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Abstract. Irritable bowel syndrome (IBS) is a functional 
bowel disease with a complicated etiopathogenesis, often 
characterized by gastrointestinal motility disorder and high 
visceral sensitivity. IBS is a comprehensive multi‑systemic 
disorder, with the interaction of multiple factors, such as mental 
stress, intestinal function and flora, heredity, resulting in the 
disease. The existence of a common mechanism underlying 
the aforementioned factors is currently unknown. The lack 
of therapies that comprehensively address the disease symp-
toms, including abdominal pain and diarrhea, is a limitation 
of current IBS management. The current review has explored 
the role of the SCF/c‑Kit receptor/ligand system in IBS. The 
SCF/c‑Kit system constitutes a classical ligand/receptor tyro-
sine kinase signaling system that mediates inflammation and 

smooth muscle contraction. Additionally, it provides trophic 
support to neural crest‑derived cell types, including the enteric 
nervous system and mast cells. The regulation of SCF/c‑Kit on 
the interstitial cells of Cajal (ICC) suggest that it may play a 
key role in the aberrant intestinal dynamics and high visceral 
sensitivity observed in IBS. The role of the SCF/c‑Kit system 
in intestinal motility, inflammation and nerve growth has 
been reported. From the available biomedical evidence on the 
pathogenesis of IBS, it has been concluded that the SCF‑c‑Kit 
system is a potential therapeutic target for rational drug design 
in the treatment of IBS.
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1. Introduction

Irritable bowel syndrome (IBS) is one of the most prevalent 
chronic and functional bowel diseases, resulting in consider-
able misery across the globe (1‑3). The disease is characterized 
by substantial abdominal pain and discomfort; however, it 
lacks anatomical or histological aberrations or consistent 
changes in clinical chemistry  (4,5). The current incidence 
of IBS is between 7‑21% worldwide, a phenomenon attrib-
uted to an increased pace of life and alterations in diet (6). 
Identified risk factors requiring further investigation include 
psychological stress, changes in social environment, noxious 
gut stimuli and specific dietary factors. Experimental and 
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emerging treatments, including fecal transplantation, have also 
been linked to IBS pathogenesis (7), further demonstrating the 
need for more detailed study into the IBS risk factors. Greater 
understanding of factors associated with the disease is poten-
tially critical for future improvements in disease prevention 
and therapy.

The obscurity of IBS pathogenesis is a hindrance to such 
progress, though it is generally accepted that high visceral 
sensitivity and disturbed gut motility, in combination with 
low‑grade inflammation, cause IBS via neuroendocrine and 
immune dysfunction (8). However, identifying the factors that 
mediate this dysfunction is still a major challenge in current 
IBS research. Clues into the etiology of the disease may be 
provided by study into the neurotransmitter dynamics of the 
brain‑gut axis and associated endocrinological factors (9,10), as 
well as the intestinal flora, though a single factor alone cannot 
explain the complexity of IBS pathogenesis. Nevertheless, 
research should provide important insights into pathomecha-
nism of IBS that potentially lead to novel drug development for 
the treatment of IBS.

The available evidence suggests that stem cell factor 
(SCF) expression is increased in clinical IBS (11). The system 
composed of SCF and its cognate receptor, c‑Kit, is a principal 
regulator of survival and functionality for a multitude of neural 
crest‑derived cell types, in particular for those involved in 
visceral perception, smooth muscle contraction and inflamma-
tion (12‑14). Disorders of the neuro‑endocrine‑immunological 
network resulting from alterations in the SCF/c‑Kit system 
provide an explanation for the high visceral sensitivity, 
abnormal bowel contraction strength and low‑grade inflam-
mation experienced in IBS, suggesting that this system may 
be an important target for intervention (15,16). In the present 
review, the current trends in IBS are investigated, highlighting 
the regulation of SCF/c‑Kit.

2. Biological functions of the SCF/c‑Kit system

The c‑Kit receptor is the product of the c‑kit proto‑oncogene 
and belongs to the receptor tyrosine kinase (RTK) superfamily, 
with the members of this family being the cardinal regulators 
of cellular fate in the mammalian body (17). As an important 
member of the type III RTK family, it has a highly specific 
and restricted expression pattern, with prominent c‑Kit levels 
expressed on the surface of hematopoietic cells, mast cells 
(MCs) and interstitial cells of Cajal (ICC) (18,19). The cognate 
ligand of c‑Kit is SCF, alternatively known as dry factor or 
MC growth factor, which is synthesized in abundance by the 
gastrointestinal (GI) tract smooth muscle cells (SMCs) (20). 
The expression patterns of SCF and c‑Kit are thus consistent 
with their potential involvement in IBS.

