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Abstract. Parasites, which are a recently discovered yet 
ancient dweller in human hosts, remain a great public health 
burden in underdeveloped countries, despite preventative 
efforts. Rheumatoid arthritis is a predominantly cosmopolitan 
health problem with drastic morbidity rates, although 
encouraging progress has been achieved regarding treatment. 
However, although various types of methods and agents have 
been applied clinically, their broad usage has been limited by 
their adverse effects and/or high costs. Sustained efforts have 
been exerted on the ‘hygiene hypothesis’ since the 1870s. The 
immunosuppressive nature of parasitic infections may offer 
potential insight into therapeutic strategies for rheumatoid 
arthritis, in which the immune system is overactivated. An 
increasing number of published papers are focusing on the 
preventive and/or curative effect of various parasitic infec-
tion on rheumatoid arthritis from experimental studies to 
large‑scale epidemiological studies and clinical trials. There-
fore, the present review aimed to provide a general literature 
review on the possible beneficial role of parasitic infection on 
rheumatoid arthritis.
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1. Introduction

Autoimmunity describes immune activation of the immune 
system that produces sustained damage to its own tissues and 
cells without any known external influences (1). Both adaptive 
and innate immune systems are involved in its progression. 
Autoimmune disease (AD), which refers to the progression 
of autoimmunity as a pathogenic condition, is characterized 
by chronic inflammation and immune dysregulation that may 
lead to vascular pathology, arterial lesions, enhanced autoan-
tibody production (2) and mortality if left uncontrolled. AD 
manifests in numerous forms and, to date, has been predomi-
nantly detected in industrialized and developed countries 
and regions. A previous epidemiological observational study 
by Cooper et al (3) reported the estimated prevalence of AD 
to be 7.6‑9.4%, including 29 ADs. A more recent study by 
Hayter and Cook (4) claimed a cumulative overall prevalence 
of 4.5% among 81 ADs. Although a sustained effort has been 
made in the field to study AD at both a basic experimental 
and clinical level, with promising achievements, the underling 
mechanism is yet to be fully elucidated. It is well‑known that 
the majority of the ADs are caused by a breakdown of immune 
tolerance via mechanisms that remain unclear. For systematic 
AD, it has been hypothesized that the mechanism may be 
associated with the impaired balance between pathogen recog-
nition and the avoidance of self‑attack (5).

As one of the most common ADs, rheumatoid arthritis 
(RA) is characterized by systemic chronic inflammatory 
disorders that mainly affect symmetric diarthrodial joints and 
consequently destroy the tissues. RA predominantly involves 
the synovial tissue and mediates severe inflammation, thus 
leading to functional disability and, potentially, mortality. The 
estimated incidence of RA is 0.5‑2.0% with an obvious female 
predominance (6). Although RA can affect individuals at any 
age, the highest incidence has been demonstrated to be in the 
fourth and fifth decades with an increasing trend associated 
with aging (7). Notably, RA has a substantial socio‑economic 
effect due to lost productivity (8). The underling mechanism 
of RA is yet to be fully elucidated; however, it is associated 
with various metabolic component changes, including total 
cholesterol, low‑density lipoprotein cholesterol and insulin 
sensitivity, which may even occur during a preclinical stage 
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of RA (9‑12). Moreover, the systemic inflammation caused by 
RA is an important independent risk factor for cardiovascular 
disease, and the cardiovascular risk components also increase 
the inflammatory burden of RA (13,14). The clinical features 
of RA include pain, joint swelling, stiffness, weakness at 
local lesions, deformity, erythema and weight loss. Various 
therapeutic methods, from conventional disease‑modifying 
anti‑rheumatic drugs to biologics to ease the symptoms, have 
been employed to reduce the progression of RA and improve 
the disease outcomes (15). It is the proposition of the ‘Hygiene 
hypotheses’ that aroused the broad interest of researchers and 
propelled them to link ADs and parasitic infection. Some 
researchers argue that parasites may be used as an effective 
treatment option for RA (16‑19).

