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Abstract. In the present study, the complex anti‑climacterium 
potential of standardized pomegranate concentrated solution 
(PCS) was investigated using bilateral ovariectomy (OVX) 
female ddY mice. Changes in body weight and gain during 
experimental periods, food consumption, serum estradiol 
levels, total body and abdominal fat densities, abdominal fat 
pads, and uterus weights were observed, along with the histo-
pathology of abdominal fat pads and uterus for anti‑obesity 
and estrogenic effects. In addition, liver weights, serum aspar-
tate aminotransferase (AST), alanine aminotransferase (ALT) 
levels, and histopathological inspections were performed to 
explore the hepato‑protective effects. Serum total cholesterol 
(TC), low density lipoprotein (LDL), high density lipoprotein, 
and triglyceride (TG) levels were monitored for hypolipidemic 
effects with total body and femur mean bone mineral density 
(BMD), right femur wet, dry and ash weights, strength, serum 
osteocalcin, bone‑specific alkaline phosphatase (bALP) 
contents, and histological and histomorphometrical analyses 
for anti‑osteoporosis activity. As a result of OVX, notable 
increases in body weight and gains, food consumption, 
abdominal fat mass densities, weights of abdominal fat pads 

deposited in the abdominal cavity, and serum AST, ALT, TC, 
LDL, TG, and osteocalcin levels were observed, along with 
decreases in the uterus, liver, and femur weights, mean total 
body and femur BMD, femur strength, serum bALP, and estra-
diol levels. In addition, marked hypertrophic alterations in 
adipocytes located in the deposited abdominal fat pads, liver 
steatosis, uterine disused atrophic changes, and decreases in 
bone mass and structures of the femur were also observed in 
OVX control mice with significant increases in bone resorption 
markers based on histopathological and histomorphometrical 
analysis. However, these estrogen‑deficient climacterium 
symptoms were significantly (P<0.05 or P<0.01) inhibited 
after 84 days of continuous treatment with estradiol and PCS  
(1, 2 and 4 ml/kg), respectively. The present results suggested 
that PCS was able to effectively inhibit or refine the climac-
terium symptoms, including obesity, hyperlipidemia, hepatic 
steatosis, and osteoporosis, induced by OVX in ddY mice.

Introduction

Hormone levels may cause changes in sexual function in 
women as a result of aging and during the climacteric period; as 
such, women aged 40‑65 years experience changes in hormone 
levels and gradually lose their reproductive capacity (1). This 
period is associated with the loss of activity of the ovarian 
follicles, with consequent estrogen deficiency (2).

Approximately 70% of women experience symptoms 
during the climacteric period. In general, these symptoms 
are responsible for estrogen deprivation. The most common 
symptoms are vasomotor symptoms, night sweats, cogni-
tive impairment, insomnia, depression, irritability, fatigue, 
psychological symptoms, and increased risk for osteopo-
rosis and cardiovascular disease (1,3). In addition, vaginal 
dryness, dyspareunia, and urinary urgency, which are related 
to urogenital atrophy, may negatively affect the sex life and 
quality of life of postmenopausal women  (2,4). Previous 
studies have suggested that the potential risk of metabolic 
diseases, including obesity, heart disease, diabetes and 
hypertension, are increased in the postmenopausal state (5,6). 
These metabolic diseases are attributed to estrogen defi-
ciency. Obesity has secondary effects due to the orexigenic 

Anti-climacterium effects of pomegranate concentrated 
solutions in ovariectomized ddY mice

SU JIN KANG1,2*,  BEOM RAK CHOI3*,  SEUNG HEE KIM3,  HAE YEON YI3,  HYE RIM PARK3,  
CHANG HYUN SONG1,4,  SAE KWANG KU1,4  and  YOUNG JOON LEE1,2

1The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University; 2Department of Preventive 
Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk‑Do 38610; 3Research Institute, 

Health‑Love Co., Ltd., Anyang, Kyunggi‑Do 13946; 4Department of Histology and Anatomy, College of Korean Medicine, 
Daegu Haany University, Gyeongsan, Gyeongsangbuk‑Do 38610, Republic of Korea

Received October 11, 2015;  Accepted October 5, 2016

DOI: 10.3892/etm.2017.4109

Correspondence to: Professor Sae Kwang Ku, Department of 
Histology and Anatomy, College of Korean Medicine, Daegu Haany 
University, 1  Haanydae‑ro, Gyeongsan, Gyeongbuk‑Do  38610, 
Republic of Korea
E‑mail: gucci200@hanmail.net

Professor Young Joon Lee, Department of Preventive Medicine, 
College of Korean Medicine, Daegu Haany University, 
1  Haanydae‑ro, Gyeongsan, Gyeongbuk‑Do 38610, Republic of 
Korea
E‑mail: gksxntk@dhu.ac.kr

*Contributed equally

Key words: pomegranate concentrated solution, anti‑climacterium, 
ovariectomy, ddY mice



KANG et al:  ANTI-CLIMACTERIUM EFFECTS OF POMEGARANATE CONCENTRATED SOLUTION1250

actions of estrogen deficiency (7,8). The association between 
menopause and cardiovascular disease has been demonstrated 
in a previous epidemiological study (9,10). Estrogen deficiency 
is associated with an atherogenic lipid profile characterized 
by high‑density lipoprotein (HDL) cholesterol, low‑density 
lipoprotein (LDL) cholesterol, triglyceride levels (11), central 
adiposity (12), increased diastolic pressure (13) and increased 
insulin resistance (14).

Hormone therapy can be used to reduce the risk of ovarian 
failure and improve women's health; however, this treatment 
may cause serious problems over extended periods of time. 
Long‑term treatment results in an increase in cardiovascular 
events and breast cancer (15‑17); thus, alternative therapies, 
such as the use of phytoestrogens (PEs) to relieve menopausal 
symptoms, have gained attention (1,18,19).

Purified phytohormones, such as genistein which is abun-
dant in soybean, exhibit improved activity in the body and 
enhanced bioavailability (18). PEs is able to bind to estrogen 
receptors, due to the presence of a phenolic ring, and function 
like estrogens (18‑20). Coumestrol and the isoflavonoids genis-
tein, daidzein, and their plant precursors, are predominantly 
found in soybeans and clover (21). Isoflavones, particularly 
those derived from plants, have various biological activities, 
are able to improve the metabolic symptoms (22) and exhibit 
bone‑protective effects  (23) during menopause. To date, 
pomegranate extract has been shown to be a selective estrogen 
receptor modulator (24).

Pomegranate (Punica granatum L.) is consumed as a fresh 
fruit, beverage, dietary supplement, and is a herbal medicine 
ingredients (25). Pomegranate juice and pomegranate poly-
phenol extracts have been demonstrated to prevent various 
types of cancer, cardiovascular disease, diabetes, Alzheimer's, 
arthritis, colitis, and several other diseases (26‑28). Polyphe-
nols, which is one of the active substances of pomegranate, are 
present in numerous parts of pomegranate fruits (29). It has 
been shown that pomegranate contains species of flavonoids 
and anthocyanidins in their seed oil and juice (30,31).

