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Abstract. Enamel matrix derivative (EMD) is a commercially 
available protein extract, mainly comprising amelogenins. A 
number of other polypeptides have been identified in EMD, 
mostly growth factors, which promote cementogenesis and 
osteogenesis during the regeneration processes through the regu-
lation of cell proliferation, differentiation and activity; however, 
not all of their functions are clear. Enamel extracts have been 
proposed to have numerous activities such as bone morphoge-
netic protein‑ and transforming growth factor β (TGF‑β)‑like 
activity, and activities similar to those of insulin‑like growth 
factor, fibroblast growth factor, platelet‑derived growth factor, 
vascular endothelial growth factor and epidermal growth 
factor. These activities have been observed at the molecular and 
cellular levels and in numerous animal models. Furthermore, it 
has been suggested that EMD contains an unidentified biologi-
cally active factor that acts in combination with TGF‑β1, and 
several studies have reported functional similarities between 
growth factors and TGF‑β in cellular processes. The effects of 
enamel extracts on the cell cycle and biology are summarized 
and discussed in this review. 
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1. Introduction

In this review, the growth factor and growth factor‑like activi-
ties of enamel matrix proteins (EMPs) were examined. Enamel 
matrix derivative (EMD), a mixture of EMPs, emerged almost 
two decades ago as an agent capable of periodontal regen-
eration. Although numerous studies and review papers have 
been published on this topic, the understanding of the cellular 
and molecular mechanisms of action of EMD is far from 
exhaustive (1‑7); thus this subject is revisited in the present 
comprehensive review.

Growth factors regulate important cellular events involved 
in numerous physiological and pathological processes by 
binding to specific cell surface receptors (8). A number of 
polypeptide growth factors have been identified that regulate 
cell proliferation, chemotaxis or differentiation. Certain 
growth and differentiation factors, such as insulin‑like growth 
factor 1 (IGF‑1), platelet‑derived growth factor (PDGF), basic 
fibroblast growth factor (bFGF), transforming growth factor‑β 
(TGF‑β) and bone morphogenetic protein (BMP)‑2, are able 
to stimulate the cellular activities associated with periodontal 
regeneration in periodontal ligament (PDL) cells (9‑19).

Ameloblasts synthesize and secrete a number of EMPs, 
including amelogenins, ameloblastin, amelotin, tuftelin and 
enamelin (20,21). EMPs are associated with the process of 
amelogenesis and they play a crucial role in the formation of 
enamel and periodontal attachment during tooth development; 
however, in wound healing and tissue regeneration EMPs show 
several novel functions.
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Clinically, EMPs are applied as an extract of porcine fetal 
tooth enamel matrix (known as EMD) for the periodontal 
regeneration of teeth affected by periodontitis, root coverage 
procedures and tooth implantation. EMD has also been 
used in in vitro research, for dentin repair, tooth movement, 
anti‑cancer treatment evaluation and skin wound healing (22). 
The regeneration of several types of periodontal tissue, 
including alveolar bone, cellular cementum and collagenous 
ligaments, and the formation of an extracellular matrix (ECM) 
layer in adjacent tissues has been observed following EMD 
application (22). The predominant (>90%) component of EMD 
is amelogenin, which in its native form is slowly degraded by 
the proteinases enamelysin and kallikrein‑4 (20). Cleavage 
produces different, shorter forms of amelogenin. These 
amelogenin‑derived peptides are classified into two groups: 
Leucine‑rich amelogenin peptide (LRAP) and tyrosine‑rich 
amelogenin peptide (TRAP) (Fig. 1). While EMD presents a 
number of growth factor‑like effects, it is the TGF‑β activity 
that is predominately known (23‑26). EMD has also been 
reported to contain other cytokines, such as a BMP‑like growth 
factor and bone sialoprotein (BSP)‑like molecules (27,28).