In the SCF/c‑Kit mechanism, as presented in Fig. 1, extra-
cellular SCF binds specifically with c‑Kit, with few alternate 
receptors proposed. Following SCF binding, c‑Kit homodi-
mers are formed via activation of the enzymatic kinase domain 
within the receptor (21). This provokes autophosphorylation of 
tyrosine residues within the receptor's cytoplasmic C‑termini. 
The phosphotyrosine residues serve as docking sites for 
receptor adaptor proteins, in turn provoking activation of a 
range of signal transduction pathways (22). These can involve 
the following signaling molecules: Phosphatidylinositol 

3‑kinase (PI3K), single‑subunit small GTPases/extracellular 
regulated protein kinases (Ras/Erk), janus kinase/signal 
transducers and activators of transcription (JAK/STAT), 
phospholipase C (PLC)‑γ and the tyrosine‑protein kinase 
Src (16,22). Specific expression of genes typically results and a 
range of biological signals are initiated to regulate the survival, 
proliferation, differentiation, apoptosis, motility and migration 
of c‑Kit bearing cells (22).

3. Regulation of the SCF/c‑Kit system affects the function 
of a variety of cells

Cell lines regulated by the SCF/c‑Kit system prominently 
include ICC, other enteric nerve cells (NCs) and MCs. In 
general, SCF is a trophic factor for neural crest derivatives, 
with similar effects on ICC in terms of differentiation and 
proliferation (23). SCF specifically increases expression of 
the key gap junction protein connexin 43 (Cx43), resulting in 
improved network function by promoting intercellular conduc-
tion of electric stimuli  (24). Furthermore, SCF promotes 
MC hyperplasia and enhances the release of MC‑derived 
pro‑inflammatory mediators  (25‑27). The main mediators 
released are histamine, serotonin and arachidonic acid‑derived 
compounds (leukotrienes, prostaglandins (28), interleukin), 
which in turn reduce the integrity of the local microcircula-
tion and elicit an inflammatory response of body  (29‑31). 
Additionally, SCF increases the intrinsic pacemaker rhythm 
of ICC that regulates GI smooth muscle contraction, via 
phosphorylation of substance P (SP), neurokinin‑1 (NK1), 
transient receptor potential vanilloid‑1 (TRPV1) receptors 
and by promoting the conduction of pain signals towards 
the central nervous system (CNS)  (32). When considering 
the consequences of alterations in these biological signals, a 
potential role of the SCF/c‑Kit axis in IBS pathophysiology 
emerges. It can be argued that this axis contributes to the high 
visceral sensitivity, exaggerated contraction and inflammation 
observed in IBS, thus explaining how stress and psychological 
factors are related to abdominal pain and discomfort in IBS.

In this context, it is noteworthy that structural loss in the 
ICC is a potential factor in IBS pathogenesis (15,33). ICCs 
constitute an elaborate network of contraction‑controlling 
cells, present in all muscle layers of the GI tract and other 
internal structures, including the stomach, small intestine, 
pancreas, colon and bladder, where they regulate a range of 
biological functions. Based on their morphology, distribu-
tion and anatomical relationship with nerve plexus and 
smooth muscle, ICC are categorized into four subtypes (34): 
i)  Myenteric ICC (IC‑MY), located between circular and 
longitudinal muscle layers of the stomach, small intestine, 
colon and other muscles (35); ii) submucosal ICC (IC‑SM), 
distributed along the submucosal layer of the surficial colon 
circular beam  (36); iii)  deep muscular ICC, (IC‑DMP), 
located between the inner thin layer and outer thick layer of 
the intramuscular ring, particularly in the small intestine (37); 
and iv) intramuscular ICC, (IC‑IM), located in all areas of 
the muscle layers above (35). MY and IC‑SM serve mainly as 
GI pacemakers. IC‑DMP and IC‑IM are typically associated 
with the transmission of enteric nerve signals. The ICC types 
constitute an intricate network, fundamental to GI electro-
physiological activity (22). Importantly, cross‑talk with the 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  13:  1187-1193,  2017 1189