The anti‑climacterium effective optimal dosages of stan-
dardized pomegranate concentrated solution (PCS) remain 
unclear. Therefore, the complex anti‑climacterium potential 
of PCS was examined with optimal dose ranges using 
female ddY mice subjected to bilateral ovariectomy (OVX). 
Estrogen‑deficient animals induced by OVX were used as a 
climacterium model as several climacterium symptoms are 
clearly induced by OVX within 4 to 6 weeks after the surgery. 
OVX‑treated ddY mice have also been used to investigate the 
mechanisms underlying menopause‑related complications in 
humans as these complications share various similarities with 
postmenopausal climacterium symptoms (32‑34). This rodent 
model exhibits symptoms that resemble those of women 
with postmenopausal climacterium symptoms, including 
cardiovascular diseases, obesity, hyperlipidemia, osteoporosis, 
organ steatosis and mental disorders (35‑38). In the present 
study, anti‑climacteric effects were evaluated and separated 
into five categories: i) estrogenic effects; ii) anti‑obese effects; 
iii) hypolipidemic effects; iv) hepatoprotective effects against 
liver steatosis; and v) anti‑osteoporotic effects. The results 
suggest that PCS treatment suppressed OVX‑induced obesity, 
hyperlipidemia, hepatic steatosis and osteoporosis in ddY 
mice.

Materials and methods

Animals and husbandry. A total of 48 virgin female specific 
pathogen‑free outbred‑mice (Kwl:ddY; age, 6 weeks; weight, 
24-26 g; Kiwa Laboratory Animal, Wakayama, Japan), were 
used for the present study following acclimatization for 
16 days. Animals were allocated four per polycarbonate cage 
in a temperature (20‑25˚C) and humidity (45‑55%) controlled 
room with a 12‑h light/dark cycle. Feed (Samyang, Seoul, 
Korea) and water were supplied free to access. A total of 
28 days after OVX surgery, eight mice per group were selected 
based on body weight. All laboratory animals were treated 
according to the national regulations on the usage and welfare 
of animals and approved by the Institutional Animal Care 
and Use Committee of Daegu Haany University (Gyeongsan, 
Korea) prior to the experiments (approval no. DHU2014‑0210). 
Experiments on osteoporosis were conducted in accordance 
with the US Food and Drug Administration ‘Guidelines for 
Preclinical Evaluation of Agents Used in The Prevention or 
Treatment Postmenopausal Osteoporosis’ (39).

Preparation and administration of test substances. Compound 
(17β)‑estra‑1,3,5(10)‑triene‑3,17‑diol (17β‑estradiol) was 
purchased from Sigma‑Aldrich (Merck Millipore, Darm-
stadt, Germany). Standardized PCS were supplied by Health 
Love Ltd. (Anyang, Korea) as deep reddish viscous solu-
tions. The energy of PCS was 244.69 Kcal/100 g, and PCS 
contained 2.31  mg/g ellagic acid, 58.86% carbohydrate, 
1.21% total protein, 0.49% fat, 27.97% water, 1.47% ash, and 
28.03 mg/100 g sodium. PCS (0.67 ml) was diluted as clear 
reddish solutions in 1 ml distilled water. Subsequently, 1, 2 
and 4 ml/kg (according to body weights) of PCS were orally 
administered once a day for 84 days from 28 days after OVX 
in a volume of 10 ml/kg (v/v), diluted with distilled water, 
using a gastric gavage attached to a 1 ml syringe. In OVX 
and sham control mice, distilled water was used as a vehicle. 
In addition, 17β‑estradiol (Sigma‑Aldrich; Merck Millipore) 
was subcutaneously administered into the dorsal back skins 
at a volume of 0.2 ml/mouse (0.03 µg/head/day), according to 
previously established methods (40‑42).

Menopause induction via bilateral OVX. Mice were 
anesthetized with a 25 mg/kg intraperitoneal injection of 
Zoletile mixture (Zoletile 50TM; Virbac Lab., Carros Cedex, 
France) and maintained with 1‑1.5% isoflurane (Hana Pharm. 
Co., Hwasung, Korea) in a mixture of 70% N2O and 28.5% 
O2. The surgical protocol was performed according to estab-
lished methods (35,37,38). The OVX treatment group (n=8) 
underwent open surgery involving bilateral OVX via a midline 
incision of linea alba. Following surgery, the incision was 
closed in two layers. Muscular layers were sutured indepen-
dently from the peripheral tissues using dissolvable 3‑0 vicryl 
sutures and the skin was closed by continuous sutures using 
silk (3‑0). The second group of mice (n=8) underwent sham 
surgery, in which a similar incision in the linea alba was made 
but bilateral OVX was not performed.

Body weight measurements. Alterations in body weight were 
measured once a week from OVX, one day before administra-
tion, and at sacrifice (at 84 days after the first administration, the 
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mice were anesthetized with 50 mg/kg tiletamine/zolazepam 
and dissected) using an automatic electronic balance (Precisa 
Gravimetrics, Inc., Dietikon, Switzerland). At OVX, initiation 
of administration, and at termination, all experimental 
animals were fasted overnight for 18 h (water was provided) to 
reduce the differences from feeding. In addition, body weight 
gains were calculated as follows: OVX recovery/induced 
periods (28 days) = [body weight at initial test substance treat-
ment ‑ body weight on the day of OVX surgery]; and after 
administration (84 days) = [body weight at sacrifice ‑ body 
weight at initial test substance treatment].

Food consumption measurements. All mice were allocated 
into individual cages and received 150 g diets. The quantity of 
diets supplied were measured at 24 h after feed supply using 
an automatic electronic balance (Precisa Gravimetrics, Inc) 
and were considered to indicate the daily food consumption 
of individual mice (g/24 h/mouse). These measurements were 
conducted six times: 1, 3, 7, 28, 56 and 83 days after the first 
administration.

Measurement of bone mineral density (BMD) and body fat 
density. The mean BMD of the total body and right femur 
were detected once using live dual‑energy X‑ray absorption-
metry (InAlyzer; Medikors, Seungnam, Korea) at the end of 
84 days of continuous treatment with the test substances. The 
mean fat densities of the body and abdominal cavity of each 
mouse were recorded.

Organ weight measurements. Following sacrifice, the abdom-
inal fat pads deposited in the abdominal cavity, total liver, and 
uterus (including vagina) were collected after removing the 
surrounding connective tissues, muscles, and any debris. The 
weights of organs were measured in grams to determine the 
absolute wet‑weights. To reduce individual body weight differ-
ences, the relative weights (% of body weight) were calculated 
using body weight at sacrifice and absolute wet‑weight, as 
follows: Relative organ weights (% of body weight) = [(abso-
lute abdominal fat pad, uterus or liver weights/body weight at 
sacrifice) x 100].

