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Abstract. To investigate the anticancer activities of alkaloids 
from the Ba lotus seed (BLSA) in human nasopharyngeal 
carcinoma (NPC) CNE‑1 cells, an MTT assay, flow cytometry, 
reverse transcription‑polymerase chain reaction and western 
blotting were performed. BLSA was found to significantly 
reduce CNE-1 cell proliferation in a dose-dependent manner 
at all concentrations compared with the control (P<0.05). In 
addition, flow cytometry analysis identified that BLSA treat-
ment significantly increased the sub‑G1 content in CNE‑1 
cells (P<0.05). Following BLSA treatment, the mRNA and 
protein levels of a number of apoptosis-related factors, such 
as caspase family members (caspase-3, -8 and -9), B-cell 
lymphoma (Bcl)‑2‑associated X protein, Fas and Fas ligand 
were significantly increased compared with the control 
(P<0.05). This was accompanied by a significant decrease in 
anti-apoptotic Bcl-2 and Bcl-extra large protein expression 
compared with the control (P<0.05). Furthermore, BLSA 
treatment was determined to modulate CNE‑1 cell expression 

of nuclear factor (NF)‑κB and NF‑κB inhibitor α. The results 
of the present study indicate that BLSA has anticancer activity 
through inducing cellular apoptosis. In addition, these results 
suggest that BLSA can be used as a therapeutic agent in NPC. 

Introduction

Nasopharyngeal carcinoma (NPC) is a type of cancer with a 
high prevalence rate (2.8/100,000 and 1.9/100,000 people/year 
in men and women, respectively, in 2008) in Southeast China, 
particularly in the Guangxi, Guangdong, Hainan and the Hong 
Kong Special Administrative Region (1). NPC is characterized 
by a high metastatic potential, frequent initial dissemination 
to regional lymph nodes and distant metastases, causing 
patients to succumb to NPC (2). Early diagnosis of NPC and 
chemoradiotherapy treatment enables the best outcome. The 
overall five‑year survival rate is associated with the NPC stage 
at diagnosis, ranging from between 58% at stage IV and 90% 
in stage I. However, in the advanced stages of NPC chemo-
radiotherapy is impractical (3,4). Therefore, the induction of 
NPC cell apoptosis is a strategy to control NPC and other 
malignancies in clinical therapy (5).

B-cell lymphoma 2 (Bcl-2) is part of the Bcl-2 protein 
family, which regulates cell death by inducing or inhibiting 
apoptosis. The Bcl‑2 family is divided into anti‑apoptotic 
factors, including Bcl-2, Bcl-extra large (Bcl-xL) and 
Bcl-2-like protein 2, and pro-apoptotic factors, such as 
Bcl2-associated X protein (Bax), Bcl-2-associated death 
promoter, Bcl-2-interacting mediator of cell death (Bim), Bcl-2 
homologous antagonist/killer and p53 upregulated modulator 
of apoptosis (6). The extrinsic apoptosis signaling pathway 
is mediated by receptor‑ligand binding. In this signaling 
pathway, the Fas receptor, Fas ligand (FasL), Fas‑associated 
death domain (FADD) and caspase‑8 mediate apoptosis. 
Alternatively, apoptotic stimuli can cause the depolarization 
of the inner mitochondrial membrane, leading to the release 
of cytochrome c (Cyt c) into the cytosol (7). Cyt c molecules 
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induce the activation of apoptotic protease activation factor-1 
and procaspase‑9. Activated caspase‑8 and ‑9 cleave and acti-
vate the final executioner of apoptosis, caspase‑3, resulting in 
chromatin condensation and DNA fragmentation (8-10).

The seed of Nelumbo nucifera (Gaertn), also known as the 
lotus, is traditionally used in Chinese folk medicine. A number 
of previous studies have reported that the lotus seed exhibits 
numerous health benefits and pharmacological effects, such 
as anti-ischemic (11), antioxidant (12-14), hepatoprotec-
tive (12), antiproliferative (15-19), anti-inflammatory (20), 
anti-infertility (21), anti-arrhythmic (22-26), antifibrotic (27) 
and antiviral (28) activities. In the present study, the anti-
cancer activity of alkaloids extracted from the Ba lotus seed 
(BLSA), a new variety of Nelumbo nucifera, which only grows 
in Chongqing, a city located in the southwest of China, was 
investigated in human NPC CNE‑1 cells. In addition, the 
mechanism underlying this activity was examined.