CNS exists and the ICC stimulate the sensory nerve of the GI 
tract through direct synaptic contact (38‑40). The ICC are key 
to gastroenterological function and, conversely, the SCF/c‑Kit 
axis is important for the development and phenotypic differ-
entiation of the ICC, as well as ICC membrane polarization 
and pacemaker activity. Thus, a defining role of the axis in 
transcriptional regulation effecting intestinal bowel movement 
and intestinal rhythm is possible (41). Indeed, in experimental 
rodents, neutralizing antibody targeting c‑Kit resulted in 
major loss of ICC from the jejunum, whereas high‑dose SCF 
reversed this effect (23). Together with the cardinal function-
ality of ICC in visceral motility (including pacemaker activity, 
regulation of peristaltic bowel movement and other aspects of 
smooth muscle cell functionality), these results indicate that 
key aspects of GI physiology require functional SCF/c‑Kit 
signaling. Though it is noteworthy that the SCF/c‑Kit axis 
controls mainly long‑term changes in ICC physiology, where 
it is directly controlled by receptors for NK1, NO, 5‑hydroxy-
tryptamine (5‑HT) and SP, expressed on the ICC surface.

Other cell types controlled by the SCF/c‑Kit axis include 
MCs, a specific type of immune cell required for barrier 
protection in the intestinal mucosa. An important event in 
IBS pathogenesis is MC degranulation  (42), whereby MC 
release 5‑HT, histamine, TNF‑α and various interleukins, all 
of which are known to aggravate intestinal inflammation and 
affect visceral perception (43). The development and migra-
tion of MCs depend on SCF. For instance, SCF promotes the 
adhesion and proliferation of MCs by regulating expression 
of intercellular adhesion molecule‑1 (44). As a chemotactic 
factor of MCs, SCF may promote the regeneration of MC 
from CD34+ progenitor cells, MC survival and adhesion to 
the extracellular matrix (25). Importantly, histamine levels 
decline substantially when the SCF/c‑Kit system is repressed 
and the SCF/c‑Kit axis has been repeatedly identified as one 
of the most promising targets for controlling MC inflamma-
tion (26,45). Indeed, evidence suggests that SCF inhibition 
potentially lowers visceral sensitivity via modulation of the 
MC compartment (46).

Additionally, control of neuronal electrical activity is 
key to reducing excessive intestinal motility in IBS. The 
signaling pathway provoked by SCF/c‑Kit activity maintains 
survival, proliferation and nutrition of the neural crest cells, 
as well as inducing their differentiation and migration (47). 
c‑Kit expression is a typical characteristic of post‑mitotic 
nerve cells in the early stages of lineage differentiation from 
neurons to glial cells. SCF stimulates nerve regeneration both 
in experimental rodents and in vitro (48). Although indirect, 
these associations point to a central role of the SCF/c‑Kit axis 
in organizing neural networks and represent targets for IBS 
treatment.

ICC, MC and NC are not independent structures and 
undergo interactions when IBS occurs throughout the nervous 
system (NS), digestive system, immune system and other 
regions (49‑52). They constitute a large and intricate network 
system, potentially of critical importance in IBS due to its 
control of a range of intestinal functions, including visceral 
sensitivity and inflammatory responses. However, it is also 
important to note that the ICC, MCs and NCs are not the 
sole targets of SCF/c‑Kit activity, with other cell targets of 
SCF/c‑Kit having potential involvement in IBS.

4. Relationship between the SCF/c‑Kit axis and 
neuroendocrine‑immune regulation in IBS

SCF/c‑Kit and neurological disorders. Neurological disor-
ders, including those of the enteric nervous system (ENS), the 
autonomic nervous system (ANS) and the CNS, contribute to 
visceral hypersensitivity and GI motility disorder in IBS (53). 
Upon stimulation by intestinal irritation and/or psychological 
or emotional factors, the three strands of the NS integrate the 
stimulus information to generate a GI effector response and 
cause pain sensation. Appropriate execution of this process 
depends on the structural integrity and electrophysiological 
properties of the intestinal neurons involved, which are in 
turn controlled by the SCF/c‑Kit axis: SCF is constitutively 
expressed in various regions of the NS including the CNS, 
ENS and ANS, but specific expression levels are influenced by 
external stimuli (54). SCF directly affects neurotransmission 
by binding its receptor c‑Kit and this influences the efficacy of 
the NS response to external stimuli (12). Indeed, experimental 
studies in a depression mouse model revealed a correlation 
between decreased c‑Kit expression in the hippocampus 
and impaired neuronal differentiation and migration  (55). 
It is well established that severe depression is a key factor 
predisposing to IBS development (56,57). Therefore, a rela-
tionship between altered SCF/c‑Kit signals with the emotional, 
psychological and physical stimulated state of IBS patients is 
possible (58). Potential effector mechanisms may depend on 
SCF/c‑Kit‑mediated effects on the phosphorylation status 
of receptor systems involved in sensing neurotransmitter 
levels, including the neuronal nitric oxide synthase (nNOS), 
SP, NK1 and TRPV1 systems (59,60). This has been shown 
to result in overstimulation of the nerve‑ICC‑smooth muscle 
signal transfer system, promoting development of IBS‑like 
symptoms (61). Similarly, in experimental IBS, changes in the 
regulation of SCF/c‑Kit may stimulate strong nerve reflexes 
and enhance the rhythm of smooth muscle contraction, while 
simultaneously stimulating pain perception (14,62). However, 
the contributions of such activity to clinical IBS remains to be 
established.