Bone weight measurements. Following 84 days of continuous 
treatment from 28  days after bilateral OVX surgery, the 
right sides of the femurs were harvested after removing the 
surrounding connective tissues, muscles, and any debris. Bone 
weight was measured in grams to determine the absolute 
wet‑weights, and they were dried at 120˚C for 8 h in a high 
temperature dry oven (LDO‑080N; Daihan Labtech Co., 
Seoul, Korea) for measurements of dry bone weights. Subse-
quently, dried bones were carbonized at 800˚C for 6 h in a 
furnace (LEF‑1055‑1; Daihan Labtech Co.) to measure ash 
absolute weights. To reduce the individual body weight differ-
ences, the relative weight (%) was calculated based on the body 
weight at sacrifice and absolute wet/dry/ash weight, as follows: 
Relative bone weights (% of body weight) = [(absolute bone 
weight/body weight at sacrifice) x 100].

Measurement of bone strengths. Bone strength was detected 
as the failure load (FL). We used FL calculated using a test 
machine (SV-H1000; Japan Instrumentation System, Co., Nara, 

Japan). The FL of the mid‑shaft regions of the right femurs 
was detected using a three‑point bending test to failure using a 
computerized testing machine (SV‑H1000; Japan Instrumenta-
tion System Co., Yokohama, Japan) as N (Newton), according 
to the manufacturer's instructions.

Blood collection. For serum biochemical analysis, ~1  ml 
whole blood was collected from the vena cava at sacrifice and 
was separated from the serum by centrifugation at 21,000 x g 
for 10 min at 4˚C using a clotting activated serum tube. All 
serum samples were frozen at ‑150˚C until they were assayed.

Serum biochemistry. Serum aminotransferase (AST), alanine 
aminotransferase (ALT), total cholesterol (TC), LDL, and 
triglyceride (TG) levels were detected using an automated 
blood analyzer (Hemagen Analyst; Hemagen Diagnostics, 
Columbia, MD, USA), and HDL levels were measured using 
another automated blood analyzer (AU400; Olympus Corp., 
Tokyo, Japan). In addition, serum osteocalcin levels (ng/ml) 
were detected using a Mouse Osteocalcin ELISA kit (Immu-
topics, San Clemente, CA, USA), and serum bALP levels (U/l) 
were detected using a Mouse bALP ELISA kit (Quidel Corp., 
San Diego, CA, USA), with an ELISA Reader (Tecan Group, 
Ltd., Männedorf, Switzerland). In addition, serum estradiol 
contents were measured using the chemiluminescent immu-
noassay technique with an ECLIA Roche e411 immunoassay 
analyzer (Roche Diagnostics GmbH, Mannheim, Germany) 
using the separated serum harvested after the sacrifice of all 
mice.

Abdominal fat pads, uterus, and liver histological procedures. 
Sampled tissues were fixed in 10% neutral buffered formalin 
(NBF). Following paraffin embedding, 3‑4 µm serial sections 
were prepared. Representative sections were stained with 
hematoxylin and eosin (H&E) for light microscopic examina-
tion. Furthermore, sections of liver that had been dehydrated 
in 30% sucrose solutions were sectioned using a cryostat to 
stain the lipids with Oil Red O (43). The total thicknesses 
of abdominal fat pads were measured using an automated 
image analysis processor (iSolution FL 9.1; IMT i‑solution 
Inc., Quebec, Canada) as mm/mouse. Mean diameters (µm) 
of dorsal abdominal white adipocytes were calculated in 
restricted view fields on a computer monitor, using an auto-
mated image analysis processor. At least 10 white adipocytes 
per fat pad were used for histomorphometrical analysis 
according to our previously established methods (43‑45). In 
addition, total full, mucosa, and epithelial thicknesses of the 
uterus (µm/uterus) were detected as percentages of uterine 
glands located in the mucosa (%/mucosa of uterus) using an 
automated image analyzer. To observe steatosis in the liver, the 
percentage of fatty change regions in the hepatic parenchyma 
was calculated as percentages between one field of the liver 
(%/mm2 of hepatic parenchyma) under Oil Red O staining. 
Mean diameters of hepatocytes were calculated in restricted 
view fields on a computer monitor under H&E staining 
using an automated image analysis processor, as µm; at least 
10 hepatocytes per liver were used.

Bone histological procedures. The left sides of each mouse 
femur were separated and fixed in 10% NBF, after which they 
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were decalcified in decalcifying solution (24.4% formic acid 
and 0.5 N sodium hydroxide) for three days (mixed decal-
cifying solution was exchanged once a day for three days). 
Samples were subsequently embedded in paraffin, sectioned 
(3‑4 µm), and stained with Safranin‑O. In addition, bone 
histomorphometry was conducted using an automated image 
analyzer under microscopy (Nikon Corp., Tokyo, Japan) to 
examine the bone mass and structure with bone resorption 
in a uniform area of epiphyseal or cortical bone regions of 
the femur (growth plate regions were excluded). Cortical bone 
thickness was also measured in the mid‑shaft regions of the 
femur. Trabecular bone volume (TV/BV, TBV; %), thickness 
of trabecular bone (Tbt; µm/trabecular bone), number (Tbn; 
mean numbers of trabecular bone/epiphyseal regions), length 
(Tbl; mm/trabecular bone), and cortical bone thickness (Cbt; 
µm/mid‑shaft cortical bone) were measured for bone mass 
and structure, and osteoclast cell number (Ocn; mean osteo-
clast cell numbers/ epiphyseal regions) and ratio (OS/BS; 
%) were measured for bone resorption, as described previ-
ously (37,38,46).

Statistical analyses. All values for the eight mice in this 
experiment were expressed as means ± standard deviation. 
Multiple comparison tests for the different dose groups 
were conducted. Variance homogeneity was examined using 
the Levene test. If the Levene test indicated no significant 
deviations from variance homogeneity, the data were analyzed 
using the one‑way analysis of variance test followed by the 
least‑significant differences test to determine which group 
comparisons were significantly different. When significant 
deviations from variance homogeneity were observed on 
the Levene test, the non‑parametric Kruskal‑Wallis test was 
conducted. When a significant difference was observed on the 
Kruskal‑Wallis test, the Mann‑Whitney U test was conducted 
to determine the specific pairs of groups that were significantly 

different. Statistical analyses were conducted using the SPSS 
for Windows software package (ver. 14.0; SPSS Inc., Chicago, 
IL, USA).

Results

Significant decreases in body weight were recorded in 
PCS-treated mice. Significant increases (P<0.05 or P<0.01) 
in body weight were detected in all OVX mice compared 
with control mice (red arrow), with significant (P<0.01) 
increases in body weight gains during the 4‑week OVX 
recovery/induction periods. However, significant decreases 
in body weights were observed in the estradiol group from 
14 days after initial treatment, and from 35 days after initial 
treatment, for all three PCS dosages, compared with OVX 
control mice (arrows; P<0.05 or P<0.01). In addition, all 
test substance‑treated mice exhibited significant decreases 
in body weight gains during 84 days of treatment compared 
with OVX controls (Fig. 1).

