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Abstract. In traditional Korean/Asian medicine, Salvia 
plebeia R.Br. (S. plebeia) leaves are used to treat inflammatory 
diseases, including dermatitis, cough, asthma and toothache. 
Recently, S. plebeia leaves have been applied in skin care, as 
they promote skin lightening and elasticity. Therefore, the 
present study investigated the anti‑aging effects of S. plebeia 
leaf methanolic extract and its fractions (dichloromethane, 
ethylacetate and n‑butanol). The results of a whole‑cell patch 
clamp analysis indicated that the methanolic extract mediated 
ultraviolet (UV)‑induced photoaging‑associated ion channels, 
transient receptor potential vanilloid 1 (TRPV1) and calcium 

release‑activated calcium channel protein 1 (ORAI1) channel 
activity in HEK293T cells overexpressing TRPV1 or ORAI1 
and STIM1. Electrophysiological analysis revealed that the 
butanol fraction inhibited capsaicin‑induced TRPV1 (84±8% 
at ‑60 mV/86±1% at 100 mV at 100 µg/ml) and ORAI1 (87±2% 
at ‑120 mV at 100 µg/ml) currents. Furthermore, the dichlo-
romethane and hexane fractions inhibited tyrosinase activity 
by 32.4±0.69  and 22.6±0.96% at 330 µg/ml, respectively. 
Furthermore, the ethylacetate and butanol fractions inhibited 
elastase activity by 65.2±1.30 and 31.7±1.23% at 330 µg/ml, 
respectively. Tyrosinase and elastase, which are UV‑induced 
photoaging‑associated enzymes, regulate skin pigmentation 
and wrinkle formation, respectively. The results of the present 
study indicated that S. plebeia leaves may be a novel treatment 
for UV‑induced photoaging.

Introduction

The elderly population is rapidly growing, which has led to 
an increase in dermatological problems, including eczema, 
wrinkling and pigmentation. Skin aging is associated with 
several factors, including genetics, environment, hormonal 
changes and metabolic processes. Although all of these 
factors can contribute to skin aging, the environment, 
particularly solar ultraviolet (UV) radiation is a prominent 
mediator of skin aging (1‑3). UV radiation exposure activates 
fibroblast and keratinocyte growth factor receptors, which 
activate the nuclear activator protein (AP)‑1. This produces 
matrix metalloproteinases (MMPs), including collagenase 
(MMP‑1), gelatinase B (MMP‑9) and stromelysin‑1 (MMP‑3), 
which degrade collagen and elastic fibers, thereby inducing 
skin wrinkling and laxity  (4,5). Neutrophils also mediate 
sun‑induced skin aging. Following UV radiation, neutro-
phils infiltrate the skin and release dermal elastase, a key 
elastolytic enzyme  (6‑8). Following skin exposure to UV 
radiation, the keratinocytes produce endothelins (ETs), which 
induce melanocyte proliferation and tyrosinase production. 
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Tyrosinase is a key melanogenic enzyme that controls skin 
pigmentation (9,10). Moreover, photoaged skin is functionally 
degenerated. The differentiation of keratinocytes, a component 
of the epidermis, is critical for the skin barrier function. As the 
skin ages, inhibition of keratinocyte differentiation disturbs 
the skin barrier, leading to allergen invasion, immunological 
reactions and inflammation. Therefore, skin barrier alterations 
induce inflammatory skin disease (11).

