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Abstract. Down's syndrome (DS) is a type of chromosome 
disease. The present study aimed to explore the underlying 
molecular mechanisms of DS. GSE5390 microarray data 
downloaded from the gene expression omnibus database was 
used to identify differentially expressed genes (DEGs) in DS. 
Pathway enrichment analysis of the DEGs was performed, 
followed by co‑expression network construction. Significant 
differential modules were mined by mutual information, 
followed by functional analysis. The accuracy of sample 
classification for the significant differential modules of DEGs 
was evaluated by leave‑one‑out cross‑validation. A total of 
997 DEGs, including 638 upregulated and 359 downregulated 
genes, were identified. Upregulated DEGs were enriched in 
15 pathways, such as cell adhesion molecules, whereas down-
regulated DEGs were enriched in maturity onset diabetes of 
the young. Three significant differential modules with the 
highest discriminative scores (mutual information>0.35) 
were selected from a co‑expression network. The classifica-
tion accuracy of GSE16677 expression profile samples was 
54.55% and 72.73% when characterized by 12 DEGs and 
3  significant differential modules, respectively. Genes in 

significant differential modules were significantly enriched in 
5 functions, including the endoplasmic reticulum (P=0.018) 
and regulation of apoptosis (P=0.061). The identified DEGs, 
in particular the 12  DEGs in the significant differential 
modules, such as B‑cell lymphoma 2‑associated transcrip-
tion factor 1, heat shock protein 90 kDa beta member 1, UBX 
domain‑containing protein 2 and transmembrane protein 50B, 
may serve important roles in the pathogenesis of DS.

Introduction

Down's syndrome (DS), also known as trisomy 21, is a genetic 
disorder caused by trisomy of part of, or all of, chromosome 21, 
and is associated with significant intellectual disability, phys-
ical growth delays and slanted eyes (1,2). DS may cause other 
complications, such as autism, coeliac disease, hypothyroidism 
and leukemia (3‑5). Over the last several decades, numerous 
genes on trisomy 21 have been suggested to be associated with 
DS (6).

Modern genetic pathology states the hypothesis that 
phenotypes of DS are determined by an extra copy of one 
or several genes, such as oligodendrocyte transcription 
factor  1 present on human chromosome  21 (Hsa21)  (7). 
A previous study demonstrated that sorting nexin family 
member 27, which is suppressed by a bioactive substance 
encoded on Hsa21, is upregulated in the brains of DS 
mice  (8). The DS critical region (DSCR) is composed of 
6 genes, including v‑ets erythroblastosis virus E26 onco-
gene homolog 2 (ETS2) and ETS‑related gene (ERG), which 
encode transcription factors (9). ERG and ETS2 belong to the  
E26 transformation‑specific family, which contains key regula-
tors of embryonic development (10). Numerous sensitive genes 
such as ubiquitin specific peptidase 16, which are associated 
with the reduced ubiquitination of cyclin‑dependent kinase 
inhibitor 2A and expedited senescence in Ts65Dn fibroblasts, 
have been confirmed to be associated with DS (11,12).

The identification of sensitive genes on Hsa21 has become 
the focus of investigations with the aim of elaborating suit-
able therapeutic strategies for DS, and global gene expression 
profiling techniques have been widely used to analyze the 
molecular mechanisms underlying trisomy 21, as the expression 
levels of trisomic genes and those in the wider genome can be 
assessed (13). The majority of DS studies have been performed 
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in animal models, such as the Ts65Dn mouse model of DS, 
which can be used to analyze the association between hippo-
campal pathways and cognitive dysfunction (14‑16). Various 
samples, such as fibroblasts, whole blood, T cells and placenta, 
have been used to investigate the pathogenesis of DS (17‑20). 
The samples used in the present study are derived from the 
brain tissue samples of patients with DS. Lockstone et al (21) 
screened differentially expressed genes (DEGs) in DS and 
performed functional analysis, and investigated significant 
differential modules from a co‑expressed network (21).