PCS induced significant decreases in food consumption. OVX 
mice exhibited significant increases (P<0.01) in food consump-
tion compared with control mice at all six measurement times 
(1, 3, 7, 28, 56 and 83 days after initial administration). However, 
estradiol subcutaneously‑treated mice showed significant 
decreases (P<0.01) in food consumption from 7 days after 
initial treatment, from 28 days after initial administration of 2 
and 4 ml/kg PCS, and from 56 days after initial administration 
of 1 ml/kg PCS compared with OVX mice until 83 days after 
initial administration (Table I).

Significant decreases of abdominal fat pad weight was observed 
in PCS-treated mice. Significant increases in abdominal fat 
pad weights deposited in the abdominal cavity, as well as in 
absolute and relative weights, were observed in OVX mice 
compared with sham control mice (P<0.01). However, signifi-
cant decreases in abdominal fat pad weights were observed 
in all test substance‑treated mice, including estradiol‑treated 
OVX mice, compared with OVX mice (P<0.01) (Table II). 
The absolute weights of abdominal fat pads deposited into the 
abdominal cavity in OVX controls were altered by 2,339.34% 
compared with the sham control, and by ‑79.29, ‑42.14, ‑64.20 
and ‑66.65% in estradiol‑ and 1‑, 2‑ and 4‑ml/kg PCS‑treated 
mice compared with OVX controls, respectively.

Effects on uterus weights. Significant decreases in the uterus 
absolute and relative wet‑weights were observed in OVX 
mice compared with sham control mice (P<0.01). However, 
significant increases in the uterus weights were observed in all 
test substance‑treated mice, including 1 ml/kg PCS, compared 
with OVX control mice (P<0.01) (Table II). Absolute uterine 
weights of OVX controls were altered by ‑88.45% compared 
with the sham controls, and by 272.34, 39.57, 52.77 and 
51.06% in estradiol and 1‑, 2‑ and 4‑ml/kg PCS treated mice, 
respectively, as compared with OVX controls. Relative uterine 
weights of OVX were altered by ‑92.33% compared with the 
sham controls, and by 364.57, 61.15, 82.57 and 83.77% in estra-
diol‑ and 1‑, 2‑ and 4‑ml/kg PCS treated mice, respectively, as 
compared with OVX controls. Our results indicated that PCS 
causes estrogenic activities.

Figure 1. Body weight changes in sham‑operated or OVX ddY mice. Values 
are expressed mean ± standard deviation (n=8). ‑1 indicates 1 day before 
administration was initiated at 27 days after OVX surgery; 0 indicates at the 
initiated of administration, at 28 days after OVX, 84 indicates 84 days after 
administration was initiated, at sacrifice. All animals were overnight fasted 
before OVX, first administration and sacrifice, respectively. OVX, bilateral 
ovariectomy, PCS, pomegranate concentrated solution.
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Significant increases in liver weight were observed in 
PCS-treated mice. Significant decreases in the liver relative 
wet‑weights were detected in OVX mice compared with sham 
control mice (P<0.01); however, significant increases in the 
liver relative weights were observed in all test substance‑treated 
mice, including all three different dosages of PCS, compared 
with OVX mice (P<0.05 or P<0.01). Estradiol‑ and 1‑, 2‑ and 
4‑ml/kg PCS‑treated mice did not exhibit any significant 
changes in absolute liver weights compared with OVX control 
mice, or in OVX mice compared with sham control mice 
(Table II). These data suggested that PCS exerts hepatoprotec-
tive effects.

Significant increases in femur weight were detected in PCS-
treated mice. Significant decreases in the femur relative 
wet‑weights and absolute and relative dry and ash weights 

were observed in OVX mice compared with sham control 
mice (P<0.01). However, significant increases in the femur wet 
relative weights and dry and ash absolute and relative weights 
were observed in all test substance‑treated mice, including 
estradiol treated mice, compared with OVX mice (P<0.05 and 
P<0.01) (Table III). Our observations indicated that PCS has 
anti-osteoporosis activities.

Changes of serum biochemistry indices were induced by 
PCS-treatment. Significant increases in serum AST, ALT, TC, 
LDL and TG levels and significant decreases in serum HDL 
levels were observed in OVX control mice compared with 
sham control mice. However, significant decreases in serum 
AST, ALT, TC, LDL and TG levels and significant increases 
in serum HDL levels were observed in all test material‑treated 
mice, including 1 ml/kg PCS‑treated mice, compared with 

Table II. Abdominal fat pad, uerus and liver weights in sham‑operated or OVX ddY mice.

	 Absolute wet‑weight of organ (g)	 Relative wet‑weight of organ (% of body weight)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Groups	 Abdominal fat pad	 Uterus	 Liver	 Abdominal fat pad	 Uterus	 Liver

Controls
  Sham	 0.140±0.103	 0.254±0.079	 1.240±0.259	 0.499±0.384	 0.885±0.277	 4.316±0.799
  OVX	 3.403±0.486c	 0.029±0.008c	 1.232±0.193	 7.821±0.802a	 0.068±0.018c	 2.842±0.434a

  Estradiol	 0.705±0.572d,g	 0.109±0.039c,g	 1.337±0.084	 2.052±1.706b,e	 0.315±0.119c,g	 3.845±0.341e

PCS
  1 ml/kg	 1.969±0.754c,g	 0.041±0.008c,h	 1.302±0.076	 5.207±1.873a,e	 0.109±0.023c,g	 3.461±0.261a,f

  2 ml/kg	 1.218±0.480c,g	 0.045±0.009c,g	 1.319±0.071	 3.319±1.169a,e	 0.124±0.024c,g	 3.659±0.445b,e

  4 ml/kg	 1.135±0.198c,g	 0.044±0.011c,g	 1.312±0.057	 3.249±0.894a,e	 0.125±0.033c,g	 3.719±0.517b,e

Values are expressed mean  ±  standard deviation (n=8). Three different dosages of PCS were orally administered, and 17β‑estradiol was 
subcutaneously injected at a dose of 0.03 µg/head on the dorsal back skins, once a day for 84 days from 28 days after OVX surgery. aP<0.01 
and bP<0.05 vs. sham control, determined by LSD test; cP<0.01 and dP<0.05 vs. sham control, determined by MW test; eP<0.01 and fP<0.05 vs. 
OVX control by LSD test; gP<0.01 and hP<0.05 vs. OVX control by MW test. OVX, bilateral ovariectomy, PCS, pomegranate concentrated 
solution; LSD, least significant difference; MW, Mann‑Whitney U.
 

Table I. Food consumptions in sham‑operated or OVX ddY mice.

