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Abstract. Pathological remodeling of the myocardium is an 
integral part of the events that lead to heart failure (HF), which 
involves altered gene expression, disturbed signaling pathways 
and altered Ca2+ homeostasis and the players involved in 
this process. Of particular interest is the chronic activation 
of Ca2+/calmodulin-dependent protein kinase II (CaMKII) 
isoforms in heart, which further aggravate the injury to 
myocardium. Expression and activity of CaMKII have been 
found to be elevated in various conditions of stressed myocar-
dium and in different heart diseases in both animal models 
as well as heart patients. CaMKII is a signaling molecule that 
regulates many cellular pathways by phosphorylating several 
proteins involved in excitation-contraction coupling and relax-
ation events in heart, cardiomyocyte apoptosis, transcriptional 
activation of genes related to cardiac hypertrophy, inflam-
mation, and arrhythmias. CaMKII is activated by reactive 
oxygen species (ROS), which are elevated under conditions of 
ischemia-reperfusion injury and in a cyclical manner, CaMKII 
in turn elevates ROS production. Both ROS and activated 
CaMKII increase Ca-induced Ca release from sarcoplasmic 
reticulum, which leads to cardiomyocyte membrane depolar-
ization and arrhythmias. These CaMKII-mediated changes in 
heart ultimately culminate in dysfunctional myocardium and 
HF. Genetic studies in animal models clearly demonstrated 
that inactivation of CaMKII is protective against a variety of 
stress induced cardiac dysfunctions. Despite significant leaps 
in understanding the structural details of CaMKII, which is a 
very complicated and multimeric modular protein, currently 
there is no specific and potent inhibitor of this enzyme, that 
can be developed for therapeutic purposes.
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1. Introduction

Advances in medicine over the past few decades significantly 
lowered cardiovascular disease-linked mortality by up to 75% 
and increased the survival rate of patients with cardiac disease, 
but at the same time this has led to a great increase in the 
number of people surviving with injured heart (1). However, 
the increasing incidence of obesity, and associated hyperten-
sion and diabetes coupled with unhealthy lifestyles is causing 
a significant increase in the number of surviving individuals 
with heart disease, adding burden on the society in terms of 
health, economy and productivity (2,3). Several diseases and 
metabolic disturbances can be contributed to heart failure 
(HF) and these include myocardial infarction (MI), hyperten-
sion, valvular disease, genetic disorders, diabetes and obesity. 
HF occurs because of the compromised ability of myocardium 
to exert systolic contraction with enough force to pump blood; 
with characteristic reduced ejection fraction or it can be due 
to lowered diastolic filling, but with the preservation of ejec-
tion fraction. While acute HF is the sudden appearance of 
HF symptoms such as congestion and difficulty to breath (4), 
chronic HF is marked by the inability of heart to function 
optimally over an extended period of time (4,5).

Pathological remodeling of the myocardium is an 
integral part of the HF syndromes (6), which involves altered 
gene expression and disturbed signaling pathways and 
altered contractile response of myocardium. Of particular 
significance are the changes in the functionality of proteins 
that play a central part in intracellular Ca2+ handling 
as well as ion channels involved in Ca2+ transport. Cardiac 
muscle contraction is dependent on the maintenance of Ca2+ 
homeostasis, which is essential for excitation-contraction (E-C) 
coupling of cardiomyocyte. Thus, electrical depolarization of 
the cardiomyocyte membrane swiftly moves to the center of 
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the cell via the network of transverse tubules (t-tubules), which 
terminate close to sarcoplasmic reticulum (SR), with a 12 nm 
gap. Membrane depolarization triggers the rapid diffusion of 
extracellular Ca2+ to the SR, through these gaps, facilitated by 
the L-type Ca2+ channels (LTCC). This influx of Ca2+ leads 
to Ca2+-induced calcium release (CICR) from the SR through 
the type 2-ryanodine receptor (RyR2). This elevated calcium 
promotes cross-bridge cycling by relieving actin from troponin 
C-dependent inhibition, thereby causing cardiomyocyte 
contraction. Then, Ca2+ is taken back into the SR lumen by the 
SR Ca2+ ATPase 2a (7). Considering the significance of Ca2+ in 
heart muscle contraction, it is appreciated that disturbances in 
the Ca2+ handling machinery in cardiomyocyte can potentially 
lead to HF. Thus HF is characterized by disturbed Ca2+ 
leak from SR, mediated by RyR2, even though the precise 
mechanisms are not clear (8). Other players such as SERCA 
are also deranged in HF. Besides membrane depolarization, 
intracellular Ca2+ is important in many other cell processes 
including oxidative stress, mitochondrial function, apoptosis 
and autophagy.