2. Hygiene hypothesis

Parasitic infection continues to be a major public health issue 
and threaten the lives of humans and their domestic livestock 
in poorly resourced areas. Parasites have evolved to evade 
the host immune system  (20). In line with this, there has 
been an increasing trend of patients with ADs exhibiting an 
ever‑decreasing incidence of parasitic infections in developed 
countries and regions (3). Furthermore, previous epidemio-
logical studies have indicated the reduced incidence of ADs 
in poorly endemic regions (21,22). Therefore, the concept of 
an inverse relationship between the global distribution of ADs 
and the parasitic infections has been widely presented and 
is known the ‘Hygiene hypothesis’. This hypothesis, which 
was named as ‘Old Friends’ hypotheses contemporarily, can 
be traced back to the 1870s when Charles Harrison Blackley 
noted that the incidence of hayfever was increased in aris-
tocrats and city dwellers, as compared with farmers  (23). 
Although it has taken various forms, the term ‘Hygiene 
hypothesis’ was coined by epidemiologist Strachan (24) in 
1989, depicting the striking decrease in the prevalence of 
allergic diseases and an association with the increased number 
of family members who infected or had contact with unhy-
gienic older siblings. Greenwood et al (21) were the first to 
report an inverse relationship between parasitic infection and 
AD. Another study suggested that the depletion of organisms 
from the urban environment in wealthy areas as one of the 
main reasons for the increased prevalence of chronic inflam-
matory disorders (25). Subsequently, various epidemiological 
and experimental studies confirmed the protective role of 
parasites and their excretory/secretaries upon various ADs, 
including type 1 diabetes mellitus, multiple sclerosis, RA and 
autoimmune thyroid disease (22,26,27). Furthermore, studies 
have shown that modulation of the host immune response by 
parasitic helminthes may have a concomitant health benefit as 
it may protect helminthes from being eradicated, and simul-
taneously protect the host from excessive pro‑inflammatory 
responses (28,29).

The potential protective role of parasitic infections on RA 
has provided insight into the novel therapeutic modalities, 
which may interfere with the initiation of RA and alleviate 
its severity. Despite minimal evidence against the benefi-
cial role of parasites (30‑32), the potential beneficial role of 
parasites has been widely elucidated in numerous studies 
through human and animal experimentation  (16,17,19,33). 

Therefore, the present review focused on the reciprocal rela-
tionship between parasitic infection and RA and its possible 
mechanisms involving cell immunity modulation and relative 
cytokine level alterations.

3. Parasites as immune modulators

Among infectious agents, parasites are regarded as important 
manipulators and regulators of immune system (34). Para-
sites have evolved to secrete a range of immune‑modulatory 
molecules, which are referred to as parasite‑derived products 
that have the ability to target various host cells and exert the 
capacity to directly modulate host immune functions (35). 
Moreover, various parasitic extracts have been characterized, 
both in terms of structure and bioactivity (36,37). Maintaining 
a disease‑tolerant or asymptomatic condition during parasitic 
infection requires adequate and successful crosstalk between 
the host immune system and the parasites. Therefore, para-
sites are likely to gradually modify, downregulate and divert 
the host immune response pattern for their own continuous 
survival. In brief, co‑evolution and mutual adaptation have 
occurred between parasites and the human immune system.

It is well accepted that parasitic infections are typically 
characterized by inducing and/or skewing the host immune 
response towards a strong type 2 immune response, which is 
defined by the presence and activation of Th2 cells with the 
ability to secrete interleukin (IL)‑4, IL‑5 and IL‑13 (28,38). 
CD4+ T cells are central in this pattern, as described in studies 
where CD4+ T‑deficient mice were unable to clear parasites 
or express anti‑helminthic immune responses (39,40). In line 
with this, depletion of Th2‑related key signaling molecules, 
such as IL‑4 receptor alpha chain (IL‑4Rα) and signal trans-
ducer and activator of transcription 6 (STAT6) in different 
parasitic infections resulted in a failure to expel the parasite 
and increased susceptibility to parasitic infections  (41,42). 
In another study, a lack of GATA3 transcription factor led to 
diminished Th2 cell differentiation (43). 