	 Food consumption (g/24 h/mouse) on the indicated days after initial treatment
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Groups	 1	 3	 7	 28	 56	 83

Controls
  Sham	 7.36±0.63	 6.39±0.65	 6.46±0.91	 6.66±0.85	 7.41±0.97	 7.63±0.83
  OVX	 11.55±1.33a	 11.20±0.93a	 11.43±1.05a	 11.63±1.04a	 12.92±1.45a	 14.94±1.46a

  Estradiol	 11.66±1.29a	 10.64±1.03a	 9.74±0.99a,b	 9.64±1.13a,b	 10.34±0.92a,b	 10.73±1.57a,b

PCS
  1 ml/kg	 11.73±0.97a	 10.87±0.78a	 10.69±0.92a	 10.82±0.77a	 11.06±0.87a,b	 12.50±0.79a,b

  2 ml/kg	 11.47±1.35a	 11.00±1.34a	 10.77±0.88a	 10.55±0.69a,c	 10.62±0.60a,b	 11.42±1.06a,b

  4 ml/kg	 11.66±1.53a	 11.18±1.18a	 10.85±0.90a	 10.36±0.73a,b	 10.47±0.88a,b	 11.31±1.65a,b

Values are expressed mean ± standard deviation (n=8). Three different dosages of PCS were orally administered, and 17β‑estradiol was subcu-
taneously injected at a dose of 0.03 µg/head on the dorsal back skins, once a day for 84 days from 28 days after OVX surgery. aP<0.01 vs. sham 
control; bP<0.01 and cP<0.05 vs. OVX control, determined by least significant difference test. OVX, bilateral ovariectomy; PCS, pomegranate 
concentrated solution.
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OVX mice (Table IV). These results demonstrated that PCS 
causes hepatoprotective and hypolipidemic effects.

Significant decreases in serum estradiol levels in OVX mice 
were observed compared with sham control mice (P<0.01). 
However, significant increases in serum estradiol levels 
were observed in all test substance‑treated mice, including 
4  ml/kg  PCS‑treated mice, as compared with OVX mice 
(P<0.01) (Fig. 2). Serum estradiol levels in OVX were altered 
by ‑74.27% compared with sham controls, and by 199.08, 
47.69, 94.64 and 95.19% in estradiol‑ and 1‑, 2‑ and 4‑ml/kg 
PCS‑treated mice, respectively, compared with OVX controls. 
Our results indicated that PCS causes estrogenic activities.

Significant increases in serum osteocalcin levels, and 
significant decreases in serum bALP levels, were detected 
in OVX mice compared with sham control mice (P<0.01). 

However, significant decreases in serum osteocalcin and 
increases in bALP levels were observed in all test mate-
rial‑treated mice, including estradiol‑treated mice, compared 
with OVX control mice (Figs. 3 and 4). Serum osteocalcin 
and bALP levels in OVX were altered by 82.59 and ‑45.63% 
compared with sham controls, and by ‑33.92, ‑21.60, ‑27.99 
and ‑28.20% (for serum osteocalcin levels) and 46.16, 25.32, 
39.04 and 40.14% (for serum bALP levels) in estradiol‑ and 1‑, 
2‑ and 4‑ml/kg PCS‑treated mice, respectively, as compared 
with OVX controls. Our observations indicated that PCS has 
anti-osteoporosis activities.

Significant increases of BMD were recorded in PCS-treated 
mice. The total body and femur mean BMD of OVX mice 
were significantly decreased compared with sham control 

Table III. Right femur weights in sham‑operated or OVX ddY mice.

	 Absolute weight (g)	 Relative weight (% of body weight)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Groups	 Wet	 Dry	 Ash	 Wet	 Dry	 Ash

Controls
  Sham	 0.094±0.006	 0.065±0.004	 0.039±0.003	 0.327±0.025	 0.229±0.024	 0.137±0.019
  OVX	 0.089±0.007	 0.051±0.003a	 0.026±0.003a	 0.205±0.010b	 0.118±0.010a	 0.059±0.007a

  Estradiol	 0.095±0.010	 0.059±0.003a,c	 0.034±0.004a,c	 0.273±0.038b,e	 0.170±0.012a,c	 0.098±0.013a,c

PCS
  1 ml/kg	 0.091±0.005	 0.054±0.003a,d	 0.032±0.004a,c	 0.240±0.010b,e	 0.145±0.012a,c	 0.086±0.011a,c

  2 ml/kg	 0.095±0.008	 0.056±0.003a,c	 0.033±0.004a,c	 0.263±0.024b,e	 0.156±0.017a,c	 0.091±0.009a,c

  4 ml/kg	 0.092±0.007	 0.056±0.004a,c	 0.033±0.003a,c	 0.261±0.043b,e	 0.158±0.020a,c	 0.093±0.013a,c 

Values are expressed mean ± standard deviation (n=8). aP<0.01 vs. sham control by LSD test. bP<0.01 vs. sham control by MW test. cP<0.01 and 
dP<0.05 vs. OVX control by least significant difference test. eP<0.01 vs. OVX control by MW test. Three different dosages of PCS were orally 
administered, and 17β‑estradiol was subcutaneously injected at a dose of 0.03 µg/head on the dorsal back skins, once a day for 84 days from 
28 days after OVX surgery. OVX, bilateral ovariectomy; PCS, pomegranate concentrated solution; MW, Mann‑Whitney U.
 

Table IV. Serum biochemistry: AST, ALT, TC, LDL, HDL and TG Levels in sham‑operated or OVX ddY mice.

	 Serum biochemical values
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Groups	 AST (U/l)	 ALT (U/l)	 TC (mg/dl)	 LDL (mg/dl)	 HDL (mg/dl)	 TG (mg/dl)

Controls
  Sham	 84.88±14.56	 38.25±12.07	 92.25±18.81	 64.00±10.61	 94.88±12.84	 37.88±11.67
  OVX	 162.75±15.78a	 77.38±9.07a	 181.63±19.00a	 182.50±18.62a	 46.25±11.94a	 154.00±24.68b

  Estradiol	 108.00±13.65a,c	 53.13±9.22a,c	 134.75±21.73a,c	 134.75±11.47a,c	 70.50±12.69a,c	 101.00±19.13b,e

PCS
  1 ml/kg	 141.38±8.93a,c	 62.38±10.03a,c	 152.50±15.74a,c	 156.00±6.32a,c	 61.88±8.17a,d	 123.50±11.34b,f

  2 ml/kg	 126.25±8.86a,c	 58.38±7.89a,c	 143.38±11.56a,c	 144.75±14.59a,c	 67.75±12.09a,c	 109.88±16.50b,e

  4 ml/kg	 125.88±11.24a,c	 58.50±9.27a,c	 142.50±13.67a,c	 144.38±19.38a,c	 68.25±14.89a,c	 109.00±25.48b,e