Intracellular calcium signaling mediates diverse skin 
processes, including barrier formation, cell differentiation, 
melanogenesis and tumor progression. These processes are 
regulated by several ion channels, including the transient 
receptor potential vanilloid 1 (TRPV1), which is associated 
with skin aging. TRPV1 is a nonselective cation channel with 
high calcium permeability, which responds to temperature, 
pH and vanilloids including capsaicin (12‑14). TRPV1 in the 
skin mediates heat shock and UV radiation‑induced MMP‑1 
expression (15). Furthermore, UV radiation, growth factors 
and cytokines induce MMP‑mediated deterioration of dermal 
collagen, leading to skin wrinkling via inflammation, skin 
aging and tumor invasion (5,16,17). Calcium also mediates 
epidermal melanin production in melanocytes. Of note, 
TRPV1 expression is functionally associated with calcium 
influx (18). In addition, the stimulation of TRPV1 by capsa-
icin or heat delays skin barrier recovery (19). Furthermore, 
capsaicin‑mediated TRPV1 activation in keratinocytes 
produces inflammatory cytokines, suggesting a role in inflam-
matory skin disease (20). Calcium release‑activated calcium 
modulator 1 (ORAI1) channels also perform important func-
tions in the skin. Stromal interaction molecule (STIM)‑gated 
ORAI1 channels are highly selective calcium channels that 
are activated by endoplasmic reticulum (ER) calcium deple-
tion (21,22). ORAI1 is essential for immune‑cell function; 
however, a recent study indicated that ORAI1‑mediated 
calcium uptake regulates keratinocyte proliferation and 
differentiation  (23). ORAI1 calcium influx also regulates 
neutrophil activation, which triggers elastase release (24,25) 
and endothelin‑1 (ET‑1)‑mediated melanogenesis  (9). 
Therefore, modulators of TRPV1 and ORAI1 channels may 
represent novel therapeutic agents for UV‑induced photo-
aging.

Salvia plebeia R.Br. (Lamiaceae) (S.  plebeia) is an 
annual or biennial plant that grows in numerous countries, 
including China, Korea and India. It is used as a traditional 
medicine to treat inflammatory diseases, including hepatitis, 
cough and hemorrhoids  (26). Pharmacological investiga-
tions have revealed that of the leaf extract of S. plebeia has 
anti‑oxidative  (27), anti‑tyrosinase  (28), anti‑cancer  (29) 
and hepatoprotective effects  (26). The active components 
of S. plebeia comprise flavonoids (30,31), diterpenoids (32), 
lignin  (33), aliphatic compounds  (34) and sesquiterpe-
noids (35). Although S. plebeia leaves are used to prevent and 
treat skin aging‑associated conditions, including inflamma-
tion, pigmentation and wrinkle formation, the exact underlying 
physicochemical and molecular mechanisms of its biological 
activity have remained elusive.

Therefore, the present study investigated whether S. plebeia 
leaves regulate the calcium concentration, a critical mediator 
of skin aging signaling pathways, via TRPV1 and ORAI1 
channels. Its effects on tyrosinase and elastase, which are the 

major downstream enzymes in UV‑induced photoaging, were 
also evaluated.

Materials and methods

Chemicals. All chemicals were purchased from Sigma‑Aldrich 
(St. Louis, MO, USA), except 3,5‑bis(trifluoromethyl)pyrazole 
(BTP2), which was obtained from Tocris (Bristol, UK). Stock 
solutions of capsaicin (10 mM), inositol triphosphate (InsP3; 
20 mM), BTP2 (10 mM), and 4‑(3‑chloro‑2‑pyridinyl)‑N‑[4‑ 
(1,1‑dimethylethyl)phenyl]‑1‑piperazinecarboxamide (BCTC; 
10 mM) were prepared in dimethyl sulfoxide (DMSO). All 
stock solutions were stored at ‑20˚C.

Extraction. The dried and pulverized leaves of S. plebeia 
(200 g) were purchased from Omniherb drug store (Seoul, 
Korea) and extracted twice with 70% methanol (1 l) under 
reflux to obtain the methanolic extract. After evaporation of 
the solvent, the solid extracted material was obtained (yield, 
43.0 g), which was then successively partitioned with n‑hexane 
(200 ml), dichloromethane (200 ml), ethylacetate (100 ml) 
and n‑butanol (100 ml) to obtain the corresponding frac-
tions with yields of 1.8, 1.5, 2.4 and 5.0 g, respectively. Dried 
extracts were diluted with DMSO to prepare stock solutions 
(30 and 100 mg/ml) of each extract.