2. Ca2+/calmodulin‑dependent protein kinase II

Several studies have indicated that a Ca2+-regulated protein 
kinase, Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) plays a critical role in E-C coupling, contractility 
of cardiomyocyte (9,10), mitochondrial function and cardio-
myocyte survival (11,12). Expression and activity of CaMKII 
have been found to be elevated in various conditions of 
stressed myocardium and in different heart diseases in both 
animal models as well as heart patients (9-14). The activation 
of CaMKII can be either at the level of this enzyme protein 
itself or at an upstream signaling event involving catechol-
amines (15) or renin-angiotensin-aldosterone systems (16). 
Abnormally elevated CaMKII activity can cause dysfunction 
of several downstream events whose components are regulated 
by CaMKII, such as E-C coupling, structural remodeling, and 
transcriptional activation of certain inflammatory proteins 
and apoptosis (17).

Structure/function features of CaMKII. CaMKII is a 
serine/threonine kinase with a broad range of protein 
substrates and wide tissue distribution. There are 4 isoforms 
of CaMKII (α, β, δ and γ), coded for by 4 separate genes, with 
heart expressing predominantly the δ-isoform, with some 
γ-isoform as well. Alternate splicing of mRNA adds further 
complexity to the CaMKII isoforms and their function and 
regulation (18). There are three main domains in the CaMKII 
monomer-N-terminal catalytic domain, regulatory domain and 
the C-terminal association domain (Fig. 1) (19). The regulatory 
domain, which interacts with the catalytic site, maintains the 
catalytic activity low under unstimulated basal conditions, and 
contains binding sites for Ca2+ and calmodulin. The C-terminal 
association domain participates in the multimerization process, 
thus forming the mature dodecameric holoenzyme, with two 
hexameric stacked rings (20). Complex of calmodulin and Ca2+ 
binds with the regulatory domain and this displaces this domain 
from the catalytic domain thereby restoring the activity of the 
enzyme (activation) and also exposes certain other regulatory 
binding sites, which can influence the CaMKII activity. 

CaMKII can phosphorylate several proteins involved in Ca2+ 
homeostasis, the well-studied protein targets being LTCC, 
RyR2, voltage-gated Na+ channel and K+ channels (21,22) 
and also ATP-sensitive K+ channels (23) and chloride 
channels (24), which have been shown to be important for 
cardiac arrhythmias. Regulation and activity level of CaMKII 
depends upon its holoenzymic state and post-translational 
modifications including phosphorylation, glycosylation and 
oxidation. CaMKII is known to autophosphorylate itself at 
Thr286/287 residue of the calmodulin-Ca2+ bound catalytic 
domain, mediated by another adjacent catalytic domain. This 
autophosphorylation renders the catalytic domain to maintain 
its activity even in the absence of calmodulin and Ca2+ (25,26).

Organization of CaMKII in cardiomyocytes. Subcellular 
localization is critical for the maintenance of membrane excit-
ability and CaMKII is found to be distributed in high density 
near the t-tubules of cardiomyocyte, close to LTCC (Cav1.2) 
and to RyR2 channels of SR, which regulate the Ca-induced 
Ca release intracellularly (Fig. 2). Thus, phosphorylation of 
S2814 of RyR2 by CaMKII leads to dysregulated intracel-
lular Ca2+ homeostasis, which in turn cause perturbation of 
maladaptive stress response and proarrhythmic events, thus 
further aggravating the HF (Figs. 1 and 2). Thus, mouse 
models which express RyR2 with S2814A mutation and 
thus are not phosphorylated by CaMKII, are protected from 
pressure overload in vivo (27). CaMKII is also found in mito-
chondria, nucleus and near the intercalated disc (17). CaMKII 
subcellular localization appears to be dependent on the nature 
of the target and its location and the presence of interacting 
domains on the target. Thus α- and β-subunits of LTCC, which 
are phosphorylated by CaMKII, bind with CaMKII, because 
of the homology between the phosphorylation sites and the 
auto-inhibitory region of the CaMKII (21,28). A similar 
homology domain, as seen in the LTCC β-subunit, is also 
found in the actin-associated protein, βIV-spectrin, to which 
CaMKII is known to bind. This interaction is a prerequisite for 
the CaMKII-mediated phosphorylation of the voltage-gated 
Na+ channels at the intercalated disc in cardiomyocytes (29).