To date, which of the EMD fractions are crucial for BMP‑ 
or TGF‑β‑like activity has not been definitively clarified. In 
one study, the chromatographic separation of EMD resulted in 
22 protein fractions. Fractions 4‑6 had BMP‑like activity while 
fractions 8‑13 had TGF‑β‑like activity, and fractions 4‑13 were 
found to contain 10‑25‑kDa peptides (26). It was observed 
that BMP‑2 signal transduction activity was inhibited by 
authentic TGF‑β1 and the TGF‑β1 or TGF‑β‑like activity in 
an EMD gel, but that signal transduction by TGF‑β was not 
suppressed by BMP‑2. It was hypothesized that TGF‑β could 
not completely inhibit the activity of BMP, since BMP and 
TGF‑β activate SMAD intracellular transcription factors (26). 
In oral epithelial cells and fibroblasts isolated from gingiva, 
EMD stimulated the rapid translocation of SMAD2 protein 
from the cytoplasm to the cell nucleus, which suggests the 
involvement of TGF‑β‑like factors (24).

2. TGF‑β in the periodontium

TGF‑β is a member of the TGF‑β superfamily, which consists 
of five isoforms of TGF‑β and associated homologous proteins 
including activins, inhibins, BMPs, growth differentiation 
factors and the glial cell line‑derived neurotrophic factor 
family (29‑31). These structurally related polypeptides are char-
acterized by the presence of a common sequence and specifically 
positioned structures, namely a ̔cystine knot̓ composed of 
six cysteine residues (32). The structural differences between 
the TGF‑β proteins and the BMPs have been found to lie 
within four regions of the polypeptide chain. These are the 
N‑terminal segment, the loops at the end of fingers 1 and 2 
and the C‑terminus of helix α3 (33). In addition, the receptor 
activation differs, despite the fact that in each case it involves 
the recruitment of pairs of type I and type II receptor molecules 
by dimeric ligands to form signaling complexes. Sequential 
binding is typical of TGF‑β and activin ligand receptors, while 
a fully cooperative interaction is characteristic of BMP ligand 
receptors (33). Mature TGF‑β is a homodimer, composed of two 
12.5‑kDa polypeptides joined by a disulfide bond between two 
cysteine 77 residues and by hydrophobic interactions (34).

TGF‑β regulates various cellular processes including cell 
growth, apoptosis, homeostasis, differentiation, migration, 
wound healing, fibrosis, angiogenesis and carcinogen-
esis (35‑37). TGF‑β1 has been indicated to play an important 
role in the modulation of tissue formation and development 
of the periodontium (38). It is also a transcription‑regulating 
factor (29,30,39,40). Notably, the response can differ consider-
ably according to the type of cell and the stimulation context, 
even though the activation is induced by the same receptor. 
It is, therefore, critical, particularly in carcinogenesis, to 
know where TGF‑β may act as a suppressor and where as a 
stimulator. The role of TGF‑β in carcinogenesis appears to 
involve a signaling pathway involving SMAD proteins, which 
is induced by TGF‑β (41). Non‑SMAD signaling pathways in 
TGF‑β signaling include extracellular signal‑regulated kinases 
(ERK), c‑Jun N‑terminal kinases (JNK), Rho‑associated 
protein kinases and P21‑activated kinase‑2, depending on the 
cell line (42). It has been suggested that TGF‑β‑mediated apop-
tosis is regulated by the modulation of SMAD activation (43). 
Furthermore, TGF‑β has been indicated to participate in 
carcinogenesis by immune suppression (44). Several studies 
have indicated that TGF‑β arrests growth in the majority 
of cell types  (29,45). This effect has been observed in 
primary embryonic fibroblasts; however, in fibroblasts from 
SMAD3‑null mice, the growth inhibitory effect of TGF‑β was 
suppressed (45).

Several studies of EMD have demonstrated that it contains 
TGF‑β1 or a TGF‑β‑like substance, and that EMD rapidly 
translocates SMAD2, an effector of the TGF‑β signaling 
pathway, into the nucleus and modulates the proliferation of 
human gingival fibroblasts and oral epithelial cells in a cell 
type‑specific manner (24,26,46,47). Furthermore, experiments 
in vitro on epithelial and fibroblastic cells with anti‑TGF‑β 
antibodies, in which the TGF‑β1‑induced SMAD2 transloca-
tion was blocked, showed that the EMD‑induced translocation 
of SMAD2 was strongly reduced. This may indicate that they 
act via the same mechanism (48). In human PDL fibroblasts, 
EMD stimulated the release of TGF‑β1 (45). PDL cell metabo-
lism was significantly increased when EMD was present in 
cultures, and an increased autocrine production of TGF‑β1, 
interleukin  6 (IL‑6) and PDGF‑AB was detected when 
compared with that in control cultures (49).