Gas chromatography‑mass spectrometry (GC‑MS) analysis. 
GC‑MS (Agilent GC/Pegasus 4D, Agilent Technologies, Santa 
Clara, CA, USA) analyses of the dichloromethane and ethylac-
etate fractions were performed under the following conditions: 
Injector split ratio, 10:1; injection volume, 1.0  µl dichlo-
romethane solution; injector temperature, 250˚C; column, 
Agilent J&W DM‑5MS (30 m x 0.25 mm ID x 0.25 µm; Agilent 
Technologies); carrier gas, helium; flow rate, 1.0 ml/min; oven 
temperature programming, 50˚C (3 min)→10˚C/min→320˚C 
(18 min). For the MS analysis, the following conditions were 
used: Ion source, electron impact; 230˚C; analyzer, quadru-
pole; 150˚C; mass range, 35‑800 m/z (mass‑to‑charge ratio).

Cell culture. HEK293T cells (American Type Culture 
Collection, Manassas, VA, USA) were maintained in Dulbecco's 
modified Eagle's medium (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) at 37˚C in a humidified incubator 
containing 20% O2 and 10% CO2 (as 3.7 g/l NaHCO3 requires 
10%). All media were supplemented with 10% fetal bovine 
serum (WelGENE, Daegu, South Korea), 100 U/ml penicillin 
and 100 g/ml streptomycin (Thermo Fisher Scientific, Inc.). 
The cells were subcultured every 2‑3 days.

Transfection of TRPV1, ORAI1 and STIM1. For the patch 
clamp studies, the cells were transferred in 25‑cm2 culture 
flasks (Thermo Fisher Scientific, Inc.) 1 day prior to trans-
fection. HEK293T cells were transiently transfected with a 
mammalian expression vector carrying human (h)TRPV1 
or hORAI1 and hSTIM1 using the Turbofect transfection 
reagent (Thermo Fisher Scientific, Inc.) according to the 
manufacturer's instructions. In all transfection studies, the 
cells were co‑transfected with a plasmid vector coding 
the enhanced green fluorescent protein (pEGFP‑N1) to sort 
out the transfected cells. To record TRPV1 currents (ITRPV1), 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  13:  567-575,  2017 569

hTRPV1 and pEGFP‑N1 were co‑transfected at a ratio of 9:1. 
To record ORAI1 currents (IORAI1), hORAI1, hSTIM1 and 
pEGFP‑N1 were triple‑transfected at a ratio of 4.5:4.5:1, respec-
tively. Human TRPV1 (hTRPV1) plasmid (pcDNA5/FRT) was 
generously donated by Dr Sung Joon Kim (Seoul National 
University, Seoul, Korea). Human ORAI1 (hOrai1) and human 
STIM1 (hSTIM1) were purchased from Origene Technologies 
(Rockville, MD, USA). hSTIM1 and hORAI1 cDNA were 
subcloned into pcDNA3.1 (Thermo Fisher Scientific, Inc.). 
Experiments were performed within 24‑36 h of transfection.

