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Abstract. Cervical cancer is one of the most common gyneco-
logical cancers worldwide. Aberrant expression of E3 ubiquitin 
ligase isolated by differential display (EDD) has been detected 
in various types of tumor and has been demonstrated to have 
an important role in carcinogenesis, tumor growth and drug 
resistance. However, the role of EDD in cervical cancer and 
its underlying molecular mechanisms remains unknown. The 
present study aimed to investigate the role of EDD in the 
tumorigenicity of cervical cancer. EDD expression levels were 
measured using reverse transcription‑quantitative polymerase 
chain reaction and western blotting in SiHa, HeLa, CaSki, 
c‑41 and c‑33A cervical cancer cell lines and cervical cancer 
tissue specimens. A functional study was performed using cell 
proliferation, colony formation, cell apoptosis assays in vitro 
and tumor growth assays in vivo with EDD either overex-
pressed or silenced. In the present study, EDD expression 
levels were significantly upregulated in cervical cancer cell 
lines and tissue samples. EDD knockdown significantly inhib-
ited colony formation, cell proliferation and tumor growth and 
accelerated cell apoptosis in the cervical cancer cell lines and 
tissue samples. Furthermore, microRNA (miR)‑143 expression 
levels were low in cervical cancer tissue samples and were 
negatively correlated with EDD expression. miR‑143 silencing 
eliminated the effect of EDD on cell proliferation, colony 
formation and cell apoptosis in the cervical cancer cells, which 
suggested that miR‑143 is critical for EDD‑mediated regula-
tion of cervical cancer cell growth. The results of the present 
study indicated that EDD may promote cervical cancer growth 
in vivo and in vitro by targeting miR‑143. In conclusion, EDD 
may have an oncogenic role in cervical cancer and may serve 
as a potential therapeutic target for the treatment of patients 
with cervical cancer.

Introduction

Cervical cancer is the most common type of gynecological can-
cer worldwide, accounting for ~8% of all female malignancies, 
second only to breast cancer (1,2). Every year, cervical cancer 
affects ~500,000  women worldwide, ~250,000 of which suc-
cumb to the disease (3). Although cervical cancer screening has 
been popularized globally (4,5), large numbers of patients with 
advanced cervical cancer remain (6). Notably, hh~85% of novel 
cases and 80% of fatal cases of cervical cancer occur in devel-
oping countries (7,8). Human papillomavirus (HPV) is known 
to be the most common etiological agent of cervical cancer, and 
99% of cervical cancer cases are attributed to human HPV in-
fection  (9,10). However, HPV infection alone is not sufficient 
for the malignant transformation of cervical epithelial cells. 
Various cofactors and molecular events are required in order 
to promote the pathogenic process of cervical cancer  (11,12); 
therefore, early detection and treatment of precancerous lesions 
is particularly important in order to prevent the progression of 
cervical cancer. The molecular pathogenesis of cervical cancer 
remains poorly understood. Investigating the molecular mecha-
nisms underlying the development of cervical cancer, searching 
for novel molecular markers for early diagnosis and developing 
effective therapeutic targets is urgently required.

E3 ubiquitin ligase isolated by differential display (EDD) 
is a human ortholog of the Drosophila melanogaster hyper-
plastic discs gene (hyd) (13,14), which was initially isolated 
as a progestin‑regulated gene in human T47D breast cancer 
cells (14,15). Ubiquitin ligase E3 is able to identify degraded 
proteins and to conduct ubiquitin tagging of the substrate. 
Ubiquitin‑mediated protein degradation is associated with 
various important protein signaling pathways, including tran-
scription, cell cycle and DNA damage (16‑20). Previous studies 
have demonstrated that EDD participates in the regulation of 
cyclin levels and cell cycle progression (21‑24), regulates ubiq-
uitination and the degradation of protein phosphatase (25), 
and has a role in transcriptional regulation and the response to 
DNA damage (15,26‑30). Furthermore, it has previously been 
demonstrated that EDD is ectopically overexpressed in certain 
types of cancer and has an important role in cancer cell growth, 
tumorigenesis and drug resistance (31‑36). However the effects 
of EDD on the occurrence and progression of cervical cancer 
and its associated molecular mechanisms have yet to be fully 
elucidated.
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MicroRNAs (miRNAs or miRs) are a class of non‑coding 
small RNAs of 20‑24  nucleotides in length that regulate 
gene and protein expression (37). miRNAs participate in a 
diverse range of biological processes including development, 
proliferation, differentiation, apoptosis and disease (38‑43). 
Furthermore, certain miRNAs have been demonstrated to 
function as oncogenes or tumor suppressors, therefore they 
are directly involved in human cancer, including liver, lung, 
breast, colon and brain cancer (44‑53). The miRNA expression 
profiles of cervical cancer cells and tissues have previously 
been analyzed using cDNA cloning (52). The results indicated 
that aberrant expression of oncogenic and tumor suppressive 
miRNAs was required for cancer cell growth in cervical 
cancer, and miR‑143 and miR‑145 were demonstrated to be the 
tumor suppressive miRNAs. Furthermore, it was subsequently 
demonstrated that miR‑143 is capable of inhibiting tumor 
growth and angiogenesis, inducing cancer cell apoptosis and 
cell cycle arrest, increasing chemosensitivity, and regulating 
cyclooxygenase stability and expression in colorectal, lung and 
pancreatic cancer (44,46,50,54). These results suggested that 
miR‑143 had an important role in the carcinogenic process. 