Materials and methods

Chemical reagents. TRIzol, OligodT18 primer, murine 
Maloney leukemia virus (MMLV) reverse transcriptase, 
RNase inhibitor, ethidium bromide (EtBr) and agarose were 
purchased from Invitrogen (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). All other chemical reagents were of 
analytical grade and purchased from Sigma-Aldrich (Merck 
Millipore, Darmstadt, Germany).

Preparation of alkaloids from BLSA. Fresh BLSA was 
purchased from Chongqing Enterprise Engineering Research 
Center of Ba-lotus Breeding and Deep Processing (Chongqing, 
China), freeze‑dried and ground into a fine powder. Alkaloids 
were extracted from powdered Ba louts seed (100 g) twice with 
1,000 ml of ethanol (80% vol/vol) at 50˚C for 1 h. Following 
filtering, the extraction solution was loaded into a 80 cm cation 
exchange resin 732 column at 50˚C and the filtrate collected 
3 h later. Distilled water was used to wash away water‑soluble 
impurities and then an ethanol solution of BLSA extract (80%, 
v/v) at 3 ml/min was used to elute the alkaloids. The collected 
ethanol elucent was eluted by 80% ethanol solution (containing 
2% of ammonia water) and finely condensed using a vacuum 
rotary evaporator at 37˚C, then freeze‑dried and stored at 
‑80˚C until required.

Cell culture. Human NPC CNE‑1 cells were obtained from 
the Shanghai Institutes for Biological Sciences (Chinese 
Academy of Sciences, Shanghai, China). The cells were 
routinely maintained in Roswell Park Memorial Institute‑1640 
medium, supplemented with 10% (v/v) fetal bovine serum 
and 1% penicillin‑streptomycin, at 37˚C in a humidified 5% 
CO2 incubator at 95% relative humidity (model 3154; Forma 
Scientific, Inc., Marietta, OH, USA).

Cell viability assay. Cell viability was measured using the 
MTT assay. CNE‑1 cells were seeded in 96‑well plates (Nunc, 
Rochester, NY, USA) at a density of 1x104 cells/well. Following 
incubation for 24 h, cells were treated with a number of concen-
trations (50, 100 and 200 µg/ml) of BLSA for a further 24 h. 
Then, 0.5 mg/ml of MTT reagent (100 µl; Ekear, Shanghai, 
China; cat. no. M0105) was added to each well and the cells 

incubated for 4 h at 37˚C. The formazan crystals formed was 
dissolved in dimethyl sulfoxide (100 µl/well). Then, the absor-
bance of the wells at 540 nm was measured using a micro plate 
reader (model 680; Bio‑Rad Laboratories, Inc., Hercules, CA, 
USA).

Flow cytometry analysis. BLSA‑treated CNE‑1 cells were 
collected following digestion with trypsin, washed twice with 
cold phosphate buffered saline (PBS) and re-suspended in 
2 ml PBS. Then, the DNA of BLSA‑treated cells was stained 
with propidium iodide using a Cycletest Plus DNA Reagent Kit 
(BD Biosciences; Franklin Lakes, NJ, USA; cat. no. 340242), 
according to the manufacturer's protocol. Fluorescence inten-
sity was determined using a FACSCalibur flow cytometer and 
the data analyzed using Cell Quest Pro software (version 5.2.1) 
(both BD Biosciences).