Electrophysiology. Conventional whole‑cell patch clamp 
methods were used to measure the hTRPV1 and hORAI1 
currents at room temperature. Recordings were acquired using 
an Axopatch 700B amplifier interfaced with a Digidata 1440A 
(Molecular Devices, Sunnyvale, CA, USA). The recorded 
data were digitized at 10 kHz and low‑pass filtered at 5 kHz 
using the pCLAMP 10.4 software (Molecular Devices). Patch 
pipettes were produced from thin‑walled borosilicate glass 
(World Precision Instruments, Sarasota, FL, USA) using a 
horizontal Flaming Brown micropipette puller (model P‑97). 
Pipette tips were fire‑polished to a resistance of 2‑3 MOhm 
to facilitate gigaseal formation (Narishige, East Meadow, NY, 
USA). The transfected cells were transferred to a perfusion 
chamber (Warner Instruments, Hamden, CT, USA) mounted 
on the stage of an inverted microscope (Nikon, Tokyo, 
Japan). Bath solutions were perfused at 3 ml/min. To measure 
the hTRPV currents, voltage ramp protocols ranging from 
‑100‑100 mV over 100 msec were applied every 20 sec at a 
‑10‑mV holding potential. For hORAI1, ramp‑like pulses 
from ‑130‑70 mV over 100 msec were applied every 30 sec 
at a ‑10‑mV holding potential to obtain the current‑voltage 
association. The junction potentials were canceled prior to 
patch formation and pipette capacitances were compensated 
for electronically after gigaseal formation. All the voltage 
and current trace data were analyzed using the Clampfit soft-
ware 10.4, Prism 6.0 (GraphPad, Inc., La Jolla, CA, USA) and 
Origin 8.0 (MicroCal, Northampton, MA, USA).

For the hTRPV1 whole‑cell patch clamping, the external 
solution contained 140 mM NaCl, 4 mM KCl, 1 mM MgCl2, 
1 mM ethylene glycol tetraacetic acid (EGTA), 5 mM D‑glucose 
and 10 mM 4‑(2‑hydroxyethyl)‑1‑piperazineethanesulfonic 
acid (HEPES) (pH 7.4). The internal solution contained 
140 mM CsCl, 10 mM NaCl, 5 mM EGTA, 3 mM adenosine 
triphosphate magnesium salt and 10 mM HEPES (pH 7.2). The 
capsaicin‑evoked activity was observed by applying capsaicin 
(1 µM) in the external solution after confirming the basal 
current. For the hORAI1 whole‑cell patch clamp recording, 
the external solution contained 3.6 mM KCl, 10 mM CaCl2, 
1 mm MgCl2, 5 mM D‑glucose, and 10 mM HEPES (pH 7.4). 
The internal solution contained 130 mM Cs‑glutamate, 20 mM 
1,2‑bis (o‑aminophenoxy) ethane‑N,N,N ',N '‑tetracetic acid, 
1 mM MgCl2, 3 mM MgATP, 0.002 mM sodium pyruvate and 
20 mM HEPES (7.2). To activate the hORAI1 currents, 20 µM 
InsP3 was added to the internal solution.

Tyrosinase assay. The tyrosinase inhibitory activity of 
S. plebeia was measured using a modified method (36). In 
brief, a mixture of sodium phosphate buffer (pH 6.8; 0.066 M), 
L‑3,4‑dihydroxyphenylalanine (1.5  mM) and DMSO 

(10 mg/ml) was added to the enzyme solution (500 U/ml), 
and the mixture was incubated at 30˚C for 10 min. After 
enzyme inactivation using an ice bath, the optical density 
was measured using spectrophotometer (Ultraspec  2000; 
Amersham Pharmacia Biotech, NJ, USA) at a wavelength of 
475 nm. Kojic acid (200 µg/ml) was used as a positive control.

Elastase assay. Inhibition of porcine pancreatic elas-
tase was estimated using a modified method  (37). In 
brief, a mixture of Tris‑HCl buffer (pH  8.0; 0.1  M), 
N‑succinyl‑Ala‑Ala‑Ala‑p‑nitroanilide (1 mM) and sample 
solution (plant extract or fractions, 10 mg/ml in DMSO) was 
added to the enzyme solution (elastase in Tris‑HCl buffer, 
0.1 U/ml), followed by incubation at 25˚C for 20 min. After 
enzyme inactivation using an ice bath, the optical density was 
measured at a wavelength of 410 nm using an Ultraspec 200 
spectrophotometer. Ursolic acid (200 µg/ml) was used as a 
positive control.