With the discovery and definition of novel T helper cells, 
researchers have indicated the significant role of T helper 17 
cells, T  regulatory (Treg) cells, Th9 and Th22 cells in 
parasitic infection immunity. As indicated in a previous 
experimental study, elevated Th17/IL‑17 levels in a model 
of Schistosoma  japonicum infection were associated with 
severe immunopathology, and treatment with IL‑17 antibody 
neutralization significantly ameliorated hepatic granuloma-
tous inflammation (44). Besides, it has been indicated that 
the severe immune‑pathogenic role of IL‑17 is dependent on 
IL‑23 in S.  japonicum infection (45). Furthermore, studies 
have elucidated the presence and functional significant role 
of CD4+ Foxp3+ natural regulatory T cells during schisto-
some egg‑infected immune responses and human filarial 
parasite infection, which suggests that these cells may be able 
to prevent detrimental Th1 cytokine production and induce 
a Th2 polarized immune response in a IL‑10 independent 
manner to suppress the host's immunity to parasites (46,47). 
As another study indicated, the effector T helper cell responses 
induced by parasite eggs are controlled by Treg cells (48). 
Moreover, IL‑9, which is a functional cytokine of Th9 cells, 
were demonstrated to have a protective role for the host and 
have been associated with accelerated expulsion of the parasite 
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from the intestine and resistance to the intestinal nematode 
Trichuris muris activity (49).

4. Therapeutic effect of parasite infection

Previous human and animal studies have claimed that certain 
parasitic infections can reduce the immune system response 
to some ADs. Suppression and reduction, in terms of inci-
dence as well as severity scores of adjuvant arthritis, has been 
reported as early as in rats infected with Plasmodium berghei 
in 1970 (16). Furthermore, in 1975, the protective role of the 
nematode Syphacia oblevata was reported in experimental 
rat models of RA  (17). Similar protective effects have 
been successively demonstrated in experimental infection 
with S.  japonicum, S. mansoni, Ascaris  suum and Hyme‑
nolepsis diminuta (18,19,33).

Although the etiology of RA has not been fully elucidated, 
there is evidence to support the significant role of CD4+ T cells 
in the initiation and perpetuation of chronic autoimmune 
inflammation responses (50,51). In patients with RA, CD4+ 

T cells, which are the main orchestrator of cell mediated 
immune responses, were enriched in synovial tissue. Further-
more, antigen‑activated CD4+ T cells promoted the secretion of 
cytokines and chemokines, including IL‑6, IL‑1, interferon‑γ 
(IFN‑γ), and lymphotoxin and tumor necrosis factor (TNF)‑β, 
which aggravate joint inflammation (52). A similar detrimental 
effect of severe joint inflammation, bone and cartilage destruc-
tion of activated T cells was also observed in a rat model of 
adjuvant‑induced arthritis (53). Upon activation with specific 
antigens, CD4+ T cells differentiate into varying subsets, such 
as Th1, Th2 and Treg cells, which are marked with distinct 
cytokine secretion patterns and effective functions. It is gener-
ally accepted that RA is mediated by Th1 cell responses that 
are predominantly associated with pro‑inflammatory interac-
tions that exacerbate the inflammation and joint destruction 
and promote humoral immunity (19). It has been suggested 
that the initiating phase is strictly T cell dependent and under 
the control of T cell derived cytokines (54). The chronic phase 
is mediated by humoral immunity  (51). Collagen‑induced 
arthritis (CIA) model, in which immune tolerance is broken 
by immunization with bovine/chicken collagen and complete 
Freund’s adjuvant (CFA), is believed to be the most commonly 
used animal model for resembling human RA in terms of 
clinical, histological, and immunological features as well as 
genetic linkage (55). Moreover, the development of arthritis is 
also accompanied by cellular and humoral immune responses 
to collagen, making it more suitable for better understanding 
of both innate and adaptive immune responses during RA 
progression (56).