Reverse transcription polymerase chain reaction (RT‑PCR). 
RT‑PCR was performed for the following genes: Caspase‑3, 
‑8 and ‑9, Bax, Bcl‑2, Bcl‑xL, Fas, FasL, NF‑κB, IkB-α and 
GADPH. Total RNA was isolated from BLSA‑treated CNE‑1 
cells using TRIzol reagent, according to the manufacturer's 
recommendations, and centrifuged at 12,000 x g for 15 min 
at 25˚C following the addition of chloroform. Isopropanol was 
added to the supernatant in a 1:1 ratio and the RNA pelleted 
by centrifugation (12,000 x g for 15 min at 4˚C). The RNA 
was washed with ethanol, solubilized in diethyl pyrocar-
bonate‑treated RNase‑free water and quantified by measuring 
the absorbance at 260 nm using a UV‑1750 spectrophotom-
eter (Shimadzu Corporation, Kyoto, Japan). RNA (1 µg) was 
reverse transcribed using a PCR master mix [1X reverse tran-
scriptase buffer, dNTPs (1 mM), oligo(dT)18 primers (500 ng), 
MMLV reverse transcriptase (140 units) and RNase inhibitor 
(40 units)] for 45 min at 42˚C. Then, cDNA (2 µl) was mixed 
with 1 µl of each primer (10 µM) and 16 µl of DNase‑free water 
in a PCR premix tube (AccuPower PCR PreMix; Bioneer 
Corporation, Daejeon, Korea) and PCR was performed in an 
automatic thermocycler (Bioneer Corporation, Daejeon, South 
Korea) for 40 cycles of 94˚C for 5 min, 58˚C for 30 sec, and 
72˚C for 90 sec, followed by a 10 min cycle at 95˚C. Sequences 
of the primers used in PCR are presented at Table I. The PCR 
products were separated on 2% agarose gels and visualized 
by EtBr staining. GAPDH was used for normalization of the 
results. Gene expression was quantified using ImageJ software 
(version 1.44; National Institutes of Health, Bethesda, MD, 
USA) and results presented as fold change compared to the 
control group.

Protein extraction and western blot analysis. For protein 
extraction, BLSA‑treated CNE‑1 cells were washed with 
ice‑cold PBS, homogenized with ice‑cold radioimmunopre-
cipitation assay (RIPA) buffer and centrifuged at 13,000 x g for 
30 min at 4˚C. Protein concentrations were determined using 
the Bradford Protein Assay kit (Bio‑Rad Laboratories, Inc.; 
cat. no. 5000001). For Western blot analysis, 30 µg of protein 
extract was separated by SDS‑PAGE (10% gel) and then elec-
trotransferred onto a nitrocellulose membrane (Schleicher & 
Schuell Bioscience, Inc., Keene, NH, USA). Blocking and anti-
body treatment were conducted in 10% skimmed milk for 2 h 
at 4˚C. The blots were incubated for 4 h at 4˚C with primary 
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antibodies against caspase‑3 (rabbit monoclonal; 1:1,000; 
cat. no. 14220S), caspase‑8 (rabbit monoclonal; 1:1,000; cat.  
no. 9478S) and caspase‑9 (rabbit monoclonal; 1:1,000; 
cat. no. 9508S), and Bax (rabbit monoclonal; 1:1,000; cat. 
no. 14796S), Bcl‑2 (rabbit monoclonal; 1:1,000; cat. no. 4223S), 
Bcl‑xL (rabbit monoclonal; 1:1,000; cat. no. 2764S), Fas (mouse 
monoclonal; 1:1,000; cat. no. 8023S), FasL (rabbit polyclonal; 
1:1,000; cat. no. 4273S), NF‑κB (mouse monoclonal; 1:1,000; 
cat. no. 13681S), IκB-α (rabbit monoclonal; 1:1,000; cat. 
no. 4812S) and β‑actin (mouse monoclonal; 1:1,000; cat. 
no. 12262S) (all Cell Signaling Technology, Inc., Danvers, 
MA, USA). Following washing with PBS containing 0.05% 
Tween 20 (PBS‑T), the blots were incubated with horseradish 
peroxidase‑conjugated goat anti‑rabbit (cat. no. 7074S) or 
horse anti‑mouse antibodies (cat. no. 7076S) at a dilution of 
1:5,000 (both Cell Signaling Technology, Inc.) for 1 h at room 
temperature. Then, blots were washed three times with PBS‑T 
and antibody binding visualized by enhanced chemilumines-
cence (ECL Western Blotting Detection kit; GE Healthcare 
Life Sciences, Little Chalfont, UK; cat. no. RPN2108). Protein 
expression was quantified using ImageJ software (version 
1.44; National Institutes of Health).