Statist ical analysis. Values are expressed as the 
mean ± standard error of the mean. The N values indicate the 
number of separate cells used in the experiment. Comparison 
tests were performed using one‑way analysis of variance with 
Bonferroni's post‑hoc comparison. P<0.05 was considered to 
indicate a statistically significant difference. Prism 6.0 soft-
ware (GraphPad, Inc.) and Origin 8.0 (MicroCal) were used 
for statistical analyses.

Results

S.  plebeia extracts inhibit the basal ITRPV1 and IORAI1. To 
evaluate whether TRPV1 and ORAI1 are affected by the 
S. plebeia leaf crude extract and fractions, whole‑cell currents 
in HEK293T cells overexpressing TRPV1 or ORAI1 and 
STIM1 were measured. To evaluate the inhibitory effects of 
this herbal extract on the basal ITRPV1, 1 mM capsaicin was 
used to activate ITRPV1. After confirming the ITRPV1 steady 
state, 10, 30 or 100 µg/ml of the extract or fractions were 
added to the external solution. A total of 1 µM of the selective 
TRPV1 inhibitor BCTC was used as a positive control. Fig. 1A 
shows a typical data recording for the capsaicin‑induced 
ITRPV1 and its inhibition by the butanolic fraction. The asso-
ciated I‑V curves at (a) the peak ITRPV1 and at (b) 10, (c) 30, 
and (d) 100 µg/ml butanolic fraction were achieved using a 
ramp‑like pulse protocol from ‑100‑100 mV (Fig. 1B). Fig. 1B 
further shows that the application of capsaicin produced a 
strong outward rectifying current potential reversal (0 mV). 
To analyze the fraction‑induced inhibition, the normalized 
amplitudes of the fraction‑treated currents (I/Icon x100%) were 
obtained at 100‑ and ‑60‑mV clamp voltages. As shown in 
Fig. 1C, the level of ITRPV1 inhibition by the butanolic fraction at 
‑60 mV was 5±11, 39±10 and 84±8% at 10, 30 and 100 µg/ml, 
respectively, and at 100 mV, it was 4±9, 37±4 and 86±1% at 10, 
30 and 100 µg/ml, respectively.

To evaluate the inhibition of IORAI1, 20 µM InsP3 was added 
to the internal solution in order to deplete ER calcium stores. 
When the ER calcium concentration drops, STIM1 binds to 
and activates ORAI1, and thereby allows for calcium entry. 
After obtaining the whole‑cell configuration, an inwardly 
rectifying current with reversal potential at 50 mV was obtained 
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in the ORAI1/STIM1 co‑transfected cells. After confirming 
the steady state of the IORAI1, 10, 30 or 100 µg/ml extract or 
fraction of S. plebeia leaf was added to the bath solution to 
analyze the S. plebeia‑mediated inhibition of ORAI1. BTP2 
(10 µM), which is a selective ORAI1 inhibitor, was added to 
the external solution to confirm the basal current. As presented 
in Fig. 2A, the serial application of 10, 30 and 100 µg/ml of the 
butanolic fraction inhibited IORAI1. Fig. 2B shows the I‑V asso-
ciation curve between the (a) control and butanolic fraction 
treatment at (b) 10, (c) 30 and (d) 100 µg/ml. At ‑120 mV, the 
butanolic fraction inhibited IORAI1 by 31±5, 62±5 and 87±2% at 
10, 30 and 100 µg/ml, respectively (Fig. 2C; n=6). The hexane 
fraction had a greater inhibitory effect on IORAI1 than the buta-
nolic fraction (Fig. 3); at ‑120 mV, the hexane fraction inhibited 
IORAI1 by 56±2, 82±1 and 92±2% at 10, 30 and 100 µg/ml, 
respectively (Fig. 3C; n=7). The TRPV1 and ORAI1 inhibition 
rates are presented in Table I. The butanolic fraction had the 
strongest effect on ITRPV1 and IORAI1.