Cytokines have a central role in the regulation of the 
immune system and are involved in inflammatory processes 
as well as in the pathogenesis of numerous diseases (57). An 
abundant amount of cytokines, including IL‑1, IFN‑γ, TNF‑α 
and IL‑12, which regulate or mediate Th1 responses have 
been detected in RA synovial tissues. TNF‑α and IL‑1 have 
primary roles in the pathogenesis of RA with high expres-
sion in the serum and synovial fluid of patients with active 
RA. TNF‑α and IL‑1 are able to activate chondrocytes and 
synovial fibroblasts which release tissue, thereby destroying 
matrix metalloproteinases, which are the main mediators of 

joint damage in RA (58). Meanwhile, Th1 cell differentiation 
is promoted by IL‑12 and IFN‑γ (5). IFN‑γ receptor knockout 
mice are more sensitive to the induction of CIA (59,60), and 
exhibit severe clinical and histological arthritis more readily 
with significantly elevated IgG1 and IgG2b antibodies to the 
auto‑antigen murine type‑2 collagen (CII) levels compared 
with normal wild‑type mice (61,62). T cell‑specific transcrip-
tion factor (T‑bet), which is the important transcription factor 
and master regulatory factor for Th1 cells, signal transducer 
and activator of transcription 4 (STAT4), is associated with an 
increased risk for RA (63), and its promoting cytokine IL‑12 
and inducer IFN‑γ are indispensable for the induction and 
development of RA (64).

Th2 immune responses are evoked in response to parasitic 
infections characterized by enhanced secretion of IL‑4, IL‑5 
and other Th2‑related cytokines and are hypothesized to 
have the ability to suppress pro‑inflammatory Th1 immune 
response (65). Besides, Th2 cells were associated with the 
down‑regulation of macrophage activation and can release 
or recruit strong inflammatory components. As anti‑inflam-
matory effectors, Th2 cells antagonize the function and 
development of Th1 cells; for instance, IL‑4, which is the 
signature cytokine predominantly secreted by Th2 cells, is 
able to block the differentiation of Th1 cells and downregulate 
pre‑inflammatory cytokines such as TNF‑α and IL‑1β. Another 
leading hypothesis states that parasitic infestations protect 
against Th1‑associated ADs such as RA by inducing immune 
regulatory networks driven by Treg cells and IL‑10  (66). 
Treg cells have been shown to have a protective role against 
tissue injury and can limit inflammation responses (67). It has 
been indicated that Treg cells in parasite‑infected individuals 
are the main resource of IL‑10 (68), which is important for 
immune regulation and host survival  (69). Besides, DBA 
mice infected with S. mansoni prior to immunization with 
CII exhibited reduced levels of Th1 (IFN‑γ) and pro‑inflam-
matory cytokine (TNF‑α and IL‑17A) levels and elevated 
Th2 (IL‑4) and anti‑inflammatory cytokine (IL‑10) levels in 
their paws and ConA‑stimulated spleens cells (19). Abrogated 
pro‑inflammatory cytokines (IL‑1β and IL‑6) and receptor 
activator of NFkB were also detected in inflamed paws (19). 
Type 2 immune responses induced by parasitic infection can 
control and suppress Th1‑mediated inflammatory pathogens 
like RA that involve a wide range of cytokine alterations. 
Parasitic infection has been shown to ameliorate the severity 
of RA in a number of animal models by reducing CII‑specific 
antibodies and inflammatory cytokine production (18,33). In 
addition, pathological severity was negatively correlated with 
parasite burden. In line with this, there are several lines of 
evidence focusing on the beneficial effect of different parasites 
on RA. Pearson and Taylor (17,23) reported that rats infected 
with S. oblevata suffered from a reduced incidence rate and 
less severe form of Freund's complete adjuvant arthritis than 
non‑infected rats. To test the effect of S. mansoni infection on 
RA, Osada et al (19) infected DBA mice two weeks prior to 
CII immunization, and all data including joint tissues, clinical 
observational materials were analyzed. Reduced severity of 
CIA, decreased histopathological changes in paw tissues and 
lowered specific anti‑CII IgG (IgG1 and IgG2a) levels were 
detected in the infected mice. Downregulation of Th1 (IFN‑γ) 
and pro‑inflammatory cytokines (TNF‑α and IL‑17A) were 
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also detected in spleen cell culture supernatants (19). Similar 
changes in cells and cytokines were observed in animals 
infected with S.  japonicum, and IFN‑γ, T‑bet and RORγt 
were downregulated (19). Such an alteration in the immune 
response pattern was believed to contribute to the reduced 
severity of autoimmune arthritis and supported the hypothesis 
that S. japonicum infection is able attenuate the severity of 
autoimmune arthritis via systemic and local suppression 
of pro‑inflammatory mediators, and further suggested that 
parasite‑derived materials may be used as therapeutic agents 
against RA. Similar protective effects have been observed in 
experimental infection with A. suum. DBA/1J mice subjected 
to CIA were infected with A. suum extract, and displayed 
reduced inflammatory changes and decreased pro‑inflam-
matory cytokines, indicating that A. suum extract was able to 
reduce hypernociception and synovitis both prophylactically 
and therapeutically; therefore, this intervention may be effec-
tive across a wide clinical spectrum (18). Furthermore, both 
oral and intraperitoneal administration of A. suum extract has 
been demonstrated to have a protective role on rats and mice 
with zymosan‑induced arthritis (18). Another study, which 
assessed the protective anti‑inflammatory role of tapeworm 
(H. diminuta) on RA disease, suggested that this parasite may 
facilitate significantly less joint inflammation in the CFA 
animals (33).