The present study aimed to investigate the role of EDD in 
the tumorigenicity of cervical cancer, and to further elucidate 
the underlying molecular mechanism, in order to improve the 
understanding of the pathogenesis of cervical cancer and to 
aid in the development of novel therapeutics for the disease. 

Materials and methods

Tissue samples and cell lines. Human cervical cancer tissue 
samples (n=39) and normal cervical tissue samples (n=13) 
were obtained from patients at the Hebei General Hospital 
(Shijiazhuang, China). The 39 patients with cervical cancer 
were aged between 27 and 55 years (average age, 46 years) and 
had an average weight of 54 kg (weight range, 48 to 63 kg). All 
patients in this group had been diagnosed with stage IA‑IVB 
cervical cancer, according to the FIGO staging system (55). 
The 13 normal control patients were aged between 30 and 
55 years and weighed between 48 and 61 kg. The control 
patients were undergoing a simple hysterectomy at the Hebei 
General Hospital due to uterine leiomyomata. All cancer 
specimens used in the analyses consisted of >90% tumor cells, 
as examined by a gynecologic pathologist. Cancer specimens 
from patients with concomitant gynecological problems were 
excluded from the study. Informed consent was obtained from 
all patients prior to the surgical procedure, and approval was 
obtained from the Medical Ethics Committee of the Hebei 
General Hospital.

Normal cervical epithelial cells and five cervical cancer 
cell lines, including SiHa, HeLa, CaSki, c‑41 and c‑33A, 
were purchased from the American Type Culture Collection 
(Manassas, VA, USA). Cell culture was conducted according 
to methods previously described by Liu et al  (56). Briefly, 
the cells were cultured in RPMI 1640 medium supplemented 
with 10%  fetal bovine serum (FBS; both purchased from 
Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), 2  mM  L‑glutamine, 100  µg/ml streptomycin and 
100 U/ml penicillin (all obtained from Gibco; Thermo Fisher 
Scientific, Inc.). The cells were incubated at 37˚C, in an atmo-
sphere containing 5% CO2. 

Cell proliferation, apoptosis and colony formation assays. 
SiHa cells (1x104 cells/ml) were seeded onto 96‑well plates, 
after which cell proliferation and apoptosis were assessed 
using the MTT Cell Proliferation/Viability Assay kit (cat. 
no. 11465007001; Sigma‑Aldrich Chemie Gmbh, Munich, 
Germany) and the Annexin‑V‑FITC Apoptosis Detection 
kit (cat. no. APOAF‑20TST; Sigma‑Aldrich Chemie Gmbh) 
with a flow cytometer (BD FACSCalibur™; BD Biosciences, 
Franklin  Lakes, NJ, USA), respectively, according to the 
manufacturer's protocols. Subsequently, SiHa cells (1x104) 
were suspended in 1.5  ml complete medium [consisting 
of RPMI 1640 (Invitrogen; Thermo Fisher Scientific, Inc.) 
supplemented with 10% fetal bovine serum (FBS; GE 
Healthcare Life Sciences, Logan, UT, USA)] containing 
0.45% low melting point agarose (Invitrogen; Thermo Fisher 
Scientific, Inc.) and then seeded into 35 mm tissue culture 
plates containing 1.5 ml complete medium and 0.75% agarose 
on the bottom layer, which were then incubated for 10 days at 
37˚C. The plates were then stained with 0.005% crystal violet 
for 30 sec (Sigma‑Aldrich Chemie Gmbh) and the SiHa cell 
colonies (>0.5 mm in diameter) were counted under a micro-
scope (Leica DMI3000; Leica Microsystems GmbH, Wetzlar, 
Germany), according to a previous study (57).