Statistical analysis. Results are presented as the mean ± stan-
dard deviation. Differences between the mean values of groups 
were assessed by one‑way analysis of the variance, followed 
by a post-hoc Duncan's new multiple range test. P<0.05 was 
considered to indicate a statistically significant difference. 

SAS software (version 9.1; SAS Institute, Inc., Cary, NC, USA) 
was used for statistical analysis.

Results

BLSA decreases CNE‑1 cell proliferation. BLSA was found 
to significantly reduce CNE‑1 cell proliferation in vitro, in a 
dose-dependent manner, at all concentrations tested compared 
with the control group (P<0.05; Table II). The highest dose 
of BLSA (200 µg/ml) showed the greatest inhibitory activity 
(81.3±0.2%; Table II).

Table I. RT‑PCR primer sequences.

Gene name Primer sequences

Caspase‑3 Forward: 5'‑CAA ACT TTT TCA GAG GGG ATC G‑3'
 Reverse: 5'‑GCA TAC TGT TTC AGC ATG GCA‑3'
Caspase‑8 Forward: 5'‑CCC CAC CCT CAC TTT GCT‑3'
 Reverse: 5'‑GGA GGA CCA GGC TCA CTT A‑3'
Caspase‑9 Forward: 5'‑GGC CCT TCC TCG CTT CAT CTC‑3'
 Reverse: 5'‑GGT CCT TGG GCC TTC CTG GTA T‑3'
Bax Forward: 5'‑AAG CTG AGC GAG TGT CTC CGG CG‑3'
 Reverse: 5'‑CAG ATG CCG GTT CAG GTA CTC AGT C‑3'
Bcl‑2 Forward: 5'‑CTC GTC GCT ACC GTC GTG ACT TGG‑3'
 Reverse: 5'‑CAG ATG CCG GTT CAG GTA CTC AGT C‑3'
Bcl‑xL Forward: 5'‑CCC AGA AAG GAT ACA GCT GG‑3'
 Reverse: 5'‑GCG ATC CGA CTC ACC AAT AC‑3'
Fas Forward: 5'‑GAA ATG AAA TCC AAA GCT‑3'
 Reverse: 5'‑TAA TTT AGA GGC AAA GTG GC‑3'
FasL Forward: 5'‑GGA TTG GGC CTG GGG ATG TTT CA‑3'
 Reverse: 5'‑TTG TGG CTC AGG GGC AGG TTG TTG‑3'
NF‑κB Forward: 5'‑CAC TTA TGG ACA ACT ATG AGG TCT CTG G‑3'
 Reverse: 5'‑CTG TCT TGT GGA CAA CGC AGT GGA ATT TTA GG‑3'
IκB-α Forward: 5'‑GCT GAA GAA GGA GCG GCT ACT‑3'
 Reverse: 5'‑TCG TAC TCC TCG TCT TTC ATG GA‑3'
GAPDH Forward: 5'‑CGG AGT CAA CGG ATT TGG TC‑3'
 Reverse: 5'‑AGC CTT CTC CAT GGT CGT GA‑3'

RT‑PCR, reverse transcription polymerase chain reaction; Bax, Bcl2‑associated X protein; Bcl‑2, B‑cell lymphoma 2; Bcl‑xL, Bcl‑extra large; 
FasL, Fas ligand; NF‑κB, nuclear factor-κB; IκB-α, nuclear factor-κB inhibitor α.

Table II. Growth inhibition of human NPC CNE‑1 cells by 
alkaloids of BLSA evaluated by the MTT assay.

Treatment (µg/ml) OD540 Inhibitory rate (%)

    0 0.471±0.005a -
  50 0.376±0.010a 20.2±0.2a

100 0.249±0.014b 47.1±0.3b

200 0.088±0.012b 81.3±0.2b

Results are presented as the mean ± the standard deviation of trip-
licate experiments. Differences between groups were statically ana-
lyzed using Duncan's new multiple‑range test. aP<0.05, bP<0.01 vs. 
the control group. NPC, nasopharyngeal carcinoma; BLSA, Ba lotus 
seeds; OD540, optical density at 540 nm.
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BLSA induces apoptosis in CNE‑1 cells. Flow cytometry anal-
ysis identified that BLSA increased apoptosis in CNE‑1 cells 
in a dose‑dependent manner. BLSA treatment (50, 100 and 
200 µg/ml) significantly increased the sub‑G1 DNA content of 
CNE‑1 cells to 7.1 (P<0.05), 17.8 (P<0.01) and 38.9% (P<0.01), 
respectively, compared with 2.6% in the untreated control 
group (Fig. 1).