In the present study, GSE5390 and GSE16677 were down-
loaded from the Gene Expression Omnibus (GEO) database, 
DEGs were screened for pathway enrichment analysis, then 
a co‑expressed network was constructed and screened for 
significant differential modules. In addition, the classification 
accuracy of GSE16677 expression profile samples were evalu-
ated, characterized by the value of average expressed DEGs 
and all DEGs in significant differential modules. Finally, func-
tional enrichment analysis of DEGs in significant differential 
modules was performed.

Materials and methods

Microarray data. The transcription profiles of GSE5390 and 
GSE16677 were acquired from the GEO database (http://www.
ncbi.nlm.nih.gov/geo/)  (22,23). The platform names were 
GPL96 Affymetrix Human Genome U133A Array and 
GPL570 Affymetrix Human Genome U133 plus 2.0 Array, 
respectively. A total of 15 samples from GSE5390 were studied, 
including 8 normal samples and 7 DS samples of human adult 
brain tissue (dorsolateral prefrontal cortex) from healthy 
controls and individuals with DS (23). A total of 11 samples 
from GSE16677 were studied, including 5 normal samples 
and 6 DS samples of megakaryocytic leukemia blasts from 
patients with DS‑acute megakaryoblastic leukemia (AMKL) 
or French‑American‑British M7 leukemia, and patients with 
non‑DS‑AMKL. The raw data were downloaded for further 
analysis. The present study was approved by the Ethics 
Committee of the First Affiliated Hospital of Zhengzhou 
University (Zhengzhou, China) and performed in accordance 
with ethical standards (22,23).

DEG analysis. Gene expression data from GSE5390 
were processed through background correction, quantile 
normalization and probe summarization using the robust 
multi‑array average algorithm in the oligo software package 
(version 1.8.3) in Bioconductor (https://bioconductor.org/pack-
ages/release/bioc/html/oligo.html). The probe in the matrix 
file corresponded to the gene symbol based on the downloaded 
platform annotation files. The average value of the gene symbol 
with multiple probes was calculated. Significant Analysis of 
Microarray approach in the R package samr (version 2.0) (24) 
was used to screen the DEGs in DS samples by assigning a 
score based on the change in gene expression relative to the 
standard deviation of the repeated measurements. Corrected 
P<0.05 was considered to indicate a statistically significant 
difference.

Pathway enrichment analysis. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) provides 

analytical tools for extracting biological meaning from large 
lists of genes (25,26), and was used for pathway enrichment 
analysis of upregulated and downregulated DEGs in the 
current study.

Co‑expressed network construction. Gene co‑expression 
network analysis is a fusion product of microarray profile 
techniques and network theory, that offers an intuitive concept 
for illustrating the association between two genes (27). The 
gene expression data set GSE5390 was applied to build a 
co‑expressed network. Cytoscape is an open software platform 
for visualizing complex networks and integrating these with 
any type of attributed data (28). The Pearson correlation coef-
ficient is a popular coefficient for evaluating the dependence 
of two variables (29) and, in the present study, Pearson's coef-
ficient analysis was performed using the Perl script program 
(version 5.22.1; https://www.perl.org/get.html). R>0.9 was 
chosen as the criterion for selecting co‑expressed genes. The 
co‑expression network was visualized using Cytoscape soft-
ware (version 2.8; http://www.cytoscape.org/).

Analysis of differentially co‑expressed gene modules. 
GraphWeb (http://biit.cs.ut.ee/graphweb/) is a public web 
server used to mine heterogeneous biological networks for 
significant function gene modules (30). The hidden Markov 
model (HMM) of GraphWeb can be used for modeling by 
defining and observing the joint probability of sequences and 
label sequences (31). In the present study, HMM was used for 
mining network modules. Mutual information (MI) between 
the average expression value of modules and sample labels was 
calculated according to the following formula (32):

 

In this formula, a' is the discretization average expres-
sion value; c is the corresponding vector of the sample 
label. To derive a' from a, activity levels are discretized into 
[log2  (number of samples) + 1] values  (33). Differentially 
co‑expressed gene modules were screened with the threshold 
of discriminative score (defined as MI) >0.35. Then, functional 
enrichment analysis of differentially expressed genes in the 
differentially co‑expressed gene modules was performed by 
DAVID. P<0.1 was used as the cut‑off criterion.

