
STZ‑induced rat cognitive impairment. The findings of these 
results suggested, therefore, that AMPK activation contributed 
to the underlying mechanism of the therapeutic effect of leptin 
in STZ‑induced cognitive impairment.

Numerous studies have shown that the mechanism of 
cognitive dysfunction in STZ‑induced diabetic rats is asso-
ciated with the vascular lesions caused by diabetes  (8,19). 
Denver et al (12), however, proposed that diabetes is simply 
a trigger in the pathogenesis of diabetes‑induced cognitive 
dysfunction, rather than the main mechanism. Zhu et al (20) 
suggested that oxidative stress, the inflammatory response 
and Aβ formation comprised the primary mechanism in 
diabetes‑induced cognitive dysfunction, which was also 
consistent with the results of our previous study (11). In the 
present study, the results supported the above‑mentioned 
hypothesis that diabetes‑induced cognitive dysfunction mani-
fested as a result of the abnormal expression of TNF‑α, Aβ 
and MDA. Notably, the blood glucose levels did not show any 
significant change following leptin treatment. Although it has 
previously been demonstrated that leptin acts to reduce blood 
glucose levels (21), the present study utilized an injection of 
exogenous leptin, not endogenous; therefore, the leptin was not 
able to rapidly activate the leptin receptors, which prevented it 
from exerting its biological effects.

AMPK is an enzyme that plays a role in cellular energy 
homeostasis. Numerous studies have highlighted the impor-
tant role of AMPK in the pathogenesis of Alzheimer's disease, 
which is characterized by cognitive impairment (22,23). An 
in vitro study by Greco et al (24) showed that leptin increased 
cellular metabolism by activating AMPK to reduce Aβ 
expression in neurons. A different study also performed by 
this group (25) demonstrated that leptin directly regulated Aβ 
through the AMPK pathway. The results of the present study 
showed that STZ administration significantly decreased the 
AMPK levels in the rat hippocampus, while leptin abrogated 
this effect. Notably, it was observed that Compound C, an 
AMPK inhibitor, significantly reversed the effects of leptin, 
suggesting that AMPK activation is likely to be involved in the 
mechanism underlying the protective effect of leptin against 
cognitive impairment.

The activation of oxidative stress has been considered to 
be an important inducing factor for the incidence of cognitive 
impairment. Praticò et al (26) demonstrated that increased 
oxidative stress could be used as a predictor for the onset 
of cognitive impairment. A different study suggested that 
oxidative activation has harmful effects on the rat synapses 
in the cerebral cortex and hippocampus, which may result in 

cognitive impairment (27). Notably, a clinical study found 
that the successful treatment of patients with cognitive 
impairment could restore the oxidative cytokine levels in the 
peripheral blood of the patients to a normal levels (28). In 
the present study, it was observed that an AMPK inhibitor 
could abrogate the effect of leptin on cognitive impairment 
and change hippocampal MDA levels. This result indirectly 
showed that the control of cognitive function by AMPK 
signaling potentially occurs through the regulation of oxida-
tive stress. Similarly, the inflammatory response plays a 
critical role in the incidence of diabetes‑related cognitive 
impairment. The present results showed that TNF‑α levels 
decreased following leptin treatment, while the AMPK 
inhibitor reversed this change. This result was consistent 
with our expected hypothesis.

In conclusion, AMPK activation may contribute to the 
therapeutic effect of leptin in cognitive impairment in an 
STZ‑induced rat model. It is likely that oxidative stress and 
the inflammatory response are also involved.
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