The newly identified IL‑17‑producing pathogenic CD4+ 

T cell subpopulation Th17 (70), which were defined by their 
secretion of certain pro‑inflammatory cytokines such as IL‑17 
and TNF‑α (71), are major mediators of chronic inflamma-
tion and have been implicated in the pathogenesis of various 
ADs, including RA (70,72,73). The pivotal roles of IL‑17 in 
the pathogenesis of RA has been documented (74). Sufficient 
volumes of IL‑17 were detected in the synovial tissues of RA 
patients as well as in an experimental model. In a murine CIA 
model, increased IL‑17 levels were detected with aggravated 
joint inflammation Similarly, alleviated joint pathology was 
demonstrated to be associated with IL‑17 levels and signifi-
cantly ablated severity was observed in IL‑17‑/‑ mice compared 
with control groups (73,75). Th17 cells with CCR6 and CCL20 
are able to mediate self‑destructive immune reactions in joints 
that may result in autoimmune RA, leading to the hypothesis 
that intervening in Th17 cell trafficking via CCR6/CCL20 
may be a useful method to treat or prevent Th17 cell‑mediated 
ADs such as RA (76).

Th17 cells are known to have a critical role in driving 
harmful pro‑inflammatory responses in AD (77). Th17/IL‑17 
is IL‑23 dependent and TGF‑β antibody neutralization has 
been demonstrated to result in decreased levels of IL‑17, 
suggesting that TGF‑β may also have a critical role in Th17 
differentiation (78). Furthermore, production of IL‑23 may 
promote Th17 expression (79). However, treatment with TGF‑β 
blockage has not been shown to affect Th17 frequencies and 
the secretion of IL‑17 and IFN‑γ in CIA models at the initi-
ating phase, suggesting that TGF‑β is not necessary for Th17 
cell differentiation and function (78). Retinoic acid‑related 
orphan nuclear receptor γt (RORγt), which is a pivotal tran-
scription factor of Th17 cells, was downregulated in a CIA 
mouse infected with various parasites (18,80,81). Supported 
by various studies, TGF‑β was undoubtedly expressed in 
high levels and interpreted as a major cytokine that helps the 

parasite to successfully suppress Th1 and/or Th17‑mediated 
immune responses which supposedly lead to AD when they 
are improperly present (82,83). The presence of active TGF‑β 
in synovial tissue and synovial fluid in RA patients has been 
documented in several reports claiming its pivotal pathogenic 
role in initiating and sustaining chronic inflammation and the 
destruction of joints (84). TGF‑β is also positively correlated 
with disease activity (85). Mice treated with p17, which is a 
peptide that specifically blocks TGF‑β signaling, during 
the initiating phase of CIA resulted in delayed onset and 
decreased but not significantly reduced severity of RA (86). 
Another study revealed Th1 cell responses were restricted by 
Treg cells through a TGF‑β dependent manner in patients with 
RA (87). Considering the intense interest in TGF‑β and the 
substantial evidence in support of its critical role in parasitic 
infection immunity, it is safe to speculate that TGF‑β may have 
a potential beneficial role during infection with helminthes in 
AD (29).