BLSA increases Fas and FasL protein expression in CNE‑1 
cells. The effect of BLSA on mRNA and protein levels of 
specific genes was determined by RT‑PCR and western blot 
analysis, respectively. BLSA treatment was identified to signif-
icantly increase mRNA and protein levels of Fas and FasL in 
CNE-1 cells, in a dose-dependent manner, at all concentrations 
tested compared with the control (P<0.05; Fig. 2). The highest 
dose of BLSA (200 µg/ml) significantly up‑regulated Fas 
(2.9 fold) and FasL (1.7 fold) mRNA levels, and Fas (1.5 fold) 
and FasL (3.3 fold) protein levels compared with the control 
group (all P<0.01; Fig. 2C and D).

BLSA increases caspase‑3, ‑8 and ‑9 expression in CNE‑1 
cells. BLSA treatment significantly increased mRNA and 
protein expression levels of caspase-3, -8 and -9 in CNE-1 cells, 
at all concentrations tested compared with the control (P<0.05; 
Fig. 3). The highest dose of BLSA (200 µg/ml) significantly 
increased mRNA and protein levels of caspase‑3 (26.7 and 
1.4 fold, respectively; Fig. 3C), ‑8 (3.3 and 1.5 fold, respec-
tively; Fig. 3D) and ‑9 (5.3 and 1.6 fold, respectively; Fig. 3E) 
compared with the untreated control group (all P<0.01).

BLSA modulates Bcl‑2, Bcl‑xL and Bax expression in CNE‑1 
cells. Compared with the control group, BLSA treatment 
significantly decreased expression of Bcl‑2 and Bcl‑xL mRNA 
and protein, and increased expression of Bax mRNA and 
protein, in a dose dependent manner, in CNE-1 cells, at all 
concentrations tested (P<0.05; Fig. 4). At the highest dose 
(200 µg/ml), BLSA significantly reduced mRNA and protein 
levels of Bcl‑2 (90 and 94%, respectively) and Bcl‑xL (81 and 

75%, respectively) compared with the control group (P<0.01; 
Fig. 4D and E). In contrast, 200 µg/ml BLSA enhanced mRNA 
(10.6 fold; P<0.01) and protein (1.6 fold; P<0.05) levels of Bax 
in CNE-1 cells (Fig. 4C).

BLSA modulates NF‑κB and IκB‑α expression in CNE‑1 cells. 
BLSA treatment significantly decreased NF‑κB mRNA and 
protein expression, and increased IκB-α mRNA and protein 
expression, in a dose dependent manner in CNE-1 cells, at all 
concentrations tested (P<0.05 vs. the control group; Fig. 5). 
Following treatment with 200 µg/ml BLSA, NF‑κB mRNA 
and protein levels were significantly decreased by 78% and 
35%, respectively, compared with the control group (P<0.01; 
Fig. 5C). In addition, BLSA increased mRNA and protein 
levels of IκB-α by 32.7 and 2.3‑fold, respectively, compared 
with the control group (P<0.01; Fig. 5D).

Discussion

Alkaloids, isolated from herbs, may possess anti-cancer 
activities, including induction of cell cycle arrest, apoptosis, 
autophagy, and inhibition of angiogenesis and metastasis (29). 
A recent study reported that a number of alkaloids isolated 
from N. nucifera Gaertn. cv. Rosa‑plena exhibited antioxidant 
and anticancer activity in vitro (30). In the present study, BLSA 
exhibited anti‑cancer effects, associated with the induction of 
apoptosis, in CNE‑1 cells. BLSA significantly reduced CNE‑1 
cell proliferation and promoted transition into the sub‑G1 
phase. These results indicate that the anti‑CNE‑1 effects of 
BLSA are associated with apoptosis.

