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Abstract. Drowning is a crucial public safety problem and 
is the third leading cause of accidental fatality, claiming 
~372,000 lives annually, worldwide. In near‑drowning 
patients, acute lung injury (ALI) or acute respiratory distress 
syndrome (ARDS) is one of the most common complications. 
Approximately 1/3 of near‑drowning patients fulfill the criteria 
for ALI or ARDS. In the present article, the current literature 
of near‑drowning, pathophysiologic changes and the molecular 
mechanisms of seawater‑drowning‑induced ALI and ARDS 
was reviewed. Seawater is three times more hyperosmolar than 
plasma, and following inhalation of seawater the hyperosmotic 
seawater may cause serious injury in the lung and alveoli. The 
perturbing effects of seawater may be primarily categorized 
into insufficiency of pulmonary surfactant, blood‑air barrier 
disruption, formation of pulmonary edema, inflammation, 
oxidative stress, autophagy, apoptosis and various other hyper-
tonic stimulation. Potential treatments for seawater‑induced 
ALI/ARDS were also presented, in addition to suggestions for 
further studies. A total of nine therapeutic strategies had been 
tested and all had focused on modulating the over‑activated 
immunoreactions. In conclusion, seawater drowning is a 
complex injury process and the exact mechanisms and poten-
tial treatments require further exploration.
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1. Introduction

Drowning is the third leading cause of accidental fatality (1) 
and claims ~372,000 lives annually, worldwide (2,3). Over 
50% of the drowning victims that result in fatality are 
<25 years‑old (1,2); however, this serious health threat is often 
neglected. In near‑drowning patients, lung injury is one of 
the most common complications (4,5). Furthermore, ~1/3 of 
near‑drowning patients fulfill the criteria for acute lung injury 
(ALI) or acute respiratory distress syndrome (ARDS)  (4). 
ALI/ARDS has been acknowledged as a common and lethal 
disease since it was first described in 1967 (6). It is a life‑threat-
ening disorder with a mortality rate ranging from 25‑40% and 
so cannot be ignored (6). Pneumonia, aspiration, shock and 
severe sepsis are the primary triggers (7). Furthermore, a result 
of this complication is the infiltration of neutrophils into the 
alveolar space, the release pro‑inflammatory cytokines, which 
causes leakage of edema fluid and mismatch of ventilation and 
perfusion (6,7). In recent years, taking vacations close to the 
sea or exploiting marine resources has becoming more popular 
and with this the frequency of seawater drowning accidents 
have correspondingly increased. Therefore, it is essential that 
the mechanisms of seawater‑drowning‑induced ALI be fully 
elucidated.

2. Pathophysiology of seawater‑drowning‑induced acute 
lung injury

Physiologic changes of water drowning. As stated by Layon 
and Modell  (1), a detrimental consequence of drowning is 
primary respiratory impairment from submersion/immer-
sion in a liquid medium. When suddenly immersed in water, 
victims will hold their breath, which results in oxygen deple-
tion and carbon dioxide accumulation, a condition that is not 
sustainable. Subsequently, victims eventually become hyper-
carbic and hypoxemic; thus, in response, victims may begin to 
breathe, subsequently inhaling water. This further impairs the 
victims' ability to breathe and exchange air normally (1,3,8). 
Drowning or near‑drowning prevents victims from breathing, 
which subsequently induces hypoxia. It is widely acknowledged 
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that hypoxia provokes multiple complications, such as cerebral 
hypoxia and cardiovascular disorders (5); however, hypoxia 
has also been associated with initiating ALI/ARDS (9,10).

Pathophysiological changes in the lung after seawater 
inhalation. Seawater is a hyperosmotic liquid that is low in 
temperature and contains a high content of sodium, calcium 
and substantial quantities of bacteria  (11). Additionally, 
seawater is three times more hyperosmolar than plasma (942 
vs. 300 mOsm/kg, respectively) (11,12). Following inhalation 
of seawater, the hyperosmotic and cold seawater may produce 
a strong injury stimulus (such as inflammation, DNA damage 
and apoptosis) in the lung and alveoli (13‑15). As the osmotic 
pressure of seawater is higher than that of plasma, the fluid 
in the surrounding tissue space and pulmonary capillaries 
enters the alveolar space, resulting in pulmonary edema and 
hypoxia (16‑18), which may result in ALI/ARDS.

The presence of water in the alveoli and airways obstructs 
ventilation and blood‑gas exchange, triggering immediate 
hypoxia (19). As reported in multiple studies (12,18,19), the 
severity of seawater‑induced pulmonary edema is 3‑fold 
higher when compared with edema caused by freshwater. 
Pathological alterations occur when lungs are perfused 
with seawater, including alveolar septum widening, alveolar 
collapse and alveolar‑capillary membrane damage (15,20). 
Folkesson et al (12) indicated that instilling a hyperosmotic 
liquid, such as seawater, into the trachea of rabbits may increase 
alveolar‑capillary membrane permeability, resulting in the 
exudation of water, ions and proteins, as well as neutrophils 
and macrophages (20). As a consequence, massive inflamma-
tory mediators are released and elicit further damage to lung 
tissue and cells.