Values are expressed mean ± standard deviation (n=8). aP<0.01 vs. sham control, determined by LSD test; bP<0.01 vs. sham control, determined 
by MW test; cP<0.01 and dP<0.05 vs. OVX control, determined by LSD test; eP<0.01 and fP<0.05 vs. OVX control, determined by MW test. 
Three different dosages of PCS were orally administered, and 17β‑estradiol was subcutaneously injected at a dose of 0.03 µg/head on the dorsal 
back skins, once a day for 84 days from 28 days after OVX surgery. OVX, bilateral ovariectomy; PCS, pomegranate concentrated solution; 
ALT, alanine aminotransferase. AST, aspartate aminotransferase; LDL, low density lipoprotein; TC, total cholesterol; TG, triglyceride; HDL, 
high density lipoprotein; LSD, least significant difference; MW, Mann‑Whitney U.
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mice (P<0.01). However, significant increases in total body 
and femur mean BMD were detected in estradiol‑ and PCS 
(all three different dosages)‑treated mice compared with OVX 
mice (P<0.01) (Table V; Fig. 5). The total body mean BMD of 
OVX controls were altered by ‑14.80% compared with sham 
controls, and by 11.23, 5.26, 10.18 and 10.64% in estradiol‑ 
and 1‑, 2‑, and 4‑ml/kg PCS treated mice, respectively, as 
compared with OVX controls. The total femur mean BMD of 
OVX was changed by ‑13.73% compared with sham controls, 
and by 12.20, 3.51, 6.96 and 7.12% in estradiol‑ and 1‑, 2‑, 
and 4‑ml/kg PCS‑treated mice, respectively, as compared 
with OVX controls. Our results showed that PCS exerts 
anti-osteoporosis activities.

Significant decreases of body fat densities in PCS-treated 
mice. Total body and abdominal fat densities of OVX control 
mice were significantly increased, as compared with sham 

control mice (P<0.01). However, significant decreases in 
total body and abdominal fat densities were detected in all 
test substance‑administrated mice, including subcutaneous 
estradiol‑treated mice, as compared with OVX control mice 
(P<0.01) (Table V). The total mean body fat densities of OVX 
controls were altered by 211.77% compared with sham controls, 
and by ‑31.65, ‑17.33, ‑27.47 and ‑27.64% in estradiol‑ and 1‑, 
2‑ and 4‑ml/kg PCS‑treated mice, respectively, as compared 
with OVX controls. The mean abdominal fat densities of 
OVX controls were altered by 275.16% compared with sham 
controls, and by ‑35.88, ‑28.29, ‑35.68 and ‑35.73% in estra-
diol‑ and 1‑, 2‑ and 4‑ml/kg PCS‑treated mice, respectively, 
as compared with OVX controls. These results indicated that 
PCS exerts anti-obese actions.

Significant increases of bone strength in PCS-treated mice. 
The strengths of femur mid‑shaft regions in OVX control 
mice, determined as FL, were significantly decreased 
compared with sham control mice (P<0.01); however, signifi-
cant increases in FL on the femur were detected in all test 
substance‑administrated mice including 1 ml/kg PCS‑treated 
mice compared with OVX control mice (P<0.05 or P<0.01) 
(Fig.  6). The FL in the femur mid‑shaft regions of OVX 
control were altered by ‑53.05% compared with sham controls, 
and by 68.69, 33.74, 55.99, and 56.74% in estradiol‑ and 1‑, 
2‑ and 4‑ml/kg PCS‑treated mice, respectively, as compared 
with OVX controls. Our data indicated that PCS causes 
anti-osteoporosis activities.

Changes in abdominal fat pad, uterus, and liver histopa-
thology. Significant increases in the thickness of abdominal 
fat pads deposited into the abdominal cavity and the mean 
adipocyte diameters were observed in OVX mice due to the 
deposition in adipose tissues in the abdominal cavity and the 
hypertrophy of adipocytes, respectively (P<0.01). However, 
significant decreases in the thickness of abdominal fat pads 
and their mean diameters of adipocytes were detected in 
all test substance‑administrated mice, including estradiol 

Figure 4. Serum bALP Levels in Sham‑operated or OVX ddY Mice. Values 
are expressed mean ± standard deviation (n=8). aP<0.01 vs. sham control; 
bP<0.01 and cP<0.05 vs. OVX control, determined by least significant dif-
ference test. OVX, bilateral ovariectomy, PCS, pomegranate concentrated 
solution; bALP, bone specific alkaline phosphatase.

Figure 3. Serum osteocalcin levels in sham‑operated or OVX ddY mice. 
Values are expressed mean ± standard deviation (n=8). aP<0.01 vs. sham con-
trol; bP<0.01 vs. OVX control, determined by Mann‑Whitney U test. OVX, 
bilateral ovariectomy; PCS, pomegranate concentrated solution.

Figure 2. Serum estradiol levels in sham‑operated or OVX ddY mice. 
Values are expressed mean  ±  standard deviation (n=8). aP<0.01 and 
bP<0.05  vs. sham control; cP<0.01  vs.OVX control, determined by 
Mann‑Whitney U test. OVX, bilateral ovariectomy; PCS, pomegranate 
concentrated solution.
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treated mice, compared with OVX control mice (P<0.01) 
(Table VI; Fig. 7). Significant decreases in total, mucosa, 

and epithelial thicknesses of the uterus, and in the percent-
ages of uterine glands in the mucosa, were observed in OVX 
control mice due to estrogen depletion‑related atrophic 
changes. However, significant increases in total, mucosa, 
and epithelial thicknesses of the uterus, as well as in the 
percentages of uterine glands in the mucosa, were detected 
in estradiol‑ and 1‑, 2‑ and 4‑ml/kg PCS‑treated mice, 
respectively, as compared with OVX control mice (P<0.01) 
(Table VI; Fig. 8). Furthermore, significant increases in the 
percentage of fatty change regions and the mean diameters 
of hepatocytes were observed in OVX control mice (P<0.01). 
This was thought to be due to the deposition of lipids into 
hepatocytes and steatosis. However, significant decreases in 
the percentage of fatty change regions and mean diameters of 
hepatocytes were detected in all test substance‑administered 
mice in the present study, including estradiol‑treated mice, as 

Figure 6. Femur FL in sham‑operated or OVX ddY mice. Values are 
expressed mean ± standard deviation (n=8). aP<0.01 vs. sham control; bP<0.01 
and cP<0.05 vs. OVX control, determined by least significant difference test. 
OVX, bilateral ovariectomy; PCS, pomegranate concentrated solution, FL, 
failure load.

Figure 5. Representative whole body DEXA images captured from sham‑oper-
ated or OVX ddY mice. (A)  Sham‑operated and distilled water‑treated 
sham vehicle control mice; (B) distilled water‑treated OVX control mice; 
(C) 17β‑estradiol (0.03 µg/head)‑treated OVX mice; (D) 1 ml/kg PCS‑treated 
OVX mice; (E) 2 ml/kg PCS‑treated OVX mice; and (F) 4 ml/kg PCS‑treated 
OVX mice. OVX, bilateral ovariectomy, PCS, pomegranate concentrated solu-
tion; DEXA, dual‑energy x‑ray absorptionmetry.

Table V. Bone mineral density and body fat density in sham‑operated or OVX ddY mice.