It has been postulated that EMD may contain an additional 
mitogenic factor, which acts in combination with TGF‑β1 to 
fully stimulate fibroblastic proliferation. Kawase et al (46) 
investigated the effects of EMD, TGF‑β1 and neutralizing 
TGF‑β antibody on epithelial and fibroblastic cells. It was 
found that porcine EMD translocated SMAD2 into the nucleus 
of cells, as does TGF‑β1 or a TGF‑β‑like substance. SMAD2 is 
an effector of the TGF‑β signaling pathway that modulates the 
proliferation of gingival fibroblastic and oral epithelial cells. 
In the study, cells were treated with porcine TGF‑β1 in order 
to compare its actions with those of EMD. In the epithelial 
and fibroblastic cells, TGF‑β1 replicated the action of EMD 
in the nuclear accumulation of SMAD2, the phosphorylation 
of mitogen activated protein (MAP) kinase family members 
and, consequently, cell growth induction. Neutralizing TGF‑β 
antibody blocked certain actions of EMD. The anti‑TGF‑β 
antibody prevented TGF‑β1‑induced SMAD2 translocation 
and blocked other actions of EMD, such as p38‑MAP kinase 
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phosphorylation and p21WAF1/cip1 expression in epithelial 
cells. It has been suggested that TGF‑β1 or a TGF‑β‑like 
substance is a principal bioactive factor in EMD, but the 
TGF‑β1‑neutralizing antibody did not block EMD‑induced 
fibroblast proliferation, strongly implying that EMD contains 
unidentified mitogenic factor(s).

The effects of EMD vary according to the origin of the 
cell line; EMD has been found to increase the proliferation 
of gingival fibroblasts but decrease the proliferation of epithe-
lial cells (50,51). Notably, no apoptotic effect was observed 
when epithelial cells were treated with EMD (51), which led 
to the conclusion that EMD acted as a cytostatic rather than 
a cytotoxic agent for epithelial cells. EMD has also been 
demonstrated to have a growth‑inhibitory effect on epithelial 
(HeLa) cells and human squamous cell carcinoma‑derived‑25 
cells (51). Kawase et al  (46) postulated that EMD reduced 
DNA synthesis, suggesting that a reduction in epithelial cell 
growth could be mediated by TGF‑β‑like activity. EMD and 
TGF‑β are also able to stimulate the production of matrix 
metalloproteinases (MMPs), which are crucial in tumorigen-
esis and in benign keratinocytes (27).

The findings concerning the effect of EMD on the other 
special epithelial cells, endothelial cells, which are required 
for the healing and regeneration of periodontal tissue, are 
contradictory and include either a stimulatory effect (52) or 
no effect at all (53) on proliferation. A low concentration of 
EMD stimulated the proliferation and migration of endothelial 
cells, whereas a higher concentration inhibited them (54). It 

was hypothesized that TGF‑β present in the EMD‑conditioned 
media may be responsible for the effects of EMD on the 
proliferation and viability of human umbilical vein endothelial 
cells (54).

The effect of EMD is also dependent upon its specific 
fraction. Full‑length amelogenin molecules have been shown 
to stimulate the autocrine production of BMP, while smaller 
fractions like LRAP and TRAP stimulate the autocrine produc-
tion of TGF‑β in the human PDL  (4). The TGF‑β protein, 
however, has not been found in the composition of EMD (50). 
The aforementioned studies suggest that specific amelogenin 
molecules may stimulate the autocrine release of growth factors 
that coordinate the regenerative effects of EMD.

