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Abstract. Denoising is a crucial preprocessing procedure for 
three dimensional magnetic resonance imaging (3D MRI). 
Existing denoising methods are predominantly implemented 
in a single domain, ignoring information in other domains. 
However, denoising methods are becoming increasingly 
complex, making analysis and implementation challenging. 
The present study aimed to develop a dual‑domain image 
denoising (DDID) algorithm for 3D MRI that encapsulates 
information from the spatial and transform domains. In the 
present study, the DDID method was used to distinguish signal 
from noise in the spatial and frequency domains, after which 
robust accurate noise estimation was introduced for iterative 
filtering, which is simple and beneficial for computation. In 
addition, the proposed method was compared quantitatively 
and qualitatively with existing methods for synthetic and 
in vivo MRI datasets. The results of the present study suggested 
that the novel DDID algorithm performed well and provided 
competitive results, as compared with existing MRI denoising 
filters.

Introduction

Magnetic resonance imaging (MRI) is a medical imaging tool 
that can provide highly detailed images of tissues and organs in 
the human body (1,2). It is primarily used to demonstrate patho-
logical and physiological alterations in living tissues (1,2), since 
it is non‑invasive and can produce accurate three dimensional 
(3D) representations of internal structures of the human body (3). 
However, MRI images are easily contaminated by random noise, 
which limits the accuracy of quantitative measurements and 
the validity of diagnoses (4). Commonly used image denoising 
methods deal with Gaussian noise; however, denoising methods 
for MRI must be adapted for Rician noise MRI images provides 

a more accurate representation of information, which may 
benefit the denoising procedure (5).

Numerous MRI denoising approaches have been proposed by 
researchers. Sijbers et al (6,7) applied the maximum likelihood 
(ML) approach to reduce bias associated with the conventional 
denoising method, estimate the Rician noise and perform signal 
reconstruction. Conversely, in 2008, Aja‑Fernandez et al (8,9) 

used the linear minimum mean square error estimator, in which 
the true value for each noisy pixel was estimated by a set of 
pixels selected from a local neighborhood. In addition, Wiener 
filtering is an adaptive optimal estimation method that uses the 
minimum mean square error as a criterion for denoising, and 
has been used to remove Rician noise in MRI (10).

Denoising in the spatial domain is the most direct approach. 
In 1985, Mcveigh et al (11) developed the spatial and temporal 
filters for reducing Gaussian noise in MRI images; however, both 
the noise and signal were reduced by the same factor and the 
signal‑to‑noise ratio (SNR) was unaffected. In 1990, Perona and 
Malik (12) established a multiscale smoothing scheme termed 
the anisotropic diffusion filter to overcome this defect; they 
smoothed markedly in the slow changing areas and suppressed 
at the boundaries by detecting the local gradient strengths in 
different directions in order to preserve the edges. In 2005, 
Buades et al (13) proposed the nonlocal means (NLM) filter, 
which uses the redundancy of patterns within the images to 
remove noise, and then adapted it for Rician noise correction in 
MRI (14,15). These local methods preserve the main structure 
and eliminate image blurring caused by subtle structures (15). 
However, as a result of the complexity of 3D MRI data, compu-
tational burden has emerged as a major challenge.

As well as denoising methods in the spatial domain, a 
number of methods, such as wavelet‑based filers  (16) and 
discrete cosine transform (17), are based on the processing of 
images in the transform domain. These approaches attempt to 
separate edge information from noise in the transform domain, 
and then remove noise while simultaneously preserving the 
edges and fine details (4). Denoising methods that are based 
on denoising patches, such as block matching with 3D filtering 
(BM3D) (18), which stacks the collected patches on top of one 
another and denoises them by 3D‑wavelet shrinkage, have 
emerged as the most state‑of‑the‑art image denoising methods 
in recent years (17). However, such methods are complex and 
thus prohibit a thorough analysis.

Knaus and Zwicker (19) developed a dual‑domain image 
denoising (DDID) method that can produce high‑quality results. 
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In the present study, the DDID algorithm was adapted for a 3D 
MRI dataset with robust Rician noise estimation and 3D imple-
mentation in both the spatial and transform domains.