Cell transfection. In order to analyze the effects of EDD 
overexpression or knockdown, SiHa cells (1x104) were 
transfected with adenovirus‑expressing Ad‑EDD or retro-
virus expressing short hairpin (Sh)‑EDD, respectively. 
Ad‑EDD/Ad‑negative control (NC) and Sh‑EDD/Sh‑NC 
were designed and synthesized by Invitrogen (Thermo Fisher 
Scientific, Inc.). For miR‑143 silencing, SiHa cells (1x104) 
were transfected with the pLL3.7 lentivirus vector (Addgene, 
Cambridge, MA, USA) encoding a miR‑143 inhibitor 
sponge. The miR‑143 inhibitor sponge was synthesized by 
GenePharma (Shanghai, China). The cells were cultured in 
six‑well plates to 70‑80% confluency and transfected using 
Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc.). The cells were harvested 48 h post‑transfection for 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) in order to determine the transfection efficiency.

Tumor xenograft experiments. Xenograft mice experiments 
were performed as previously described (56). Briefly, SiHa cells 
(5x106) transfected with Sh‑NC, Sh‑EDD, Ad‑NC or Ad‑EDD 
were injected subcutaneously into the flanks of female athymic 
nude mice (age, 3‑4  weeks; n=6/group), purchased from 
Shanghai Laboratory Animal Co., Ltd. (Shanghai, China). The 
mice were maintained under at 21‑22˚C under a 12‑h light/dark 
cycle. To obtain the tumors, the mice were sacrificed by an 
overdose of pentobarbital (50 mg/kg; Sigma‑Aldrich Chemie 
Gmbh) 4 weeks following inoculation.

RT‑qPCR analysis. Total RNA (100 ng) was extracted from the 
harvested tissue samples and cell lines using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) and was purified 
using RNase‑Free DNase Set (Qiagen, Inc., Valencia, CA, USA), 
according to the manufacturer's protocols. Subsequently, 5 ng 
RNA was reverse transcribed into cDNA using SuperScript III 
Reverse Transcriptase (Invitrogen; Thermo Fisher Scientific, 
Inc.). qPCR was performed using TaqMan MicroRNA Assays 
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(Thermo Fisher Scientific, Inc.) on an ABI 7300 Real‑Time 
PCR System (Applied Biosystems; Thermo Fisher Scientific, 
Inc.), according to a previous study (44). The primer sequences 
were as follows: EDD forward, 5'‑TTA​GGC​TTT​TGG​TAA​
ATG​GCT​GCG‑3' and reverse, 5'‑TGA​GGG​CAT​AGG​CTG​
GAA​TCC​TTC‑3'; miR‑143 forward, 5'‑AGT​GCG​TGT​CGT​
GGA​GTC‑3' and reverse, 5'‑GCC​TGA​GAT​GAA​GCA​CTG​
T‑3'; and β‑actin forward, 5’‑CAT​CCT​GCG​TCT​GGA​CCT‑3’ 
and reverse, 5'‑CAG​GAG​GAG​CAA​TGA​TCTTG‑3'. β‑actin 
was used as the internal control. EDD, miR‑143 and β‑actin 

primers were designed as previously described by Liu et al (54) 
and Clancy et al (30). The PCR cycling conditions were as 
follows: Pre‑heating at 95˚C for 5 min, followed by 35 cycles 
of denaturation for 30 sec at 95˚C, annealing for 1 min at 55˚C 
and extension for 1 min at 72˚C, with a final extension for 
5 min at 72˚C. Relative gene expression levels were calculated 
using the 2‑ΔΔCq method (58). 

Western blotting. Western blotting was performed as previously 
described by Zhang et al (44). Briefly, total protein (50 µg) 

Figure 1. EDD expression levels are upregulated in cervical cancer tissue samples and cell lines. (A) The mRNA expression levels of EDD are upregulated 
in cervical cancer tissue samples (n=13 in normal group, n=39 in cancer group). (B) The protein expression levels of EDD are upregulated in cervical cancer 
tissue samples (n=2 in normal group, n=5 in cancer group). (C) The mRNA expression levels of EDD are upregulated in the cervical cancer cell lines (n=3 in 
each group). EDD, E3 ubiquitin ligase isolated by differential display.