3. BMP in the periodontium

BMPs belong to the TGF‑β superfamily of growth factors (55) 
but have two extra domains in addition to the structure typical 
of the TGF family members TGF‑β, activin/inhibin and nodal. 
The family of BMPs is particularly noteworthy due to its func-
tion in the morphogenesis and development of various tissues, 
cell proliferation, apoptosis and ECM protein synthesis, as well 
as its ability to induce cartilage and bone formation (56‑59). 
BMP‑2, ‑4, ‑6 and ‑7 have osteoinductive activities in vivo (60) 
whereas other BMPs exhibit low osteoinductive activity but 
modulate BMP action (57). BMP‑2 and ‑4 are also naturally 
expressed in the skin, in epidermal keratinocytes and dermal 
fibroblasts (61,62). In addition, they induce embryonic stem cells 

Figure 1. Extracellular amelogenin proteolytic process. Ameloblasts synthesize three categories of enamel matrix protein: Amelogenin, enamelin and a 
non‑amelogenin non‑enamelin group. Amelogenin is slowly degraded by specific extracellular proteolytic enzymes to smaller soluble forms. LRAP, 
leucine‑rich amelogenin peptide; TRAP, tyrosine‑rich amelogenin peptide.
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into chondrogenic differentiation (63). The function of BMP‑2 
extends to affecting the production of ECM, since it stimulates 
the production of glycosaminoglycan and collagen type II (64). 
It acts through influencing the balance between MMP2 and 
its inhibitor, tissue inhibitor of metalloproteinase‑2 (65), as 
well as via the classical SMAD pathway through which it can 
co‑interact with FGF and VEGF (66‑68).

BMPs bind to BMP receptors of types I and II. Type  I 
receptors include activin receptor‑like kinase (ALK)‑2, ALK‑3 
(BMP receptor IA; expressed in most types of cells) and ALK‑6 
(BMP receptor IB; chondrocytes and osteoclasts express only 
this type of BMP receptor), and mainly determine the speci-
ficity of the intracellular signals. Type II receptors include BMP 
type II receptor, activin type II receptor and activin type IIB 
receptor. BMPs activate intracellular transcription factors 
SMAD‑1, ‑5 and ‑8, which dimerize with SMAD‑4 prior to 
translocation into the nucleus (67,69‑71). Osteopontin, osteo-
protegerin (OPG), BMP‑7 and SMAD‑1 are activated by BMP 
through the SMAD activation mechanism (72‑74). BMPs also 
stimulate MAP kinase, phosphoinositide‑3 kinase and JNK by 
SMAD‑independent signals (75,76).

In the periodontium the presence of BMP‑2 and BMP‑4 
between sections of human periodontal structures is distinct. 
Immunohistochemistry has shown intense staining in the PDL 
with almost no detection in the cementum, alveolar bone and 
gingival connective tissue (77). This finding did not correlate 
with the expression of mRNA for these proteins. In vitro the 
gingival and PDL fibroblasts expressed mRNA for BMP‑2 
and ‑4, and while the BMP‑4 mRNA level was similar in the 
gingival and periodontal fibroblasts, the BMP‑2 expression was 
higher in the gingival fibroblasts (77).

EMD has been shown to contain or stimulate growth factors 
such as TGF‑β, BMP‑2, ‑4 and ‑7 (24,26,78‑80). It has also 
been noted that amelogenin stimulates BSP gene transcription 
in osteoblasts by inducing the expression of nuclear proteins 
that bind to FGF‑2 response elements and TGF‑β1 activation 
elements in BSP gene promoters (4). Amelogenin has compa-
rable osteogenic activities to recombinant human BMP‑2 and 
induces the formation of a reparative dentin bridge, in a manner 
comparable with that of BMP‑7 and calcium hydroxide (81). In 
response to EMD treatment, human dental follicle cells have 
exhibited increased expression levels of BMP‑2, BMP‑7, BSP 
and two cementum markers, namely cementum attachment 
protein and cementum protein‑23 (78).

The investigation of osteoprogenitor cells (C2C12) and 
human microvascular endothelial cells showed that noggin, 
a molecule that prevents BMPs from binding to their recep-
tors (82,83), abolishes alkaline phosphatase activity in C2C12 
cells. This suggests that the effect on osteoprogenitor cell 
differentiation results from the action of BMP‑like proteins, 
whereas the effects on proliferation and angiogenesis are associ-
ated with lower molecular weight proteins from EMD (84). By 
contrast, the osteoinductive activity of LRAP has been found to 
be comparable with the effect of BMP‑2 on the osteogenesis of 
mouse embryonic stem cells (85).