       Variable	 Bone mineral density (g/cm2)	 Fat density (% of body mass)
           	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Groups	 Total body	 Right femur	 Total body	 Abdominal cavity

Controls
  Sham	 0.0251±0.0011	 0.0269±0.0007	 11.31±2.10	 11.17±1.65
  OVX	 0.0214±0.0006a	 0.0232±0.0005a	 35.27±3.47a	 41.91±4.40c

  Estradiol	 0.0238±0.0006a,b	 0.0260±0.0008b	 24.10±3.46a,b	 26.87±4.30c,d

PCS
  1 ml/kg	 0.0225±0.0004a,b	 0.0240±0.0004a	 29.16±2.89a,b	 30.05±7.21c,d

  2 ml/kg	 0.0236±0.0009a,b	 0.0248±0.0014a,b	 25.58±6.22a,b	 26.96±7.07c,d

  4 ml/kg	 0.0237±0.0009a,b	 0.0248±0.0013a,b	 25.52±5.90a,b	 26.94±9.07c,d

Values are expressed mean ± standard deviation (n=8). aP<0.01 vs. sham control by LSD test; bP<0.01 vs. OVX control by LSD test; cP<0.01 vs.
sham control by MW test; dP<0.01 vs. OVX control by MW test. Three different dosages of PCS were orally administered, and 17β‑estradiol 
was subcutaneously treated at a dose of 0.03 µg/head on the dorsal back skins, once a day for 84 days from 28 days after OVX surgery. OVX, 
bilateral ovariectomy; PCS, pomegranate concentrated solution; LSD, least significant difference; MW, Mann‑Whitney U.
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compared with OVX control mice (Table VI; Fig. 9). These 
results suggested that PCS exerts anti-obesity, estrogenic and 
hepatoprotective effects.

Effects on femur histopathology. Although relatively 
well‑developed trabecular and cortical bone were observed 
in the femur of sham control mice, classical osteoporotic 

Figure 7. Representative histological images of adipocytes, captured from sham‑operated or OVX ddY mice abdominal fat pads deposited in abdominal cavity 
after hemotoxylin and eosin staining. (A) Sham‑operated and distilled water‑treated sham vehicle control mice; (B) distilled water‑treated OVX control mice; 
(C) 17β‑estradiol (0.03 µg/head)‑treated OVX mice; (D) PCS (1 ml/kg)‑treated OVX mice; (E) PCS (2 ml/kg)‑treated OVX mice; (F) PCS (4 ml/kg)‑treated 
OVX mice. OVX, bilateral ovariectomy; PCS, pomegranate concentrated solution. Scale bar, 120 µm.
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histological profiles were observed in OVX control mice as 
significant decreases in trabecular and cortical bone masses 
and increases in connective tissues in periosteum of cortical 
bone resulting from resorption of osteoid tissues related to 

osteoclast activation (P<0.01). However, significant increases 
in bone mass and structures, of both trabecular and cortical 
bones, were detected in all test substance‑administered mice 
including 1 ml/kg (phencyclidine) PCS‑administered mice 

Figure 8. Representative histological images of the left uterus horn, captured from sham‑operated or OVX ddY mice after hemotoxylin and eosin staining. 
(A) Sham‑operated and distilled water‑treated sham vehicle control mice; (B) distilled water‑treated OVX control mice; (C) 17β‑estradiol (0.03 µg/head)‑treated 
OVX mice; (D) PCS (1 ml/kg)‑‑treated OVX mice; (E) PCS (2 ml/kg)‑‑treated OVX mice; (F) PCS (4 ml/kg)‑‑treated OVX mice. OVX, bilateral ovariectomy; 
PCS, pomegranate concentrated solution, L, lumen; MU, mucosa; ML, muscular layer; UG, uterine gland. Scale bar, 120 µm.
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compared with OVX control mice, which is related to their 
inhibitory activities on osteoclast cell activities (P<0.05 or 
P<0.01) (Table VII; Fig. 10).

Significant decreases in TV/BV, Tbn, Tbt, Tbl and Cbt were 
detected in OVX control mice compared with sham‑operated 
control mice in the femur (P<0.01). However, these decreases in 
bone mass and structures were significantly inhibited by treat-
ment with estradiol and 1, 2 and 4 ml/kg PCS, respectively, as 
compared with OVX control mice in the present study (P<0.05 
or P<0.01) (Table VII; Fig. 10). Significant increases in Ocn 
and OS/BS were detected in OVX control mice compared 

with sham control mice, in the femur (P<0.01). However, these 
activations and increases in osteoclast cells were significantly 
inhibited by treatment with all test substances, including estra-
diol, as compared with OVX control mice (P<0.05 or P<0.01) 
(Table VII; Fig. 10). These results indicated that PCS has anti-
osteoporosis activity.

Discussion

In the present study, PCS effectively inhibited or refined climac-
terium symptoms, including obesity, hyperlipidemia, hepatic 

Figure 9. Representative histological images of the left lateral lobes of liver, captured from sham‑operated or OVX ddY mice after hemotoxylin and eosin, 
and Oil Red O staining, respectively. (A) Sham‑operated and distilled water‑treated sham vehicle control mice; (B) distilled water‑treated OVX control mice; 
(C) 17β‑estradiol (0.03 µg/head)‑treated OVX mice; (D) PCS (1 ml/kg)‑treated OVX mice; (E) PCS (2 ml/kg)‑treated OVX mice; (F) PCS (4 ml/kg)‑treated 
OVX mice. OVX, bilateral ovariectomy; PCS, pomegranate concentrated solution, CV, central vein. Scale bar, 120 µm.
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steatosis, and osteoporosis, induced by OVX in ddY mice. The 
results of PCS use in the present study were consistent with the 
results of the use of ellagic acid and other organic materials 
including flavonoids and polyphenols (47-50). Previous studies 
have explored alternative therapies, such as the use of phytoes-
trogens, to relieve menopausal symptoms. Phytohormones can 
be extracted from plants and, when purified, exhibit enhanced 
activity in the body as well as improved bioavailability (18). 
Phytoestrogens are polyphenolic non‑steroid plant compounds 
with estrogenic‑like effects. Previous results have shown that 
pomegranate seed oil prevents bone loss in OVX mice through 

osteoblastic stimulation, osteoclastic inhibition, and decreased 
inflammatory status (51). In addition, pomegranate seed extract 
exhibits therapeutic potential for avoidance memories, which 
is most likely related at least in part to its phytoestrogenic and 
antioxidative actions (52,53). The present study demonstrated 
that dried pomegranate concentrate powder enhanced the 
anti‑climacteric effects of red clover in OVX rats. Therefore, 
we suggest that PCS is an attractive ingredient with anti‑OVX 
benefits.