Data and methods

Algorithm. The present method for 3D MRI denoising was 
adapted from a recently proposed DDID algorithm for natural 
and synthetic images (20). Initially, a gradient descent was 
performed by progressively estimating Rician noise differ-
entials and subtracting them iteratively from a noisy dataset. 
Subsequently, the noise differentials were estimated using 
robust kernels in both the spatial and frequency domains.

Noise removal by gradient descent. According to previous 
studies, a noise‑free MRI image (x) will be corrupted by Rician 
noise (n) with zero mean and σ standard deviation (6,7). Hence, 
the noisy MRI dataset (y) may be represented as follows:

The denoising procedure may be regarded as an energy 
minimization problem for the optimal estimation of n̂. Thus, 
the denoising procedure was formulated as a gradient descent, 
as follows:

Where i is the number of iterations and λ is the scale factor that 
controls the step size in the direction of the gradient descent. 
The algorithm was initialed at x0=y. The energy term E(xi) 
was then estimated as a noise estimate (λni) for iteration i, as 
follows:

This permitted the reinterpretation of the gradient descent 
as a progressive removal of noise differentials (λni), which was 
integrated over time (i) to estimate the total noise, as follows:

Robust noise estimation in dual‑domains. To accomplish 
progressive noise removal, the noise for each iteration should 
be robustly estimated. In the DDID method, the noise was esti-
mated via wavelet shrinkage, and denoising was performed by 
shrinkage of the wavelet coefficients in the wavelet domain to 
preserve the signal and to discard the noise (20). In the present 
study, the signal was considered the outlier and the noise as the 
inlier being estimated; the denoised signal was not estimated 
directly, but determined by subtracting the estimated noise. 
Noisy MRI images may be divided into three categories: Large 
amplitude signals, medium amplitude signals and small ampli-
tude noise (19,20). Large amplitude signals, like step signals, 
have large gradients and are easily recognized and detected in 
the spatial domain. Signal and noise are uncorrelated when the 
signal and noise amplitudes are similar (i.e. medium ampli-
tude signal). In the present study, medium amplitude signals 
were detected as large amplitudes in the frequency domain, 
thereby allowing the small amplitude noise to be estimated by 
rejecting the large amplitudes.

Signals should be distinguished from noise so as to compute 
the noise estimation (ni) for iteration (i). Initially, the robust noise 

estimator for i was implemented in the spatial domain, where 
large amplitude signals were removed. Considering pixel p using 
pixels q in a neighborhood window Np with window radius r, 
the gradient (gi,p,q) was computed by subtracting the center pixel 
value (xi,p) from all the neighboring pixels (xi,p), as follows:

In this framework, the gradient was used to define a 
smoothly decaying range kernel (kr), which masked large 
signals from being denoised. If those signals could not be 
rejected, the noise estimation would have been biased in the 
frequency domain. In addition, a smoothly decaying spatial 
kernel (ks) was implemented to limit bias from spatially distant 
pixels. Subsequently, the two kernels (kr and ks) were combined 
to an unnormalized bilateral kernel. Finally, a discrete Fourier 
transform was performed to obtain the masked signal in the 
frequency domain (Fp), yielding the Fourier coefficients (Gi,p,f) 
for frequency f as follows:

The imaginary number j=√‑1 was used to avoid confu-
sion with the iteration time i. Scale parameters Ti and Si were 
obtained by deterministic annealing (DA) (21,22), as described 
previously:

Where a‑1 is the rate of an exponential decay, γr is a large 
initial scale factor, σ2 is the noise variance of the noisy input 
y and σ2 defines a reference standard deviation for the spatial 
kernel. Similar to the parameter γr of the range kernel, γs is a 
small initial scale factor for the scale σs of the spatial kernel.