SCF/c‑Kit axis and abnormalities of the endocrine system. It is 
well established that malfunction of the brain‑gut axis is a key 
mechanism in explaining IBS pathogenesis (63). In addition 
to direct innervation between the brain and the gut, it is often 
assumed that the endocrine system is an important connection 
between the two systems. Indeed, there is an established link 
between disturbed serum hormone levels and IBS (60,64), due 
to hormone secretion typically being related to the psycho-
logical state of the patient. This may explain IBS‑related 
stress and other psychological disorders. Relevant mediators 
include 5‑HT, nerve peptide Y, calcitonin gene‑related peptide 
and histamine (65,66). The secretion of these is altered by 
the patient's psychological state, with the secreted factors 
targeting the intestinal ICC network. The SCF/c‑Kit axis may 
facilitate the perception of such endocrinological signals, as it 
has been found that stimulation of c‑Kit provokes substantial 
leukotriene C4 release via the activation of cytosolic phospho-
lipase A2 (67). This is then associated with increased affinity 
of histamine and 5HT receptors for their ligands (68,69). As 
such, the SCF/c‑Kit axis promotes sensitivity to GI hormones 
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and thus may have a detrimental influence on pain perception, 
inflammation and bowel movement.

SCF/c‑Kit and the immune system. Low‑grade intestinal inflam-
mation is established as a key characteristic of IBS (70,71) and 
is related to MC activation, as well as altered permeability 

of the intestinal mucosa to antigens  (71,72). The general 
principal genomic regulator of the inflammatory response is 
nuclear factor‑κB (NF‑κB). Inactive NF‑κB is sequestered in 
the cytoplasm, while activated NF‑κB enters the nucleus and 
stimulates transcription of a range of proinflammatory factors, 
including tumor necrosis factor‑α (TNF‑α) and interleukin‑1β. 

Figure 1. The SCF/c‑Kit ligand/receptor system affects the biological function of MCs, NCs and ICC. Dimerization of c‑Kit after engagement of SCF with 
the receptor induces phosphorylation of tyrosine residues in the receptor's cytoplasmic tail. The phosphotyrosines serve as docking sites for adaptor proteins 
which mediate further signal transduction, leading to activation of the following pathways: PI3K, Ras/Erk, JAK/STAT, PLC‑γ and Src. In turn these path-
ways regulate the survival, proliferation, differentiation, apoptosis, motility, migration and invasion of MCs, NCs and the ICC. Stem cell factor (SCF)/c‑Kit, 
ligand/receptor tyrosine kinase signaling system; MC, mast cell; NC, nerve cell, ICC, intestinal cells of Cajal; SCF, stem cell factor; PI3K, phosphatidylinositol 
3‑kinase; Ras, a guanosine‑nucleotide‑binding protein (G protein); Erk, extracellular regulated protein kinases, JAK, janus kinase; STAT, signal transducer 
and activator of transcription; PLC‑γ, phospholipase C‑γ; Src, a tyrosine‑protein kinase.

Figure 2. The SCF/c‑Kit system affects visceral hypersensitivity, the course of gastric motility disorder and the low‑grade inflammation associated with these 
through the enteric neuro‑endocrine‑immunological system triggering advanced IBS. Stem cell factor (SCF)/c‑Kit, ligand/receptor tyrosine kinase signaling 
system; IBS, irritable bowel syndrome.
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C‑kit may activate NF‑κB and promote the release of TNF‑α 
when it is sensitized, which may be one way of SCF/C‑kit 
initiating the immune inflammatory response  (51,73). In 
addition, the trophic action of SCF/c‑Kit on the MC compart-
ment is directly associated with diarrhea‑predominant IBS. 
Furthermore, c‑Kit‑mediated cysteinyl production results in 
sensitization of MC receptors involved in secretion of proin-
flammatory mediators, in turn enhancing the inflammatory 
response. These findings demonstrate a mild inflammatory 
response is stimulated through SCF/c‑Kit signaling, which 
potentially links to IBS pathogenesis.