In the current study, mRNA and proteins expression levels 
of a number of apoptosis-associated genes in BLSA-treated 
CNE‑1 cells were investigated using RT‑PCR and western 
blotting, respectively. Following treatment for 24 h with 
BLSA, mRNA and protein levels of Fas and FasL were 
significantly increased compared with untreated cells. Fas and 
FasL are inducers of apoptosis that serve a primary role in 
death receptor-mediated apoptosis (31). Activation of Fas/FasL 

Figure 1. Level of apoptosis (sub‑G1 content) induced by alkaloids of BLSA in human NPC CNE‑1 cells, evaluated using flow cytometry. Results are presented 
as the mean ± the standard deviation of triplicate experiments. Differences between groups were statically analyzed using Duncan's new multiple‑range test. 
*P<0.05, **P<0.01 vs. the control group. BLSA, Ba lotus seeds; NPC, nasopharyngeal carcinoma.
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recruits FADD and the death domain, which subsequently 
induce the activation of caspase-8, -9 and -10, key regulators 
that promote cellar apoptosis (32).

The results of the present study determined that mRNA 
and protein levels of caspase‑3, ‑8 and ‑9 were significantly 

increased in BLSA‑treated CNE‑1 cells compared with the 
control group. The caspase signaling cascade is a key event 
in extrinsic and intrinsic apoptosis, which is characterized by 
the activation of caspase-8 and -9, respectively (9). Caspase‑8, 
the initiator caspase in Fas signaling, is recruited to the acti-

Figure 3. Effect of alkaloids of BLSA on the (A) mRNA and (B) protein expression levels of caspase‑3, ‑8 and ‑9 in human NPC CNE‑1 cells. Fold change 
of (C) caspase‑3, (D) caspase‑8 and (E) caspase‑9 mRNA and protein expression over the control. Fold change over the control for mRNA was calculated as 
mRNA expression/GAPDH expression. Fold change over the control for protein was calculated as protein expression/β‑actin expression. Results are presented 
as the mean ± the standard deviation of triplicate experiments. Differences between groups were statically analyzed using Duncan's new multiple‑range test. 
*P<0.05, **P<0.01 vs. the control group. BLSA, Ba lotus seeds; NPC, nasopharyngeal carcinoma.

Figure 2. Effect of alkaloids of BLSA on the (A) mRNA and (B) protein expression levels of Fas and FasL in human NPC CNE‑1 cells, measured by RT‑PCR 
and western blotting, respectively. Fold change of (C) Fas, (D) FasL and (E) Fas/FasL ratio. Fold change over the control for mRNA was calculated as mRNA 
expression/GAPDH expression. Fold change over the control for protein was calculated as protein expression/β‑actin expression. Results are presented as the 
mean ± the standard deviation of triplicate experiments. Differences between groups were statically analyzed using Duncan's new multiple‑range test. *P<0.05, 
**P<0.01 vs. the control group. BLSA, Ba lotus seeds; NPC, nasopharyngeal carcinoma, FasL, Fas ligand.
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vated Fas receptor and facilitates death receptor‑mediated 
apoptosis (33). Caspase‑9, an apoptotic effector molecule in 
intrinsic apoptosis, initiates programmed cell death following 

activation (10). Activated caspase‑8 and ‑9 activate caspase‑3, 
an executioner caspase that subsequently induces apoptosis (8). 
These results indicate that BLSA induces CNE-1 cell apoptosis 

Figure 5. Effect of alkaloids of BLSA on the (A) mRNA and (B) protein expression levels of NF‑κB and IκB-α in human NPC CNE‑1 cells. Fold change of 
(C) NF‑κB and (D) IκBα mRNA and protein expression over the control. Fold change over the control for mRNA was calculated as mRNA expression/GAPDH 
expression. Fold change over the control for protein was calculated as protein expression/β‑actin expression. Results are presented as the mean ± the standard 
deviation of triplicate experiments. Differences between groups were statically analyzed using Duncan's new multiple‑range test. *P<0.05, **P<0.01 vs. the 
control group. BLSA, Ba lotus seeds; NPC, nasopharyngeal carcinoma; NF‑κB, nuclear factor-κB; IκB-α, nuclear factor-κB inhibitor α.