After removing large amplitude signals, the medium 
amplitude signals were similarly masked in the frequency 
domain in order to obtain the remaining small amplitude 
noise. This procedure involved the use of another range kernel 
K to remove large Fourier coefficients. Finally, the noise was 
estimated by taking the center pixel following inverse Fourier 
transformation of the signal. To obtain this value, the Fourier 
slicing theorem was applied and averaged for all Fourier coef-
ficients, as follows:

Where Vi is another scale parameter similar to the spatial 
domain. It is in this case the variance of the Fourier 
coefficients Gi,p,f, defined using the noise variance σ2, as 
follows:

Comparison of DDID method with NLM and BM3D. The 
DDID method proposed in the present study was compared 
with unbiased NLM (13) and BM3D (17). The parameters in 
the proposed method were empirically identified as mentioned 
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above and were the same for all noise levels. A total of 
30 iterations (N=30) and a window radius of 15 (r=15) was 
selected. The parameters for the NLM and BM3D methods 
were the optimal ones, as suggested in previous studies (13,17). 
All algorithms were processed on a desktop computer with an 
Intel Core™ i3 Processor and 4 GB random‑access memory, 

and scripted in Matlab 2013a (http://uk.mathworks.com/prod-
ucts/new_products/release2013a.html).

Simulated and real datasets were used to evaluate the 
proposed method. The 3D simulated brain database BrainWeb 
(http://brainweb.bic.mni.mcgill.ca/brainweb/) was used for 
quantitative and qualitative comparisons in different modalities, 

Figure 2. Example filtering results for an axial slice of the T1‑weighted BrainWeb phantom (Rician noise level of 15%). The third row shows the absolute value 
of the image residuals for the various methods. NLM, nonlocal means filter; BM3D, block matching with 3D filtering.

Figure 1. Denoising results following various iterations (0, 10, 20, 30 and 30). The Rician noise level was 15%. The second number denotes the increasing 
peak‑signal‑to‑noise ratio.
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including T1‑weighted (T1w), proton density (PD)‑weighted and 
T2w, according to previous studies (23,24). All of the datasets 
were isotropic voxel with a resolution of 1 mm3 and a spatial 
resolution of 181x217x181. With this phantom, the denoising 
results in the various iterations are presented in Fig. 1, and are 
qualitatively compared with NLM and BM3D in Figs. 2‑4. The 
quantitative evaluation of these methods in the three modalities 
with varying levels of intensity (1‑15% of maximum intensity) 
is presented in Table I. Three quality measures were used to 
evaluate the results: i) The root mean squared error (RMSE) 
metric, which is commonly used in image processing to 
analyze the differences between original and restored data; 
ii) the peak‑to‑noise ratio (PSNR), which measures the extent 
to which the noise has been suppressed; and iii) the structural 
similarity index (SSIM), which is a measure more consistent 
with the human visual system (25), as follows:

Where µx and µy are the mean values of images x and y, σx 
and σy are the standard deviation of images x and y, σxy is the 

covariance of x and y, x and C1=(k1L)2 and C2=(k2L)2 (where L 
is the dynamic range, k1=0.01 and k2=0.03). As suggested by 
Wang et al (25) in 2004, the SSIM was locally estimated using 
the Gaussian kernel of 3x3x3 voxels. Finally, the mean value 
of all estimations was used as a quality metric. For the sake 
of clarity, both measures were estimated only in the region of 
interest (ROI; head tissues) obtained by removing the back-
ground, as previously described (26).

The real 3D MRI dataset (spinal cord; 5 male and 5 female; 
age range, 20‑26 years) was acquired using a Siemens 3T 
scanner (echo time=4.7 msec; repetition time=2,040 msec; 
inversion time=900 msec; voxel size=1.0x1.0x1.0 nm; image 
size=180x192x192 voxels; flip angle=8 ;̊ Siemens AG, Munich, 
Germany). The Rician noise level was estimated to be ~3% of 
the maximum gray level intensity using the method proposed 
by Aja‑Fernandez et al (8) in 2008. Since the original dataset 
was noisy already, only the restored images for the various 
methods are presented in Fig. 5. The second row is the enlarged 
images of the corresponding block in the first row. In addi-
tion to visual comparisons, the results of segmentation with a 
region growing algorithm (27) are also provided in the third 

Figure 3. Example filtering results for an axial slice of the proton density‑weighted BrainWeb phantom (Rician noise level of 15%). The third row shows the 
absolute value of the image residuals for the various methods. NLM, nonlocal means filter; BM3D, block matching with 3D filtering.
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row. The ROI was defined by dilating the seed for segmenta-
tion five times, and the resulting image was used as an ROI for 
quantitative analysis.