Assessment of classification efficiency. Normal and DS 
samples were classified by the characteristics of differentially 
co‑expressed gene modules and differentially expressed genes. 
The accuracy of classification was confirmed by leave‑one‑out 
cross‑validation. The leave‑one‑out estimate was calculated as 
follows (34): Each specimen was excluded from the training 
set one at a time and then classified on the basis of the predictor 
built from the data for all of the other specimens.

Results

Differentially expressed gene screening. Based on the differ-
ential expression analysis of GSE5390, a total of 997 DGEs 
were obtained with corrected P<0.05, including 638 upregu-
lated genes and 359 downregulated genes.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  12:  1503-1508,  2016 1505

Pathway enrichment analysis. Pathway enrichment analysis 
of upregulated and downregulated DEGs was performed by 
DAVID. A total of 17 pathways were enriched for the DEGs 
(Table I). The upregulated DEGs were enriched in 15 path-
ways, specifically in cell adhesion molecules (P=1.68x10‑7) 
which involved 23  genes, such as golgi glycoprotein  1 
(GLG1), human leukocyte antigen class  II histocompat-
ibility antigen (HLA‑DRB1) and claudin‑10. Type I diabetes 
mellitus (P=6.58x10‑4), a complication of DS, was enriched 
by 9 genes, including carboxypeptidase E and HLA‑DRB1. 
Downregulated DEGs were primarily enriched in two path-
ways: Maturity onset diabetes of the young (P=1.56x10‑2) and 
cardiac muscle contraction (P=2.53x10‑2). These 17 pathways 
may serve important roles in the pathogenesis of DS.

Significant differential module analysis. The constructed 
co‑expression network included 997 nodes and 19,049 edges 
(Fig. 1). The co‑expressed network was processed by HMM, 
and 36 modules were obtained. A total of 3 significant differen-
tial modules with MI>0.35 were identified (Fig. 2). Module 13 
contained 5 upregulated DEGs [heterogeneous nuclear ribo-
nucleoprotein R, B‑cell lymphoma 2‑associated transcription 
factor 1 (BCLAF1), GLG1, UBX domain‑containing protein 2 
(UBXD2) and transmembrane protein (TMEM) 106B] and 
1 downregulated DEG (cullin 7). A total of 2 upregulated 
DEGs [TMEM50B and heat shock protein 90  kDa beta 
member 1 (HSP90B1)] combined with the downregulated 
DEG (receptor for advanced glycation end‑products) combined 
to form module 31. Module 35 consisted of 3 downregulated 
DEGs, including D‑beta‑hydroxybutyrate dehydrogenase, 
solute carrier family 36 member 1 (SLC36A1) and keratin 85, 
type II.

Classification efficiency of significant differential modules. 
The accuracy of the sample classification for GSE1667 was 
72.73%, based on the average expression values of the 3 signif-
icant differential modules. The accuracy of the classification 
was 54.55% according to the expression values of all 12 DEGs 
in the 3 significant differential modules.

Functional enrichment analysis of significant differential 
modules. The functional enrichment analysis of the 12 DEGs in 
the 3 significant differential modules, according to the DAVID 
database, demonstrated that 4  genes, including SLC36A1, 
UBXD2, HSP90B1 and TMEM50B, were significantly 
enriched in the endoplasmic reticulum (P=0.018; Table II). 
Similarly, BCLAF1, HSP90B1 and dopamine β‑hydroxylase 
were associated with 3  functions, including the biological 
process of apoptosis (P=0.061), regulation of programmed 
cell death (P=0.062) and regulation of cell death (P=0.02) 
(Table II). Genes GLG1, UBXD2 and HSP90B1 were enriched 
in the endomembrane system (Table II).