Figure 2. EDD promoted cervical cancer growth in vitro and in vivo. SiHa cervical cancer cells were infected with retrovirus expressing Sh‑NC or Sh‑EDD 
and adenovirus expressing control green fluorescent protein (Ad‑NC) and Ad‑EDD. (A) EDD knockdown inhibited the colony formation of SiHa cells (n=3 
in each group). (B) EDD knockdown inhibited cell proliferation of SiHa cells. *P<0.05 and **P<0.01, vs. sh‑NC. (C) EDD knockdown inhibited tumor growth 
(n=3 in each group). (D) EDD overexpression promoted the colony formation of SiHa cells (n=3 in each group). (E) EDD overexpression promoted the cell 
proliferation of SiHa cells. *P<0.05, vs. ad‑NC. (F) EDD overexpression promoted tumor growth (n=3 in each group). EDD, E3 ubiquitin ligase isolated by 
differential display; Sh‑NC, short hairpin negative control; Sh‑EDD, short hairpin EDD.
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was extracted from the tissue samples and SiHa cell line using 
lysis buffer (20 mM Tris‑HCl, pH 7.4, 2 mM EDTA, 25 mM 
2‑mercaptoethanol, 0.5 mM AEBSF, 0.5% Triton X‑100, 2 µg/ml 
leupeptin and 3 µg/ml aprotinin) and the protein concentra-
tions were measured using a Bio‑Rad Protein Assay kit (cat. 
no. 5000002; Bio‑Rad Laboratories, Inc., Hercules, CA, USA). 
Proteins were separated by 10% SDS‑PAGE and transferred 
to polyvinylidene difluoride membranes (Merck Millipore, 
Darmstadt, Germany). Subsequently, the membranes were 
blocked with 10% skimmed milk solution and then incubated 

overnight at 4˚C with goat anti‑EDD (cat. no.  sc‑9562), 
rabbit anti‑B‑cell lymphoma (Bcl)‑2 (cat. no. sc‑492), rabbit 
anti‑Bcl‑2‑associated X protein (Bax; cat. no. sc‑493), goat 
anti‑caspase 3 p11 (cat. no. sc‑1224) and goat anti‑GAPDH 
(cat. no. sc‑48166) polyclonal antibodies (1:2,000; all Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA). Following 
washing with phosphate‑buffered saline, the membranes 
were incubated with horseradish peroxidase‑conjugated  
goat anti‑rabbit IgG, F(ab')2 (1:3,000; cat. no. sc‑3836) and 
chicken anti‑goat IgG (1:3,000; cat. no. sc‑516086; both Santa 

Figure 3. EDD knockdown induces cervical cancer cell apoptosis. SiHa cells were infected with retrovirus expressing Sh‑NC or Sh‑EDD for 48 h, and 
fluorescence‑activated cell sorting analysis was performed on the cells. The proteins of the SiHa cells were extracted for western blot analysis. (A) EDD 
knockdown induced the apoptosis of cervical cancer cells (n=3 in each group). (B) EDD knockdown induced the downregulation of anti‑apototic protein Bcl‑2 
expression, and the upregulation of pro‑apoptotic Bax and active‑caspase 3 expression. **P<0.01 and ***P<0.001 , vs. sh-NC. EDD, E3 ubiquitin ligase isolated 
by differential display; Bcl‑2, B cell lymphoma 2; Bax, Bcl‑2‑associated X protein; Sh‑NC, short hairpin negative control; Sh‑EDD, short hairpin EDD.