Results and Discussion

Evaluation of simulated datasets. Fig. 1 demonstrates that there 
were improvements in the visual quality and PSNR over time. 
During the initial 20 iterations, the PSNR markedly increased; 
however, it subsequently slowed down until convergence. 
This is not surprising, since the proposed method was able 
to effectively distinguish noise and large amplitude signals in 
the spatial domain, and then moderate the medium amplitude 
signal and noise in the frequency domain until convergence.

Figs.  2‑4 present the denoised MRI images using the 
NLM, BM3D and proposed DDID methods in the T1w, 
PDw and T2w modalities, respectively. Only images with 
the highest noise intensities (15%) are presented in order to 
emphasize the differences among the algorithms. As can be 
observed, the proposed DDID method produced a visually 
more pleasant image, as compared with the NLM method, 
showing less grainy and more definite restored images. In 
addition, the denoised images generated by the proposed 
algorithm appeared clearer and less blurred in homogeneous 

areas (for example, T1w images in Fig. 2), and the boundaries 
were more clearly defined (for example, PD and T2w images 
in Figs. 3 and 4). These results may be due to the fact that the 
proposed method utilized information in both the spatial and 
transform domains to denoise MRI datasets, whereas the other 
methods were predominantly implemented in a single domain. 
Furthermore, the residual images in the third row demon-
strated that the proposed and BM3D methods were superior, 
as compared with the NLM method, since there only minor 
anatomical information could be observed in their residual 
images, whereas the opposite occurred for NLM.

Table I presents a quantitative comparison of the three 
methods. The proposed method out‑performed the NLM and 
BM3D methods and exhibited improvements over the NLM 
method. The NLM filter suffered from its lack of adaptation to 
particular properties of Rician noise (28). Conversely, BM3D 
is a state‑of‑the‑art denoising method that has recently been 
developed (29); however, the proposed method was superior 
to the BM3D method in numerous cases. For example, the 
proposed method achieved better results at low noise levels 
for T1w data, and at high noise levels for PDw data. In addi-
tion, the best performance across the majority of noise levels 
was observed for the T2w data, which may be due to the high 
contrast on the T2w data.

Figure 4. Example filtering results for an axial slice of the T2‑weighted BrainWeb phantom (Rician noise level of 15%). The third row shows the absolute value 
of the image residuals for the various methods. NLM, nonlocal means filter; BM3D, block matching with 3D filtering.
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Evaluation of clinical data. The consistency of the proposed 
method on spinal cord data was evaluated. As the original 
datasets already had noise, neither ideal residual images nor 
quantitative results could be obtained. As shown in Fig. 5, 

the proposed and BM3D methods exceeded NLM in terms 
of noise removal and sharpness. As compared with the other 
methods, the proposed method achieved a superior smoothing 
result, which was likely due to the robust estimation of noise 

Table I. RMSE, PSNR and SSIM of the compared methods for different MRI modalities and Rician noise levels.

				    Noise level (%)	
	‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Modality	 1	 3	 5	 7	 9	 11	 13	 15

T1w
  RMSE
    NLM	 3.54	 6.96	 8.56	 9.88	 11.30	 12.89	 14.61	 16.72
    BM3D	 1.68	 3.66	 5.27	 6.81	 8.58	 10.54	 12.53	 15.00
    Proposed	 1.75	 3.63	 5.25	 6.82	 8.67	 10.68	 12.76	 15.34
  PSNR
    NLM	 36.74	 31.07	 29.27	 28.03	 26.86	 25.72	 24.63	 23.46
    BM3D	 43.40	 36.65	 33.48	 31.26	 29.26	 27.47	 25.97	 24.40
    Proposed	 43.06	 36.72	 33.52	 31.25	 29.16	 27.35	 25.81	 24.21
  SSIM
    NLM	 0.9700	 0.9042	 0.8666	 0.8319	 0.7968	 0.7617	 0.7275	 0.6907
    BM3D	 0.9904	 0.9632	 0.9320	 0.8993	 0.8661	 0.8326	 0.8029	 0.7697
    Proposed	 0.9908	 0.9669	 0.9356	 0.9008	 0.8638	 0.8278	 0.7967	 0.7606