S. plebeia extracts inhibit tyrosinase. To verify the skin‑light-
ening effects of the S. plebeia leaves tyrosinase assays were 
performed using the extract and fractions. Tyrosinase is a key 
enzyme that initiates melanogenesis. Decreased tyrosinase 
activity corresponds with reduced melanin production. kojic 
acid, a tyrosinase inhibitor, was used as a positive control 
(80.7±0.69%). As shown in Fig.  4, the dichloromethane 
(32.4±0.69%) and hexane (22.6±0.96%) fractions inhibited 
tyrosinase activity.

S.  plebeia extracts inhibit elastase. Elastase regulates 
wrinkle formation by deteriorating and remodeling the 

extracellular matrix. Therefore, elastase assays can be used 
to evaluate the effect of S. plebeia on wrinkle formation. 
Ursolic acid, an elastase inhibitor, was used as a positive 
control (83.9±0.79%). As presented in Fig. 5, the ethylacetate 
and butanolic fractions inhibited elastase by 65.2±1.30 and 
31.7±1.23%, respectively.

GC‑MS
Molecular composition of S. plebeia extracts. As outlined 
in Fig. 6, the total ion GC‑MS chromatogram of the most 
active dichloromethane fraction revealed phytol as a main 
compound (5.37%) in addition to minor sterol components, 
including 23‑ethylcholest‑5‑en‑3‑ol (0.60%), stigmasterol 
(0.39%) and ergost‑5‑en‑3‑ol (0.24%). The ethyl acetate frac-
tion contained hispidulin (4',5,7‑trihydroxy‑6‑methoxyflavone) 
as a major constituent (30.4%) in addition to minor amounts 
of phenolic compounds (including 4‑vinylguaiacol and 
3‑allyl‑2‑methoxyphenol).

Discussion

The use of natural products in the prevention and treatment 
of skin aging, particularly pigmentation and wrinkling, has 
aroused great interest. Solar UV radiation damage is of consid-
erable importance in skin aging (1‑3). Recently, S. plebeia, 
which is traditionally used to treat inflammatory diseases (26), 
has gained attention owing to its skin‑whitening and elasticity 
effects. However, its anti‑skin aging effect and the underlying 
biological mechanisms have remained elusive. Therefore, the 
present study examined the effects of S. plebeia leaves on the 
photoaging‑associated ion channels TRPV1 and ORAI1, as 

Figure 1. Effects of Salvia plebeia butanolic fraction on ITRPV1. (A) Representative tracing of ITRPV1 inhibition by S. plebeia butanol fraction. After confirming 
ITRPV1 activation using 1 µM capsaicin, 10, 30 or 100 µg/ml butanolic fraction was applied to hTRPV1‑overexpressing HEK293T cells. (B) Corresponding I‑V 
association curve of control (a) peak current and (b) 10, (c) 30 and (d) 100 µg/ml butanolic fraction. (C) Summary of butanolic fraction‑induced ITRPV1 inhibition 
rates at ‑60 and 100 mV. *P<0.05, **P<0.01 and ****P<0.0001 vs. control for each. I, current; V, voltage; Ctrl/Con, control; hTRPV1, human transient receptor 
potential vanilloid 1; BCTC, 4‑(3‑chloro‑2‑pyridinyl)‑N‑[4‑(1,1‑dimethylethyl)phenyl]‑1‑piperazinecarboxamide; BuOH, butanolic fraction of Salvia plebeia.
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well as on the photoaging‑associated enzymes tyrosinase and 
elastase.