IL‑4, which is a Th2 cell‑induced cytokine, is able 
to directly attenuate ongoing Th1‑driven autoimmune 
inflammation  (88,89). Administration of IL‑4 improved 
proteoglycan‑induced arthritis in mice, and local delivery of 
IL‑4 by retrovirus transuded leukocytes improved experi-
mental CIA (90,91). In addition, an intact adaptive immune 
response involving T cells and IL‑4Rα signaling is required 
for the anti‑arthritic effect of H.  diminuta infection  (33). 
Following infecting with S.  mansoni in a CIA mouse, 
enhanced IL‑4 production and reduced IFN‑γ secretion were 
detected, which may indicate the skewed response from Th1 
to Th2 that is favorable to ameliorate inflammation status (19). 
Although IFN‑γ is believed to be a Th1‑related cytokine, its 
role in CIA remains controversial. A report documented that 
IFN‑γ receptor‑deficient mice exhibited a substantial reduc-
tion in the incidence and severity of CIA (92). Furthermore, 
IFN‑γ is known to have a significant role in the production of 
pathogenic antibody anti‑type 2 IgG2α (19,92). Another study 
reported the IFN‑γ receptor knockout mice displayed more 
accelerated CIA and increased osteoclastogenesis (93).

Together with IL‑4, IL‑10 is regarded as an important 
component of the anti‑arthritic effect and is known to be an 
ameliorating factor for CIA in experimental CIA mice (94). As 
mentioned, parasitic infections are predominantly mediated 
by Th2 immune responses. With a wide variety of approaches 
for immune suppression, parasitic protective effects on 
autoimmune disorders were generated in the presence of 
regulatory T cells and anti‑inflammatory cytokines, IL‑10 and 
TGF‑β. As studies have demonstrated, the presence of IL‑10 
significantly decreases the percentage of Th17 cells (95,96). 
Under Th17‑polarizing conditions, IL‑10‑deficient and 
IL‑10R‑defecient spleen cells produced high levels of IL‑17 
and RORγt  (96). Some findings demonstrated that IL‑10 
may be negatively correlated with Th17 cells and its relative 
cytokines and increased Treg cells in blood and synovial 
tissue during RA progression both in humans and an experi-
mental murine model (95,96). Reduced RA inflammation and 
cytokine shiftiness from IFN‑γ to increased IL‑10 and IL‑4 
production was observed in mice infected with H. diminuta, 
suggesting the anti‑arthritic effect of this parasite may be asso-
ciated with increased IL‑10 expression levels (33). In infection 
with S. mansoni, reduced severity of CIA was also correlated 
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with elevated IL‑4 and IL‑10 production (19). IL‑10 knockout 
mice were not protected by H. diminuta infection, and the 
anti‑arthritic effect of this parasite was ablated by the use of 
IL‑10 neutralizing antibodies (33). All the findings of these 
studies support the hypothesis that IL‑10 mat be an attractive 
therapeutic target in RA, and achieving a balance between 
Th17 cells and Treg cells by altering IL‑10 levels may be a 
promising treatment for ADs (95).

As a subset of CD4+ T cells, Treg cells are known to have 
a critical role in the prevention and treatment of ADs such as 
RA, which has been demonstrated by experimental and clinical 
observation. Treg cells are also considered to be responsible 
for maintaining self‑tolerance in different parasitic infec-
tions (97‑100). Treg cells have a role in limiting inflammation, 
regulating adaptive immunity and controlling damage at the 
inflammatory sites to various pathogens (101). Excretory and/or 
secretory products from F. hepatica have been demonstrated 
to be promoters of Treg and Th2 cells, and have a suppres-
sive role on the production of pro‑inflammatory cytokines 
and is able to upregulate IL‑10 expression. Upon this finding, 
Carranza et al (102) indicated that the therapeutic effect of 
this extract was mediated by the activation of dendritic cells 
(DCs) depending on Treg cells. As the severity of CIA and 
RA was under the control of Treg cells (103,104), promotion 
of function and/or an enhanced role of Treg cells resulted in 
ameliorated experimental and clinical arthritis (105). Schisto-
some eggs have been shown to activate Treg cells, which may 
be an important mechanism in the reduction of CIA (106,107).