PDw
  RMSE
    NLM	 4.63	 7.96	 10.70	 13.00	 14.77	 16.17	 17.34	 18.58
    BM3D	 1.72	 3.86	 5.53	 6.97	 8.42	 9.87	 11.26	 13.00
    Proposed	 1.78	 3.94	 5.61	 7.01	 8.41	 9.76	 11.15	 12.80
  PSNR
    NLM	 34.81	 30.11	 27.55	 25.85	 24.74	 23.95	 23.35	 22.75
    BM3D	 43.43	 36.40	 33.28	 31.27	 29.62	 28.25	 27.10	 25.86
    Proposed	 43.14	 36.22	 33.16	 31.22	 29.64	 28.35	 27.19	 25.98
  SSIM
    NLM	 0.9677	 0.9051	 0.8637	 0.8259	 0.7850	 0.7467	 0.7078	 0.6731
    BM3D	 0.9898	 0.9627	 0.9334	 0.9084	 0.8768	 0.8497	 0.8201	 0.7918
    Proposed	 0.9899	 0.9633	 0.9323	 0.9038	 0.8736	 0.8472	 0.8189	 0.7949

T2w
  RMSE
    NLM	 5.47	 1073	 15.31	 18.07	 19.89	 21.32	 22.74	 24.31
    BM3D	 1.90	 4.55	 6.64	 8.54	 10.42	 12.28	 14.55	 17.04
    Proposed	 1.94	 4.62	 6.62	 8.40	 10.29	 12.20	 14.45	 16.90
  PSNR
    NLM	 33.37	 27.52	 24.43	 22.99	 22.16	 21.55	 20.99	 20.42
    BM3D	 42.54	 34.97	 31.68	 29.50	 27.77	 26.34	 24.87	 23.50
    Proposed	 42.36	 34.84	 31.71	 29.64	 27.88	 26.40	 24.94	 23.57
  SSIM
    NLM	 0.9728	 0.9075	 0.8401	 0.7856	 0.7435	 0.7088	 0.6742	 0.6463
    BM3D	 0.9915	 0.9665	 0.9403	 0.9144	 0.8885	 0.8678	 0.8406	 0.8163
    Proposed	 0.9922	 0.9694	 0.9443	 0.9187	 0.8925	 0.8707	 0.8441	 0.8201

RMSE, root mean squared error; PSNR, peak‑to‑noise ratio; SSIM, structural similarity index; MRI, magnetic resonance imaging; 
T1w, T1‑weighted; PDw, proton density‑weighted; T2‑w, T2‑weighted; NLM, nonlocal means filter; BM3D, block matching with 3D filtering.
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and effective differentiation of signal. Furthermore, upon close 
inspection of the central area of the ROI, the boundary of the 
spinal cord appeared to be clearer, which may have been due 
to the edge protection ability afforded by the DDID method. 
These results support the effects observed in the simulated 
images. The segmentation results in the proposed denoised 
MRI image exhibited smoother spinal cord contour, which 
appeared more physiologically realistic and may be beneficial 
to further applications.

In conclusion, the present study developed a novel DDID 
algorithm for denoising 3D MRI data that is assumed to 
be corrupted by Rician noise. This DDID method was 
implemented using a simple iterative filtering scheme that 
is beneficial for computation. In addition, Rician noise was 
robustly estimated using the algorithm, which unified the 
spatial and frequency domains. This accurate noise estima-
tion was introduced by filtering iteratively, which ensured the 
plausible denoising result. Furthermore, the proposed method 
was implemented for both synthetic and in vivo MRI datasets, 
and was shown to achieve competitive results quantitatively 
and qualitatively.
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