Discussion

DS is a common chromosomal disorder which, to date, cannot 
be treated. In the present study, GSE5390 and GSE16677 were 
downloaded from the GEO database in order to investigate the 
molecular mechanisms underlying DS. A total of 997 DEGs, 
including 638 upregulated and 359 downregulated DEGs, were 
screened based on GSE5390. The DEGs in the 3 significant 
differential modules screened from a co‑expressed network 
were significantly involved with the endoplasmic reticulum, 
endomembrane system, regulation of apoptosis, programmed 
cell death and cell death. Based on the pathway enrichment 

Table I. Pathway enrichment analysis for upregulated and downregulated DEGs.

DEGs	 Term ID 	 Description	 Gene no.	 P‑value

Upregulated	 hsa04514	 Cell adhesion molecules	 23	 1.68E‑07
	 hsa05416	 Viral myocarditis	 14	 2.19E‑05
	 hsa04940	 Type I diabetes mellitus	   9	 6.58E‑04
	 hsa05330	 Allograft rejection	   8	 1.26E‑03
	 hsa04612	 Antigen processing and presentation	 12	 1.68E‑03
	 hsa05332	 Graft‑versus‑host disease	   8	 2.06E‑03
	 hsa04142	 Lysosome	 14	 3.34E‑03
	 hsa05320	 Autoimmune thyroid disease	   8	 9.57E‑03
	 hsa00380	 Tryptophan metabolism	   7	 1.05E‑02
	 hsa05310	 Asthma	   6	 1.07E‑02
	 hsa05322	 Systemic lupus erythematosus	 11	 1.81E‑02
	 hsa00600	 Sphingolipid metabolism	   6	 3.54E‑02
	 hsa00330	 Arginine and proline metabolism	   7	 3.79E‑02
	 hsa00071	 Fatty acid metabolism	   6	 3.90E‑02
	 hsa04640	 Hematopoietic cell lineage	   9	 4.98E‑02
Downregulated	 hsa04950	 Maturity onset diabetes of the young	   4	 1.56E‑02
	 hsa04260	 Cardiac muscle contraction	   6	 2.53E‑02

DEGs, differentially expressed genes; ID, identification.
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Figure 2. Significant differential modules of Down's syndrome screened from co‑expressed networks using the method of mutual information. The nodes are 
differentially expressed genes. A, B and C indicate the three modules extracted from the network. 

  A   B   C

Table II. Functional enrichment analysis for the twelve DEGs in the three identified significant differential modules.

Category	 Term	 Genes	 P‑value

GOTERM_CC	 Endoplasmic reticulum	 SLC36A1, UBXD2, HSP90B1, TMEM50B	 0.018
GOTERM_BP	 Regulation of apoptosis	 BCLAF1, HSP90B1, DBH	 0.061
GOTERM_BP	 Regulation of programmed cell death	 BCLAF1, HSP90B1, DBH	 0.062
GOTERM_BP	 Regulation of cell death	 BCLAF1, HSP90B1, DBH	 0.062
GOTERM_CC	 Endomembrane system	 GLG1, UBXD2, HSP90B1	 0.082

DEGs, differentially expressed genes.
 

Figure 1. Co‑expression network of differential expression genes. Square nodes represent significant differential genes, and lines represent the association 
between the genes.
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analysis of DEGs, 17 significant signaling pathways involving 
158 DEGs were obtained in the current study. The upregulated 
DEGs were significantly enriched in 15 signaling pathways, 
such as cell adhesion molecules, type  I diabetes mellitus, 
autoimmune thyroid disease and lysosome. The pathway of 
cell adhesion molecules has previously been confirmed to 
be upregulated in infants with DS (35). Previous epidemio-
logical surveys have demonstrated that the prevalence of type I 
diabetes mellitus in patients with DS was higher than that in 
the general population (36).