Figure 4. Effect of alkaloids of BLSA on the (A) mRNA and (B) protein expression levels of Bax, Bcl‑2 and Bcl‑xL in human NPC CNE‑1 cells. Fold change 
of (C) Bax, (D) Bcl‑2 and (E) Bcl‑xL mRNA and protein expression over the control. Fold change over the control for mRNA was calculated as mRNA 
expression/GAPDH expression. Fold change over the control for protein was calculated as protein expression/β‑actin expression. Results are presented as the 
mean ± the standard deviation of triplicate experiments. Differences between groups were statically analyzed using Duncan's new multiple‑range test. *P<0.05, 
**P<0.01 vs. the control group. BLSA, Ba lotus seeds; NPC, nasopharyngeal carcinoma; Bax, Bcl2‑associated X protein; Bcl‑2, B‑cell lymphoma 2; Bcl‑xL, 
B‑cell lymphoma‑extra large.
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through activating extrinsic (Fas/FasL) and intrinsic apoptotic 
signaling pathways.

The Bcl‑2 family, a well‑known family of apoptosis regula-
tors, serves a primary role in intrinsic apoptosis (34). Bcl‑2 and 
Bcl-xL are typically anti-apoptotic factors that block the release 
of Cyt c from mitochondria and thus promote cell survival. 
Bcl-2 can reduce the release of Cyt c from the mitochondria, 
thus inhibiting apoptosis (6). In contrast, Bax is a pro‑apoptotic 
factor that promotes apoptosis (6,7). The balance between anti‑ 
and pro‑apoptotic factors influences the occurrence of apoptosis, 
and is associated with the success rate of chemotherapy in cancer 
patients (35). In the present study, BLSA treatment significantly 
increased mRNA and protein levels of pro-apoptotic Bax, and 
reduced mRNA and protein levels of anti-apoptotic Bcl-2 and 
Bcl‑xL in CNE‑1 cells. Activated Bax is directly engaged by 
Bim to promote apoptosis (36). In addition, caspases‑8 may 
activate Bax and induce the release of Cyt c from the mito-
chondria, causing the cleavage of caspase-9 and contributing 
to the activation of caspase-3 (6,37). The results of the current 
study suggest that BLSA modulates the ratio of anti-apoptotic to 
pro-apoptotic factors, in particular by enhancing the expression 
Bax to promote the apoptosis of CNE‑1 cells.

NF‑κB reduces tumor necrosis factor (TNF)‑α-induced cell 
apoptosis (38) and is an important negative regulator of apoptosis 
in cancer cells (39). Deregulation of NF‑κB expression has been 
found in a number of human cancers (40,41). Overexpression of 
NF‑κB promotes cell proliferation and reduces cell death (42). 
In addition, NF‑κB can directly activate Bcl-xL (43) and 
suppress a number of anti-apoptotic factors, such as inhibitor of 
apoptosis, caspase‑8‑like FADD‑like interleukin‑1β-converting 
enzyme inhibitory protein, TNF receptor associated factor 1 
(TRAF1) and TRAF2, to regulate apoptosis (44). Following 
treatment with BLSA, mRNA and protein levels of NF‑κB were 
significantly reduced in CNE‑1 cells. In addition, BLSA treat-
ment significantly increased mRNA and protein levels of IκB-α. 
Increasing IκB-α levels is a therapeutic strategy to reduce cancer 
cell growth in clinical chemotherapy (45-47).

In conclusion, the results of the present study indicate that 
BLSA suppresses the proliferation of human CNE-1 NPC cells 
in vitro. In addition, the results indicate that BLSA induces 
apoptosis, through reducing the ratio of anti-apoptotic (Bcl-2 
and Bcl-xL) to pro-apoptotic (Bax) factors, increasing mRNA 
and protein expression levels of Fas/FasL and promoting 
cleavage of caspase‑3, ‑8 and ‑9 in CNE‑1 cells. BLSA, as an 
inducer of apoptosis, may have future applications as an adju-
vant in clinical therapy for NPC patients.
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