In keratinocytes, TRPV1 mediates UV‑induced MMP‑1, 
which destroys collagen. Following exposure to UV 

Figure 2. Effects of Salvia plebeia butanolic fraction on IORAI1. (A) Representative tracing of IORAI1 inhibition by S. plebeia butanolic fraction. After confirming 
IORAI1 activation using 20 µM inositol triphosphate, 10, 30 or 100 µg/ml butanolic fraction was applied to hORAI1‑ and stromal interaction molecule‑overex-
pressing HEK293T cells. (B) Corresponding I‑V association curve of (a) control current and (b) 10, (c) 30 and (d) 100 µg/ml butanolic fraction. (C) Summary 
of butanol fraction‑induced IORAI1 inhibition rates at ‑120 mV. ***P<0.001 and ****P<0.0001 vs. control for both. I, current; V, voltage; Ctrl/Con, control; hTRPV1, 
human transient receptor potential vanilloid 1; BTP2, 3,5‑bis(trifluoromethyl)pyrazole; hORAI1, human calcium release‑activated calcium modulator 1; 
BuOH, butanolic fraction of Salvia plebeia.

Figure 3. Effects of the Salvia plebeia hexane fraction on IORAI1. Representative tracing showing effect of hexane fraction on (A) IORAI1 and (B) the corresponding 
I‑V association curve at different times after treatment. (C) Summary of percentage change in IORAI1 caused by hexane fraction at ‑120 mV. ****P<0.0001 vs. 
control. I, current; V, voltage; Ctrl/Con, control; BTP2, 3,5‑bis(trifluoromethyl)pyrazole; hORAI1, human calcium release‑activated calcium modulator 1; 
hexane, hexane fraction of Salvia plebeia.
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radiation, TRPV1 induces calcium influx, thereby acti-
vating calcium‑dependent protein kinase C and promoting 
MMP‑1 expression (15,38). A previous study suggested that 
TRPV1 is associated with melanogenesis due to changes in 
TRPV1 expression and calcium uptake (18). ORAI1, which 
regulates calcium uptake, regulates melanogenesis and 
neutrophil activation (9,24,25). Following UV radiation, the 
ORAI1‑dependent calcium influx mediates ET‑1‑induced 
melanogenesis and the release of collagen and elastic 
fiber‑degrading enzymes in neutrophils (9). In the present 
study, electrophysiological analysis indicated that the buta-
nolic fraction (100 µg/ml) inhibited TRPV1 activity by 84±8 
and 86±1% at ‑60 and 100 mV, respectively. Furthermore, 
‑120  mV, the hexane and butanolic fractions (100  µg/ml 
each) strongly inhibited ORAI1 activity by 92±2 and 87±2%, 
respectively. Therefore, S.  plebeia leaves inhibited the 
upstream signaling pathways regulating UV‑induced skin 
wrinkle formation and pigmentation. Studies indicated 
that TRPV1 activation is involved in delayed skin barrier 
recovery and cutaneous inflammation  (19,20). Therefore, 
S. plebeia may also prevent skin inflammation. In the present 
study, to determine whether the leaf extract and fractions 
of S. plebeia were able to inhibit tyrosinase and elastase, 
which are the mediators of UV photoaging, tyrosinase and 

elastase assays were performed. Tyrosinase regulates the 
synthesis of melanin, thereby determining skin pigmenta-
tion (10). Although the inhibitory efficacy was not strong, the 
dichloromethane and hexane fractions inhibited tyrosinase 
activity by 32.4±0.69 and 22.6±0.96%, respectively. Elastase 
activity has a pivotal role in UV‑induced wrinkling (4,5) and 
the effect of S. plebeia on elastase was therefore assessed in 
the present study. The ethylacetate and butanolic fractions 
inhibited elastase by 65.2±1.30 and 31.7±1.23%, respectively; 
however, these fractions were less effective than ursolic acid, 
but had a relatively high efficacy. In addition, the GC‑MS 
results revealed that the dichloromethane and ethyl acetate 
fractions contained phytol and hispidulin, respectively, as a 
main component. Phytol, a diterpene compound, has been 
reported to have a skin‑whitening effect, which was deter-
mined by measuring tyrosinase promoter activity (39). To 
the best of our knowledge, the elastase inhibitory activity of 
hispidulin has not yet been reported. Furthermore, it has not 
been reported that phytol and hispidulin regulate the activity 
of TRPV1 and ORAI1 channels. Therefore, S. plebeia leaves 
may contain chemical constituents that directly inhibit 
enzyme activity associated with UV‑induced photoaging.