Antigen‑specific immunotherapy is a major therapeutic 
target for the improvement of autoimmune rheumatic disease. 
Both the stimulation and modulation of the host immune 
system by parasites are determined by DC populations. Deple-
tion of DCs ablates the Th2 immune response to infection, 
whereas isolated DCs pulsed with parasitic antigens readily 
induce Th2 responsiveness (12). Therefore, DCs are exciting 
therapeutic targets for autoimmune rheumatic disease (29). 
The role of DCs in preferentially promoting Th2‑cell differ-
entiation during parasitic infection remains unclear, although 
several studies have indicated that DCs activated by exposure 
to schistosome egg antigens preferentially support Th2‑cell 
differentiation (108,109). Intravenous injections of DCs have 
been shown to ameliorate the development and severity of CIA 
by inducing Foxp3‑producing Treg cells and restraining Th17 
cell differentiation and function (110). Moreover, DCs have 
a critical role in maintaining central and peripheral immune 
tolerance and are responsible for the formation of peripheral 
Treg cells (111‑113). Following treatment with bone marrow 
CD11b(+) F4/80(+), DCs significantly reduced pathologic 
scores and cartilage destruction, which was accompanied by 
decreased Th17 and enhanced Treg cells (110). It has also been 
demonstrated that excretory and/or secretory products from the 
F. hepatica parasite promoted the differentiation of Th2 and 
Treg cells (114), plus total extract (TE) is able to modulate the 
DC maturation by downregulating the pre‑inflammatory cyto-
kines (115). Subsequently, Carranza et al (102) demonstrated 
the pivotal action of TE on DCs to improve the symptoms 
of CII‑induced RA through decreasing pro‑inflammatory 
cytokines, blunted Th1 and Th17 responses and enhancing the 
TGF‑β‑producing Treg cells. Therefore, DCs may contribute 
to the reduced and suppressive immunopathological responses 

during RA progression through the promotion of Th2 and Treg 
cells and blunting the Th17 cells immune responses, further 
leading to alleviated symptoms.

Another important factor, TNF‑α, is a cytokine with both 
pro‑inflammatory and immune‑regulatory properties. Find-
ings from human and animal studies have indicated the direct 
involvement of TNF‑α in the pathogenesis of arthritis (37), 
including cartilage destruction and bone resorption, as they 
can stimulate synovial cells to produce collagenase (17) and 
inhibit proteoglycan synthesis by articular chondrocytes (35). 
These findings suggest the pivotal pathogenic role of TNF‑α 
in disease causation. Some biological cytokine blockers 
targeting TNF‑α have already been successfully used in 
clinical settings (116). As previous studies focusing on the 
role of parasitic infections on CIA animals have shown, 
reduced severity of RA is associated with the modulation and 
regulation of pro‑inflammatory cytokines such as TNF‑α, 
suggesting a direct involvement of TNF‑α in disease patho-
genesis. Treatment with anti‑TNF‑α has been demonstrated 
to be safe and well‑tolerated, resulting in significant clinical 
and laboratory improvements  (33,82). It was shown that 
the suppressive role of S. mansoni on CIA DBA mice was 
correlated with the reduction of pre‑inflammatory cytokines 
TNF‑α  (82). Downregulation of TNF‑α in S.  japonicum 
infection two weeks prior to CII immunization was also 
observed and was hypothesized to be related to the reduction 
of CIA (33). All these findings suggest that TNF‑α may be a 
useful, safe and efficient novel therapeutic target.

5. Conclusion

Although a small number of studies have indicated that helmin-
thes infection exaggerated some disease conditions (30‑32), 
numerous human and animal studies that focused on the 
effect of parasitic infections on RA demonstrated a beneficial 
role of parasite infection with significant evidence, including 
reduced incidence and severity and the prevention of further 
pathogenic progression  (12,16‑19,21,33). These findings 
support the ‘hygiene hypothesis’ theory. Immune modula-
tion during this protective interaction included modulation 
of CD4+ T cell subsets, inclduing deceased Th1 and Th17 
responses, enhanced Treg cell responses, downregulation of 
pre‑inflammatory cytokines (IFN‑γ, IL‑1 and TNF‑α) and 
upregulation of anti‑inflammatory cytokines (IL‑4 and IL‑10). 
More advanced research and methods are required to further 
investigate the exact mechanisms and potential beneficial role 
of parasites on RA.
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