3. Evidence for CaMKII as a therapeutic target in heart 
disease

CaMKII acts as a molecular nexus that connects neurohumoral 
stimulation to HF and cardiac remodeling (20). There has 
been a significant development in our understanding of 
the role of CaMKII in cardiovascular diseases and several 
reports over the past two decades have suggested such roles, 
making CaMKII a potential therapeutic target. Thus, it has 
been noted that cytosolic CaMKIIδC isoform as well as the 
nuclear CaMKIIδB isoform were found to be elevated in the 
two ventricles of patients with ischemic cardiomyopathy (30). 
There is also a significant elevation of autonomous activity of 
CaMKII and its expression, in patients with advanced and end 
stage HF (31). As the upregulation of CaMKII is associated 
with heart disease and failure by promoting apoptosis, 
inflammation that leads to cardiac dysfunction (32,33), 
the possibility that inhibition of this enzyme activity can 
have therapeutic effects has been considered. Experimental 
transgenic animal models, overexpressing CaMKII have been 
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found to suffer from HF (34), whereas CaMKII knockout 
mice were protected from HF induced by transaortic 
constriction (35). Additionally, mice expressing a mutant 

CaMKII (S2814D), which is constitutively active, suffered 
exacerbated mortality (36). CaMKIIδγ knockout mice with 
total deletion of heart specific isoforms CaMKII, are protected 

Figure 1. Domain structure of Ca2+/calmodulin-dependent protein kinase II (CaMKII) monomer and potential regulatory sites. A schematic showing the 
CaMKII monomer with catalytic, regulatory and association domains. Catalytic domain function is normally obscured by the regulatory domain. Association 
domain is instrumental in forming the holoenzyme that consists of 12 monomers. Post‑translational modifications by different stress stimuli and neurohor-
monal signaling at the indicated sites in the regulatory domain lead to sustained activation of CaMKII by relieving the catalytic domain.

Figure 2. Mechanisms of Ca2+/calmodulin-dependent protein kinase II (CaMKII) dependent cardiac dysfunction. Increase in intracellular Ca2+ through L-type 
Ca2+ channels, leads to CaMKIIδ activation via Ca2+/Calmodulin (CaM) in cardiomyocyte. Activated CaMKIIδ contributes to elevated reactive oxygen species 
(ROS), which can also arise from other stress stimuli, themselves can activate CaMKIIδ, resulting in a vicious cycle of CaMKIIδ activation. Both the phos-
phorylation mediated by CaMKIIδ and ROS-mediated oxidation of the type 2-ryanodine receptor (RyR2) in sarcoplasmic reticulum (SR) lead to enhanced SR 
Ca2+ load and in turn, cause SR Ca2+ leak followed by the re-uptake of Ca2+ by SERCA into SR. This triggers sodium/calcium exchanger (NCX)-dependent 
depolarizing current (transient inward current), which contributes to arrhythmia. Activated CaMKIIδ also elevates transcription of cardiac hypertrophy genes, 
which culminates in cardiac hypertrophy and thus dysfunction of heart. Activated CaMKII is known to trigger cardiomyocyte apoptosis program, leading to 
loss of cardiomyocytes and thus damaged myocardium. All these events resulting from CaMKII activation, contribute to failure of the heart.



ZHANG:  CaMKII AGGRAVATES CARDIOVASCULAR DISEASE818

from pressure overload and β-adrenergic stimulation-induced 
cardiac dysfunction and interstitial fibrosis (32,37). Similarly, 
the elevated activity of CaMKII is also associated with atrial 
fibrillation and sinus node disease (38) and several other HF 
contributory diseases such as inherited arrhythmias (39,40).

Oxidation of 281/282 methionine residue in CaMKII is 
susceptible to oxidative stress and this oxidation leads to the 
activation of CaMKII and it has been shown that this oxidation 
is particularly important in cardiomyocytes as it may relate 
to conditions of ischemia/reperfusion injury (41). Met281/282 
oxidation prevents the re-association of the inhibitory regula-
tory domain with the catalytic domain of CaMKII (Fig. 1) (42). 
Angiotensin II and aldosterone are shown to mediate their 
activation effects on CaMKII via oxidation (43), as cardio-
myocytes expressing oxidation-resistant mutant CaMKII 
were protected from angiotensin II-induced apoptosis (41). 
Also, diabetic mice expressing an oxidation-resistant CaMKII 
mutant (MM281/282VV) were found to be protected from 
MI (44). In fact, it has been noted that increased oxidation 
status of CaMKII seen after MI in diabetic patients appears 
to be associated with higher mortality, than in non-diabetic 
individuals, which again emphasizes the detrimental effects 
of CaMKII activation, particularly when the heart is stressed.