Figure 4. EDD regulates cervical cancer cell growth through miR‑143. (A) The expression levels of miR‑143 are downregulated in cervical cancer tissue 
samples (n=13 in normal group, n=39 in cancer group). (B) EDD knockdown increases miR‑143 expression levels in SiHa cells (n=3 in each group). (C) The 
expression of miR‑143 was negatively correlated with the expression of EDD in cervical cancer tissue samples (n=39). (D) miR‑143 silencing partly reversed 
the inhibition effect on cell proliferation caused by EDD knockdown in SiHa cells. **P<0.01, vs. sh‑NC. (E) miR‑143 silencing eliminated the effect on colony 
formation caused by EDD knockdown in SiHa cells (n=3 in each group). **P<0.01, vs. sh‑NC + NC; ##P<0.01, vs. sh‑EDD + NC. (F) miR‑143 silencing prevented 
the apoptosis caused by EDD knockdown in SiHa cells (n=3 in each group). *P<0.05, vs. sh‑NC + NC; ##P<0.01, vs. sh‑EDD + NC. EDD, E3 ubiquitin ligase 
isolated by differential display; Sh‑NC, short hairpin negative control; Sh‑EDD, short hairpin EDD; miR, microRNA.
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Cruz Biotechnology, Inc.) for 45 min at room temperature, 
prior to incubation with an enhanced chemiluminescence 
substrate (Thermo Fisher Scientific, Inc.). Subsequently, the 
membranes were visualized by exposure to ECL film and 
the band intensities were quantified using UN‑SCAN‑IT gel 
analysis software, version 5.1 (Silk Scientific, Inc., Orem, UT, 
USA). GAPDH was used as a reference gene.

Statistical analysis. All experiments were performed ≥3 times. 
Data were presented as the mean ± standard deviation, and 
were analyzed using SPSS 16.0 software (SPSS, Inc., Chicago, 
IL, USA). Statistical differences between two independent 
groups were determined using the unpaired Student's t‑test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

EDD is overexpressed in cervical cancer tissue samples and 
cell lines. To investigate the role of EDD in cervical cancer, 
the expression levels of EDD were measured in cervical cancer 
tissue samples and cell lines using RT‑qPCR and western blot-
ting. EDD was significantly upregulated in the cervical cancer 
tissue samples at both the mRNA and protein levels (P<0.01; 
Fig. 1A and B). Furthermore, the mRNA expression levels of 
EDD were significantly increased in the cervical cancer cell 
lines, as compared with the normal cervical epithelial cells 
(P<0.0001; Fig. 1C). These results suggest that EDD is overex-
pressed in cervical cancer tissue samples and cell lines. 

EDD promotes cervical cancer growth in vitro and in vivo. 
To further explore the role of abnormal EDD expression 
in cervical cancer, EDD expression was knocked down or 
upregulated in SiHa cells. EDD knockdown in SiHa cervical 
cancer cells significantly inhibited the growth of the cancer 
cells in vitro and in vivo. As shown in Fig. 2A and B, colony 
formation and cell proliferation were significantly inhibited 
in the SiHa cells when EDD was knocked‑down in vitro. 
Furthermore, EDD silencing significantly suppressed the 
growth of cervical cancer tumors in vivo (P<0.001; Fig. 2C). 
The opposite results were observed following EDD overex-
pression. EDD overexpression significantly increased colony 
formation, cell proliferation and tumor growth in cervical 
cancer (P<0.05; Fig. 2D‑F). 

To investigate whether EDD regulates cervical cancer 
growth via an apoptotic mechanism, quantitative analysis of 
apoptotic cells was performed using fluorescence‑activated 
cell sorting. The results demonstrated that EDD knockdown 
significantly increased the apoptosis of SiHa cells (P<0.001; 
Fig.  3A), and reduced the protein expression levels of 
anti‑apoptotic proteins, including Bcl‑2, and increased the 
protein expression levels of pro‑apoptotic proteins, including 
Bax and caspase 3 (Fig. 3B). These results suggest that EDD 
may have an oncogenic role in cervical cancer.

EDD regulates the proliferation of cervical cancer cells via 
miR‑143. As previously demonstrated by Liu et al (56), miR‑143 
promotes apoptosis and inhibits tumor formation in cervical 
cancer. Therefore, it was hypothesized that EDD may regulate 
cervical cancer growth via miR‑143. The expression levels of 

miR‑143 were analyzed in human cervical cancer tissue samples. 
The results demonstrated that miR‑143 expression levels were 
significantly downregulated in cervical cancer tissue samples, 
as compared with the normal tissue samples (P<0.001; Fig. 4A). 

Following this, the present study investigated whether the 
expression levels of miRNA‑143 were correlated with EDD. 
EDD knockdown significantly increased miR‑143 expression 
levels in SiHa cells (P<0.001; Fig. 4B), and miR‑143 expres-
sion was negatively correlated with the expression levels of 
EDD in cervical cancer tissue samples (P<0.001; Fig. 4C), 
which suggests that EDD represses miR‑143 expression in 
cervical cancer. 