Firstly, to clarify the anti‑obesity effect of PCS, food 
consumption, body weight and gains, and abdominal fat 

Figure 10. Representative histological profiles of the left femur, captuered from sham‑operated or OVX ddY mice after Safranin O staining . (A) Sham‑operated 
and distilled water‑treated sham vehicle control mice; (B) distilled water‑treated OVX control mice; (C) 17β‑estradiol (0.03 µg/head)‑treated OVX mice; 
(D) PCS (1 ml/kg)‑treated OVX mice; (E) PCS (2 ml/kg)‑treated OVX mice; (F) PCS (4 ml/kg)‑treated OVX mice. OVX, bilateral ovariectomy; PCS, 
pomegranate concentrated solution, Cb, cortical bone; Tb, trabecular bone; Bm, bone marrow; Gp, growth plate. Scale bar, 240 µm.
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depositions were investigated. As a result, OVX‑induced 
changes, including noticeable increases in food consump-
tion, body weight and gains, and abdominal fat depositions 
with adipocyte hypertrophy, were significantly inhibited by 
treatment with estradiol and 1, 2, and 4 ml/kg PCS. Estrogen 
depletion in an OVX animal model was observed along with 
significant increases in food intake and changes in body fat 
depositions, especially in the abdominal cavity (54-56). In 
addition, obesity‑induced OVX mice exhibited an accumula-
tion of fat deposition and cellular hypertrophy through the 
expansion of intra‑abdominal adipose tissue (57,58). Estra-
diol has been shown to regulate eating and body weight by 
controlling the potency of the feedback signals that control 
meal size (59,60). The correlation between cholecystokinin 
(CCK) and estradiol is well‑documented  (61,62). Similar 
mechanisms may be in operation for glucagon as the effects 
of glucagon and glucagon antibodies, on decreased and 
increased meal size, respectively, were both enhanced by 
estradiol in a previous study of OVX animal models (59). In 
the absence of estradiol, food consumption and body weight 
are increased  (63-65). These observations are of clinical 
relevance as estradiol levels decrease in postmenopausal 
women and, notably, postmenopausal women account for 
a high proportion of the obese population (55). It has been 
assumed that the anti‑obesity effects of PCS may be medi-
ated by estrogenic food intake effects, but more complex 
mechanisms are involved in the anti‑obesity effects of PCS. 
Typically, increased digestive motility leads to stimulated 
fecal excretions, resulting in a reduction in body weight 
in rodents  (66,67). Diuretics are able to decrease body 
weight (68,69) along estrogenic suppression, by enhancing 
the satiating potency of CCK (62) and glucagon (59). More 
detailed mechanistic studies are required to explore the 
anti‑obesity effects of PCS.

Secondly, the present results showed that OVX‑induced 
groups significantly increased serum TC, LDL and TG levels, 
but decreased serum HDL contents. In contrast, OVX‑induced 
hyperlipidemia was significantly inhibited by treatment with 
oral 1, 2 and 4 ml/kg PCS and estradiol. This finding is similar 
to previous findings of a significant increase in TC, LDL, and 
TG, and low HDL levels, in postmenopausal women  (70). 
Similar trends in serum lipids were observed in OVX mice (40). 
The effects of estradiol on serum lipid profiles are believed to 
be mediated by inhibiting the activity of 3‑hydroxy‑3‑meth-
ylglutaryl coenzyme A reductase (HMG‑CoA)  (71). Since 
HMG‑CoA is the rate‑limiting enzyme involved in cholesterol 
synthesis, these effects may occur through the elevation of 
HMG‑CoA activity, which is associated with cholesterol 
synthesis (71).

Thirdly, OVX‑induced liver steatosis was observed in the 
present study, whereas 1‑, 2‑ and 4‑ml/kg PCS‑treated ddY 
mice were significantly inhibited in OVX‑induced hepatic 
steatosis. These findings supported the favorable hepatopro-
tective activity of PCS. Since the liver is the main target organ 
of HMG‑CoA reductase (45,72), hypertrophy and fatty change 
in hepatocytes are accompanied by increased AST and ALT 
activities (73,74), which are related to estrogen deficiency‑medi-
ated obese and hyperlipidemia (45,74,75). Estrogen deficiency 
is associated with an atherogenic lipid profile characterized 
by HDL‑cholesterol, LDL‑cholesterol, triglyceride levels (11), 

central adiposity (12), increased diastolic pressure (13), and 
increased insulin resistance (14).

Fourthly, the present study demonstrated, via histopatholog-
ical and histomorphometrical analysis, that osteocalcin levels 
and bone resorption markers (Ocn and OS/BS) were signifi-
cantly increased, accompanied by decreases in femur weights 
and serum bALP levels, in OVX control mice. In addition, bone 
mass and structures of the femur were decreased in OVX control 
mice compared with sham‑operated control mice. However, 
these estrogen‑deficient osteoporosis were effectively inhibited 
by 1, 2, and 4 ml/kg PCS, respectively. These results support 
the notion that PCS has favorable and potent anti‑osteoporotic 
activities, as reported previously (31,51). Bone loss is accelerated 
in menopausal women due to the loss of estrogen. Osteoporosis 
is a common disorder related to the imbalance between bone 
resorption and bone formation, which leads to bone loss and the 
structural deterioration of bone (76). Increased bone weight is 
considered a good indicator of anti‑osteoporotic activities (77,78), 
despite the fact that changes in bone weight are not an important 
marker for evaluating anti‑osteoporotic agents, with the excep-
tion of ash bone weight (79). For an osteoporosis‑related OVX 
model, serum bALP content and osteocalcin levels are typically 
accepted as bone turnover markers (80-82), and BMD is used 
as a major determinant of osteoporosis (83‑85). As microscopic 
observation of bone can provide good evidence regarding 
bone morphology (35,37,38,86), trabecular and cortical bone 
is significantly changed in osteoporotic animals. In addition, 
several histomorphometrical indices for bone mass and bone 
formations are clearly reduced, whereas histomorphometrical 
indices for bone resorption are increased (37,38,87). Therefore, 
the histology of bones has previously been evaluated to examine 
the efficacy of various anti‑osteoporosis agents (37,38,86). In 
this respect, PCS exhibited anti‑osteoporotic activities similar 
to previous findings (31,51).

Lastly, OVX mice exhibited a significant decrease in 
uterine weights along with marked decreases in serum estra-
diol levels and associated uterine atrophic changes, including 
decreases in total, mucosa and epithelial thicknesses, and 
uterine glands in the mucosa. However, these estrogen‑defi-
cient uterine atrophies were significantly inhibited by PCS 
treatment. As estrogens are shown to act on numerous female 
target organs, such as the uterus, vagina, and skeletal and 
cardiovascular systems (88,89), menopausal women may expe-
rience climacterium symptoms due to lack of estrogen (90,91). 
Loss of estrogen is accompanied by atrophy of the uterus and 
vagina (56,91). Phytoestrogenic effects of isoflavonoids cause 
increases in uterine masses via uterine water imbibitions 
and/or a cell proliferation (88,92), which are mediated through 
ERα (93-95).

In conclusion, the present results indicated that PCS 
effectively inhibited climacterium symptoms including 
obesity, hyperlipidemia, hepatic steatosis, and osteoporosis 
in OVX‑ddY mice. Therefore, PCS may be a promising novel 
protective agent for relieving climacterium symptoms in 
menopausal women.
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