Of note, CaMKII oxidation and activity is found to be 
much less following MI in mice with deletion of the MyD88 
gene, an important mediator of inflammatory signaling. These 
MyD88-knockout mice also show lower post MI inflam-
matory cell infiltration, cardiomyocyte death and fibrosis. 
Oxidized CaMKII can in turn enhance the transcription of 
proinflammatory genes by enhancing NF‑κB activity (45). 
Other post‑translational modifications of CaMKII that cause 
its activation and are involved in the pathology of HF include 
nitrosylation and O-GlcNAcylation, which are important 
under hyperglycemic conditions seen in diabetes (46).

4. Therapeutic measures against CaMKII

Inasmuch as the activation of CaMKII is involved with heart 
disease, several studies have focused on developing CaMKII 
inhibitors that have the potential to have therapeutic effects 
in HF and heart diseases. Most of the currently available 
inhibitors are for research purposes and lack specificity and/or 
potency. For example, KN-93, which is a commonly used 
CaMKII inhibitor, also directly affects many other ion channel 
including LTCC (47). Administration of KN-93 to mice with 
structural heart disease, for 3 weeks led to chronic inhibition 
of CaMKIIδ and resulted in a dose-dependent improvement 
in left ventricular function (48). Similarly, peptide molecules 
(AIP and AC3-I) that mimic the autoinhibitory-regulating 
domain of CaMKII, also have several limitations regarding 
their specificity and delivery. Among the several inhibitors 
tested, the most promising is the endogenous inhibitor, known 
as CaMKIIN and its derivatives, which bind to the active 
kinase at the B/C sites, which also prevent protein-protein 
interactions of CaMKII with other targeting proteins (47). 
It has been recently shown that targeting CaMKII/ ERK 
interaction in heart muscle using selective CaMKII peptide 
inhibitor AntCaNtide was able to prevent hypertrophy in 
spontaneously hypertensive rats (49). The first generation 
CaMKII inhibitors based on targeting the ATP binding to 

catalytic site and the recent availability of crystal structures 
of CaMKII holoenzyme both in its autoinhibited as well as 
active states may be useful in the development of more specific 
and potent inhibitors for this enzyme. Furthermore, blockade 
of activating pathways such as O‑GlcNAc modification were 
also found to be effective in preventing arrhythmogenesis in 
diabetic animals by inhibiting the hexosamine biosynthetic 
pathway using the inhibitor DON (50). Thus, there are 
formidable difficulties in achieving the required specificity 
for developing CaMKII inhibitors that can be developed for 
therapeutic applications (47).

In addition to pharmacological inhibitors, exercise, which 
has proven beneficial cardiovascular effects, seems to have 
the ability to antagonize the negative effects of CaMKIIδ in 
failing heart. Thus, aerobic training caused a reduction in 
CaMKIIδ activity and improved heart function in diabetic 
mice compared to non-exercising diabetic mice (51). Notably, 
it has been demonstrated that swimming exercise may oblit-
erate the O-GlcNAcylation-mediated activation of CaMKII in 
type I diabetic mice with the resultant improvement in heart 
condition (52). Thus, of note is along with pharmacological 
approaches, lifestyle changes can be beneficial in protecting 
from the CaMKII-mediated aggravation of injured or stressed 
heart. As such, the development of specific drugs that target 
heart isoforms of CaMKII seems a far-reaching goal and 
further work is needed in understanding structure-activity 
relationships of these isoenzymes to accomplish this task.

5. Conclusions

HF involves altered gene expression, disturbed signaling 
pathways and altered Ca2+ homeostasis. Chronic activation 
of CaMKII isoforms in heart further aggravates the injury 
to myocardium and the expression and activity of CaMKII is 
elevated in myocardium in different heart diseases and stress 
conditions. CaMKII regulates many cellular pathways such 
as E-C coupling and relaxation events in heart, cardiomyo-
cyte apoptosis, transcriptional activation of genes related to 
cardiac hypertrophy, inflammation, and arrhythmias. CaMKII 
and reactive oxygen species, which mutually activate each 
other, increase CICR from SR, which leads to cardiomyo-
cyte membrane depolarization and arrhythmias. All these 
CaMKII-mediated changes in heart ultimately culminate in 
dysfunctional myocardium and HF. Despite significant leaps 
in understanding the structural details of CaMKII, which 
is a very complicated and multimeric modular protein, and 
genetic studies implicating CaMKII in the pathogenesis of 
HF, currently there is no specific and potent inhibitor of this 
enzyme, that can be developed for therapeutic purposes and 
further study is needed in this direction.
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