The present study demonstrated that 8 upregulated DEGs 
were enriched in the signaling pathway of autoimmune thyroid 
disease, of which regulator of calcineurin 1 (RCAN1) has been 
confirmed to contribute to the DS phenotype and autoimmune 
disorders (37,38). RCAN1, also known as DSCR1, is located 
in the minimal candidate region and is expressed as four 
protein isoforms using four alternative first exons  (39,40). 
RCAN1 encodes a novel protein which may affect the process 
of transcriptional regulation or signal transduction (39,40). 
Fuentes et al  (41) demonstrated that the expression of the 
calcineurin‑dependent gene was downregulated following the 
inhibition of nuclear factor of activated T‑cell gene transloca-
tion to the nucleus by the overexpressed DSCR1. In addition, 
the lysosome was an important pathway enriched by 14 upreg-
ulated DEGs. A study by Kalanj‑Bognar et al (42) showed that 
the activities of some lysosomal enzymes participated in the 
metabolism of sulfatides and gangliosides, and that there was 
a significant increase of β‑galactosidase activity in DS leuko-
cytes compared with controls.

In the current study, significant differential modules were 
identified from the co‑expressed network and used as charac-
teristics for classification of DS samples in GSE16677. Current 
studies on genomics focus on characterization of DEGs and 
co‑expression networks, although this is a time‑consuming 
and costly process (43‑45). In order to solve these problems, 
Pavesi et al applied support vector machines (SVMs) with 
non‑linear kernels, and the average accuracy of non‑linear 
SVMs reached 66.5% (46). However, in the present study, the 
classification accuracy was 54.55 and 72.73% when charac-
terized by 12 DEGs and 3 significant differential modules, 
respectively. More reliable results were obtained using this 
method by combining significant differential modules with the 
assessment of classification efficiency.

A total of 7  DEGs in significant differential modules 
were identified as being enriched in 5 pathways by functional 
enrichment analysis. The pathway of apoptosis regulation was 
enriched by BCLAF1 (module 13), HSP90B1 (module 31) 
and DBH (module 35). A previous study demonstrated that 
DS neurons have a defect, which may lead to mental retar-
dation early in life and promote the metabolism of reactive 
oxygen species that cause neuronal apoptosis (47). In addition, 
HSP90B1 can help stabilize protein‑folding intermediates when 
the endoplasmic reticulum is involved in protein folding (48). 
TMEM50B was found to be involved with the function of endo-
plasmic reticulum in the current study. The Allen brain atlas 
investigated by Lein et al (49) showed that TMEM50B may be 
a candidate for DS brain phenotypes (49), in addition, experi-
ments on a DS mouse model demonstrated that TMEM50B 
was overexpressed in the DS cerebellum, compared with a 
normal mouse (50). The present study identified that UBXD2 

was enriched in two functions: The endoplasmic reticulum and 
the endomembrane system. A previous study demonstrated 
that UBXD2 was a molecular chaperone involved in various 
cellular processes, such as endoplasmic‑reticulum‑associated 
protein degradation, and that the overexpression of UBXD2 
resulted in additional immunoprecipitation, which was associ-
ated with Alzheimer's disease (51). Therefore, UBXD2 may be 
involved in the complications of DS. BCLAF1, which intrinsi-
cally inhibits tumor cells, was demonstrated to be enriched in 
three functions in the present study, including the regulation of 
apoptosis, programmed cell death and cell death. It has been 
reported that BCLAF1 participates in the γH2AX‑mediated 
regulation of apoptosis, DNA repair, and interacts with γH2AX 
as a tumor suppressor (52). An extra unpaired chromosome in 
DS is modified by phosphorylation of H2AX (53). Therefore, 
BCLAF1 may be involved indirectly in the pathogenesis of 
DS. In conclusion, the DEGs in the selected differentially 
co‑expressed gene modules may participate in the pathogen-
esis of DS.
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