5. SCF/c‑Kit and visceral hypersensitivity in IBS

Zhang et al developed an IBS rat model via infection with 
Trichinella spiralis (74). Rat models are generally not appro-
priate targets for genetic intervention, however, imatinib 
mesylate (STI‑571), a moderately specific blocker of c‑Kit (75), 
is amenable to experimental investigation in this model. A 
previous study revealed that the change of intestinal ICC acti-
vator rectus muscle electricity and dorsal commissural nucleus 
(DCN) were higher in the IBS rat, compared with the other rat 
model, whereas they decreased significantly following STI‑571 
exposure. It was indicated that visceral hypersensitivity in IBS 
rats may be suppressed when blocked the SCF/C‑kit signal (74). 
These results indicate the importance of the SCF/c‑Kit axis in 
IBS and the pharmacological implications of this axis, with 
imatinib offering a potential therapeutic option for targeting 
visceral hypersensitivity.

Visceral hypersensitivity is a key characteristic of IBS. The 
strong dependence of IBS‑related pain on psychological and 
environmental conditions indicates that the pain is under CNS 
control, however, activity and sensitivity of the spinal sensory 
nerve fibers may additionally be dependent on endocrino-
logical control (9,10). In this instance, the neurotrophic action 
of SCF may directly affect and stimulate neurotransmitter 
responses via the SCF‑c‑Kit axis (12). In the ENS, periodic 
slow wave potentials between the ICC and SMCs are gener-
ated and perceived by neurotransmitter receptors, including 
those for SP, vasoactive intestinal peptide, histamine, serotonin 
and acetylcholine, expressed on the ICC membranes. In turn, 
these receptors mediate contractile and relaxant effects in GI 
smooth muscle and pain perception (76). As stated above, 
MCs may further amplify the pain signals (77), though the 
pain threshold itself appears largely dependent on the activa-
tion state of the SCF/c‑Kit axis. Small intestinal resection and 
transmission microscopy observations indicate that modifying 
the c‑Kit pathway or activating the SCF/c‑Kit pathway affects 
the depolarization and pacemaker functions of the ICC and 
alters intestinal rhythm (78). However, whether clinical trials 
employing imatinib provide benefit for these effects is unclear 
and warrants further study.

6. Conclusion

IBS is a functional disease associated with multiple systems 
in the body, though it is particularly associated with brain‑gut 
cross‑talk via modulation of the endocrine system. The results 
of this include aberrant GI motility and visceral hypersensi-
tivity, in turn leading to abdominal discomfort and abnormal 

defecation patterns. The SCF/c‑Kit signaling system is 
critical in controlling many of the elements involved (Fig. 2), 
including ICC MC and nerve cells, and thus shows potential 
as a pharmacological, intervention aimed at combatting 
visceral sensitivity and GI disorder in IBS patients. The ICC 
serve as the pacemakers for GI smooth muscle contraction 
and integrate neuroendocrine physiology (72). ICCs depend 
on SCF/c‑Kit interaction for growth and development and 
respond to its signaling by upregulating neurotransmission. 
Pain perception in ICCs is increased through the effects of 
SCF/c‑Kit on MCs. Fortunately, pharmacological antago-
nists for SFC/c‑Kit signaling are clinically available. For 
instance, inhibitors including imatinib, sorafenib, lapatinib 
and sunitinib are capable at a minimum of partially targeting 
this signaling system (73‑75). In addition, imatinib is reason-
ably c‑Kit‑specific, however the physiological importance 
of SCF/c‑Kit signal transduction in nearly all cell types 
derived from the neuronal crest lineage may prevent the use 
of inhibitory strategies. As a factor involved in GI motility, 
visceral sensitivity and inflammatory signaling, blockade of 
SCF/c‑Kit may trigger collateral damage, which would likely 
preclude its use in a non‑lethal disease such as IBS (76,77). 
Therefore, further studies with animal models are required to 
develop acceptable interventions. In addition, further insight is 
required into the mechanisms mediating SCF/c‑Kit signaling. 
Design of new drugs specifically inhibiting SCF/c‑Kit signal 
transduction, that preferentially act locally in the intestine, 
may be critical for successful outcomes. Such targeting of 
SCF/c‑Kit inhibition is a novel strategy in IBS therapy.
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