4. VEGF in the periodontium

VEGF induces endothelial proliferation, migration and 
specialization in new and developing vascular beds  (86) 

during embryogenesis and later development, wound healing 
and menstruation. It is also a potent promoter of angiogenesis 
in numerous types of tumors (87), diabetes, rheumatoid fever 
and psoriasis (88).

In the periodontium, VEGF has been shown to be involved 
in the regulation of bone remodeling by attracting endothelial 
cells and osteoclasts and by stimulating osteoblast differentia-
tion (89). VEGF has been found in a higher concentration in 
crevicular fluid during gingivitis (90). Angiogenesis is central 
to tissue healing. EMD, directly or indirectly, positively influ-
ences this process. EMD has been shown to have a chemotactic 
effect on endothelial cells in vitro (53) and to stimulate human 
microvascular endothelial cells (HMVECs) as well as their 
production of VEGF (52,84). Additionally, EMD enhances the 
communication between HMVECs and PDL fibroblasts (52). 
Human periodontal and dermal fibroblasts cultured with 
EMD also exhibit increased VEGF production  (52,91). 
One of the possible mechanisms by which EMD stimulates 
angiogenesis is by increasing the expression of MMP‑2 in 
human microvascular pericytes (91,92). Another route could 
be through the EMD‑induced stimulation of VEGF produc-
tion, which occurs partially via TGF‑β1 and FGF‑2 in human 
gingival fibroblasts (37). It is notable that EMD and its major 
component, amelogenin, stimulate angiogenesis but the small 
tyrosine‑rich and leucine‑rich polypeptides present in a 5‑kD 
protein fraction derived from EMD do not (93). This stimu-
lation is dose‑dependent (94). At low concentrations EMD 
stimulates PDL fibroblast proliferation by HMVECs but in 
higher concentrations it does not (52).

5. PDGF in the periodontium

PDGF stimulates the activation of proliferation, migra-
tion and matrix synthesis in gingival and PDL fibroblasts, 
cementoblasts, pre‑osteoblasts and osteoblasts in a dose‑ and 
time‑dependent manner  (15,95‑100). It is suggested that 
during wound healing, PDGF cooperates with other growth 
factors, such as IGF‑1  (101), TGF‑β  (99) or VEGF  (102). 
PDGF has VEGF‑like effects on angiogenesis. The three 
main VEGF receptors are structurally similar to the family 
of PDGF receptor III class of tyrosine kinase receptors (RTK 
class III) (103). The RTK‑ERK 1/2 signaling pathway induced 
by EMD is similar to that activated by epidermal growth factor 
(EGF) (103). PDGF upregulates the expression of integrin 
collagen receptors in rat fibroblasts (104) and also stimulates 
actin filament reorganization in cytoskeletal proteins (105). 
EMD induces PDL fibroblasts to secrete TGF‑β1, IL‑6 and 
PDGF‑AB by intracellular cyclic adenosine monophosphate 
signaling; epithelial cell growth is inhibited by the same 
signal (49). A combination of EMD and PDGF‑BB produced 
greater proliferative and wound‑fill effects on PDL cells than 
either protein by itself (106).

6. FGF in the periodontium

FGF acts as a mitogen for vascularization during organogen-
esis (107,108). FGF is specifically upregulated in bone marrow 
stromal stem cell transplants, and may play important roles in 
the growth of blood vessels and in the recruitment of hemato-
poietic elements (109,110). Additionally, the actions of bFGF 
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and VEGF are complementary and when present together 
may result in a synergistic effect on angiogenesis (111‑113), 
which may involve enhanced cytoprotection against 
complement‑mediated vascular injury (114). It has been indi-
cated that FGF‑2 promotes valve interstitial cell wound repair 
through the TGF‑β/SMAD‑2 and ‑3 signaling pathway (115). 
EMD has been observed to increase the expression of FGF‑2 
and TGF‑β1 in osteoblasts (116). FGF‑2 stimulates the prolif-
eration of osteoblastic cells but reduces their differentiation; 
therefore, EMD may modify cell proliferation and differentia-
tion via FGF‑2 production (117,118). EMD potentially induces 
FGF‑2 via prostaglandin‑2 production, decreases the expres-
sion of MMP‑1 via FGF‑2 (119) and modulates FGF‑2 gene 
expression in osteoblasts and Müller cells (120,121). In smooth 
muscle cells, FGF‑2 induces the expression of MMP‑1 protein 
and inhibits collagen synthesis (122). The cooperative effects 
of FGF‑2 and VEGF have also been explored in periodontal 
ligament cells (123).