To further investigate whether miR‑143 affected the func-
tion of EDD during the growth of cervical cancer, EDD and 
miR‑143 were knocked‑down and silenced respectively or 
simultaneously in SiHa cells. miR‑143 sponge was used to 
eliminate miR‑143 function. miR‑143 silencing significantly 
reversed the inhibitory growth effect of EDD knockdown in 
SiHa cells (P<0.01; Fig. 4D). Furthermore, miR‑143 silencing 
eliminated the effect of EDD knockdown on colony forma-
tion and prevented the apoptosis induced by EDD knockdown 
in SiHa cells (P<0.01; Fig. 4E and F). Therefore, these results 
demonstrate that EDD may regulate the proliferation of cervical 
cancer cells via miR‑143.

Discussion

Previous studies have demonstrated that malignancies are 
frequently accompanied by the abnormal expression of onco-
genes or tumor suppressor genes (59‑65). EDD, as a human 
ortholog of the Drosophila  melanogaster hyd gene  (14), 
was shown to be frequently overexpressed in breast and 
ovarian cancer, which suggests that it may have a role in the 
progression of gynecological cancer (31,33,36). Furthermore, 
Bradley  et  al  (36) demonstrated that EDD downregula-
tion decreased ovarian cancer cell viability, increased cell 
apoptosis, inhibited tumor growth and promoted platinum 
sensitivity through mediation of ubiquitin ligase activity. 
However, the function and molecular mechanisms of EDD in 
human cervical cancer have yet to be elucidated. The results 
of the present study demonstrated that EDD expression levels 
were significantly upregulated in cervical cancer cell lines and 
tissues. Functional studies showed that abnormal expression of 
EDD impacted cell proliferation and tumor growth in cervical 
cancer. Furthermore, EDD knockdown significantly inhibited 
colony formation, cell proliferation and tumor growth in vitro 
and in vivo via the activation of the apoptosis signal pathway. 
These results suggested that EDD may have an oncogenic role 
in human cervical cancer. Abnormal expression of EDD may 
result in the disorder of ubiquitination and deubiquitination 
via ubiquitin ligase E3 and mediate the aberrant expression 
of oncogenes or tumor suppressor genes, thus inducing tumor 
occurrence and development.

miRNAs are involved in a diverse range of biological 
processes (38‑43) and previous studies have demonstrated 
that certain miRNAs may function as oncogenes or tumor 
suppressors, which are directly involved in cancer occurrence 
and development (44‑53). cDNA cloning demonstrated that 
miR‑143 is a tumor‑suppressive miRNA in cervical cancer (52), 
and Liu  et  al  (56) reported that miR‑143 expression was 
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downregulated in cervical cancer. The results of the present 
study demonstrated that miR‑143 expression was downregu-
lated in cervical cancer tissue samples. Furthermore, miR‑143 
expression levels were significantly increased following EDD 
knockdown and were negatively correlated with the expression 
of EDD, which suggested that miR‑143 may be a functional 
target of EDD in cervical cancer. Subsequent functional 
investigation revealed that miR‑143 silencing eliminated the 
effect of EDD knockdown on cell proliferation, colony forma-
tion and cell apoptosis in SiHa cells, indicating that miR‑143 
may be crucial for the function of EDD in regulating the 
growth of cervical cancer cells. These results are concordant 
with those of a previous study, which demonstrated that EDD 
regulates miRNA‑mediated gene silencing and impacts the 
proliferation of cancer cells (27). Su et al (27) identified EDD 
as a key mediator for miRNA silencing via genetic screening 
in mouse embryonic stem cells. It was demonstrated that 
E3 ubiquitin ligase activity was dispensable for EDD func-
tion in miRNA silencing  (27). However, the C‑terminal 
domain of polyadenylate binding protein 1 (PABC) of EDD 
was demonstrated to be essential for its silencing function, 
as EDD regulated miRNA silencing via its PABC domain 
and PABC interactors (27). Furthermore, it has previously 
been demonstrated that miR‑143 is able to promote cervical 
cancer cell apoptosis and inhibit tumor formation by targeting 
Bcl‑2 (56). These findings, and the results of the present study, 
suggest that EDD may regulate miRNA‑143 expression via 
its PABC domain which, in turn, impacts carcinogenesis and 
tumor growth. 

In conclusion, the results of the present study demonstrated 
that EDD regulates cervical cancer growth in vivo and in vitro 
partly via miR‑143. Furthermore, EDD may have an onco-
genic role in cervical cancer and may be a potential target for 
cervical cancer therapy.
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