In addition to its role in skin aging, TRPV1 is well known 
as a nociceptor activated by pain‑producing stimuli, such 
as vanilloid compounds, moderate heat (43˚C) and low pH 
(<5.9)   (12,40). TRPV1 is enriched in small‑diameter, Aδ 
and C fiber sensory neurons and has a significant role in pain 
sensation and neurogenic inflammation (40‑42). Activation of 
TRPV1 in sensory fibers results in the release of neuropeptides, 
such as substance P and calcitonin gene‑related peptide (43). 
The released peptides induces the release of pro‑inflammatory 
and vasoactive substances causing neurogenic inflammation, 
such as increased blood flow and edema in cells including 
keratinocytes, mast cells and fibroblast  (43). Analysis of 
TRPV1 knockout mice demonstrated that TRPV1 has a 
functional role in pain transduction and neurogenic inflam-
mation, as indicated by an increased threshold to noxious heat 
and decreased tissue swelling in inflammation (13,44,45). 
Therefore, studies have been performed to identify agents 
with the ability to inhibit TRPV1 channel activity for the 
development of novel analgesic therapeutics. ORAI1 is 
also a representative ion channel‑regulating immune‑cell 
activator. ORAI1 is distributed in T cells, B cells and mast 
cells, and ORAI1‑mediated calcium signaling is essential to 
the immune response (46‑49). Based on previously reported 
findings, T‑ and B‑cell mediated immunity is severely 
impaired in human as well as mice in the absence of ORAI1 
function (46,47,50). Therefore, much work has focused on the 
inhibition of ORAI1 channel activity to suppress undesirable 
immune responses. Also, S. plebeia has been traditionally 
used to treat inflammatory diseases such as hepatitis, cough, 
and hemorrhoids (26) and recently, pharmacological studies 
have demonstrated that the leaf extract has anti‑inflammatory 
and anti‑nociceptive activities  (51,52). In addition, it was 
reported that its extract has an inhibitory effect on inflam-
matory arthritis in human rheumatoid synovial fibroblasts 
and a murine model (53), and in a mouse model of atopic 
dermatitis, its oral administration lessened atopic dermatitis 
symptoms and suppressed the expression of cytokines and 
chemokines  (54). Thus, given these additional effects of 

Figure 4. Inhibitory activity of Salvia plebeia extract and fractions on 
tyrosinase activity. MeOH, methanolic extract; MC, dichloromethane frac-
tion; EtOAc, ethyl acetate fraction; BuOH, n‑butanol fraction; Hex, hexanol 
fraction. Kojic acid was used as a positive control. *P<0.05 and **P<0.01 
compared to kojic acid.

Figure 5. Inhibitory activity of Salia plebeia extract and fractions on elastase 
activity. MeOH, methanolic extract; MC, dichloromethane fraction; EtOAc, 
ethyl acetate fraction; BuOH, n‑butanol fraction; Hex, hexanol fraction. 
Ursolic acid was used as a positive control. *P<0.05 compared to ursolic acid.
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S. plebeia, it may be applied not only as an anti‑skin aging 
agent but also as an anti‑inflammatory or analgesic agent.

In conclusion, the results of the present study suggested that 
S. plebeia leaves may have therapeutic effects on UV‑induced 
photoaging mediated by inhibiting upstream signaling 
pathway‑associated ion channels and downstream enzyme 
activity. These findings may explain the mechanism of the 
anti‑skin aging effects of this herbal drug and suggest a novel 

application of this extract. Furthermore, the present study was 
the first to provide an electrophysiological assessment of the 
effects of S. plebeia leaves on TRPV1 and ORAI1 channels.
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