7. EGF in the periodontium

EGF enhances the cellular proliferation and differen-
tiation of epidermal and epithelial cells, fibroblasts, 
cartilage and bone‑derived cells during growth, maturation 
and healing processes (124‑129), and is also a potent mitogenic 
factor (130‑132). The treatment of human gingival fibroblasts 
with EMD results in an autocrine/paracrine EGF receptor 
(EGFR) transactivation. There are two suggested independent 
mechanisms of EGFR transactivation: i)  An intracellular 
pathway mediated by the src family of non‑receptor tyrosine 
kinases (133,134); and ii) an extracellular pathway mediated 
by the shedding of a transmembrane pro‑form of EGFR 
ligands by metalloproteinases (135‑137). The capacity of PDL 
cells to bind to EGF and EMD has been assessed in a 125I‑EGF 
radioligand binding assay. The assay showed that there was no 
significant competitive binding between EGF and EMD, indi-
cating that the EGFR is not the binding site for EMD (103). 
These results indicate that EMD does not contain biologically 
effective amounts of EGF and supports a study in which 
no EGF was detected in EMD by radioimmunoassay (50). 
Other studies have demonstrated cross‑talk between TGF‑β 
and EGF‑stimulated pathways (138) and suggested that the 
molecular mechanisms by which TGF‑β1 and EGF interact 
to elicit these phenotypic changes may involve MAP kinases, 
SMADs, activator protein and upstream stimulatory factor 
transcription factors (139,140).

8. IGF‑1 in the periodontium

IGF‑1 is a multifunctional peptide that regulates growth, 
differentiation and the expression of ECM proteins (9). It is 
also thought to be a key mediator of wound healing, inducing 
epithelial and mesenchymal cell proliferation  (8). IGF is 
reported to stimulate cell migration (126,130,132) and has been 
successfully used for dentine‑pulp complex regeneration (141). 
EMD stimulates IGF‑1, TGF‑β1, PDGF and IL‑6 produc-
tion in PDL fibroblasts (49,142); however, it has no effect on 
IGF‑1, BMP‑2 or IL‑6 in HeLa and MG‑63 cell lines (49,143). 
PDGF and IGF together synergistically enhance gingival 
fibroblast contractility, and may have had a synergistic effect 

on wound healing (101,144). Furthermore, cementum‑derived 
growth factor (CGF) has been characterized as an IGF‑1‑like 
molecule (145). CGF has been shown to be mitogenic for both 
PDL and gingival fibroblasts, to promote the migration and 
growth of progenitor cells adjacent to the dentin matrix, and 
to participate in their differentiation into cementoblasts (146).

9. Conclusion

The effects of EMD on periodontal tissue regeneration have 
been well documented, however, the mechanism of action 
remains unknown. To date, no receptors specific for amelogenin 
have been identified, to the best of our knowledge. However, 
there are putative receptors, such as lysosomal‑associated 
membrane proteins (LAMP); LAMP‑1 interacts with LRAP, 
and LAMP‑3 with longer amelogenin protein isoforms. Notably, 
neither of these receptors interacts with both of the amelogenin 
molecules  (147). The role of amelogenin derivatives in the 
periodontium is also unclear. Studies carried out on LRAP 
have shown its induction effect on the expression of bone acidic 
glycoprotein‑75, BSP (148) and OPG in mineralized tissues, 
including cementoblasts (149). When evaluating whether the 
action of EMD on cells is dependent on direct cell‑matrix 
contact or mediated by growth factors released from EMD or 
stimulated by it, the close interaction between growth factors 
presents a challenge. It has been suggested that the soluble 
growth factors contained in EMD may be responsible for the 
stimulating effects. TGF‑β and small amelogenin peptides are 
potential candidates for the factors mediating the action of 
EMD (150), however further studies are required to investigate 
this further.
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