3. Perturbing effects of seawater

Seawater drowning may cause ALI/ARDS; however, the 
underlying molecular mechanisms have not yet been clearly 
elucidated. The present review has a predominant focus on 
the molecular networks affected by seawater and the resulting 
cellular alterations. Seawater‑induced changes are summa-
rized in Table I (13‑17,19‑32) and are elucidated in detail.

Insufficiency of pulmonary surfactant. Pulmonary surfactant 
is a lipid‑protein complex synthetized and secreted by type II 
alveolar epithelial cells (33). It is comprised of four types of 
protein: Surfactant protein (SP)‑A, SP‑B, SP‑C and SP‑D (34). 
Pulmonary surfactant secretion aids in the reduction of alve-
olar surface tension, maintains alveolar opening and prevents 
lung interstitial proteins and fluids leaking into the alveolar 
cavity (35). Multiple studies have proposed that the content of 
pulmonary surfactant may be an important severity indicator 
in critically ill patients with lung diseases (36,37). Seawater 
aspiration and interstitial fluid exudation dilute and wash out 
pulmonary surfactant  (1,3,30). Inhalation of seawater may 
cause lung inflammation and type II alveolar epithelial cell 
damage. This damage may result from perturbing the physi-
ological function of epithelial cells and inhibiting surfactant 
synthesis and secretion (30). Alternatively, a deficiency of 
pulmonary surfactants subsequently triggers a decrease in lung 
compliance, which increases the risk of alveolar collapse, in 

addition to increasing cell permeability to fluid. Furthermore, 
this event provokes alterations in lung ventilation/perfusion 
ratios (38,39), which ultimately may result in ALI/ARDS.

Blood‑air barrier disruption. Gas exchange between alveoli 
and the blood in surrounding capillaries is dependent on the 
lung blood‑air barrier (40). Various causes of lung diseases 
may inflict damage on lung blood‑air barrier function, thereby 
affecting the respiratory function of the lungs (41,42). However, 
barrier disruption differs with injury type. Pulmonary edema 
causes pulmonary interstitium thickening and alters the gas 
exchange process by increasing the distance for gas exchange 
to occur (43), whereas lipopolysaccharide‑induced acute lung 
injury predominantly damages pulmonary microvascular 
endothelial cells and destroys their barrier function, thereby 
causing inflammatory cell aggregation, adhesion, exudation 
and secretion of various inflammatory cytokines and chemo-
kines (44). As a result, the blood barrier is further damaged.

In seawater‑induced lung injury, the components of 
seawater, including bacteria and viruses, affect the regulation 
of pulmonary surfactant and the alveolar epithelium directly. 
Alteration of the pulmonary surfactant layer may generate 
pulmonary surfactant deficiency (30) and may also affect the 
composition of alveoli by promoting alveolar epithelial cell 
damage and apoptosis and subsequently resulting in barrier 
function alteration (13). The hypertonic nature of seawater 
elicits direct epithelial cell stimulation and causes the cells to 
contract (31), increasing the gap between cells and therefore 
increasing the permeability of these cells (12). The RhoA/Rho 
kinase pathway participates in the cytoskeletal contractile 
response  (45). Rho‑associated coiled‑coil forming protein 
kinase (ROCK) promotes phosphorylation of the light‑chain 
of myosin (MLC) though MLC phosphatase (46). Multiple 
studies  (45,47) have demonstrated that the RhoA/ROCK 
pathway regulates cell contraction and modulates the actin 
cytoskeleton. Seawater has been indicated to induce the 
RhoA/Rho kinase pathway and promotes the phosphoryla-
tion of myosin phosphatase target subunit 1, both in vivo and 
in vitro (31).

Previous reports have revealed that seawater inhalation 
damages tight junctions and gap junctions between cells, thus 
affecting alveolar cell permeability, function and communi-
cation, ultimately promoting lung edema formation (16,26). 
Connexin 43 is located in gap junction channels and connects 
the cytoplasm between adjacent cells  (48). Furthermore, 
connexin 43 is able to rapidly exchange ions and intracellular 
signaling molecules. Notably, in the presence of seawater, 
connexin 43 has been indicated to upregulate the phosphoryla-
tion of Ser368, while p‑connexin 43 downregulation protects 
the barrier function and palliates lung edema (16,26).

Formation of pulmonary edema. Pulmonary edema forma-
tion is an additional critical mechanism associated with ALI 
and ARDS  (29). Following inhalation of seawater, water 
flows directly into alveoli and the osmotic pressure gradient 
promotes water retention within alveoli (12). If the fluid is not 
rapidly cleared, alveolar edema occurs; thus, alveolar fluid 
clearance (AFC) is critical in preventing ALI/ARDS. Specific 
ion and water channels are known to participate in AFC. 
Epithelial Na+ channels (ENaC) are ion channels composed of 
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Table I. Seawater‑induced changes.

Name	 Category	 Cell/tissue	 Change	 (Refs.)

B cell lymphoma‑2	 Apoptosis‑related protein	 In vivo	 ↑P	 (14)
Cleaved caspase‑3	 Apoptosis‑related protein	 In vivo, A549, PAT2	 ↑P	 (13,14)
Cleaved caspase‑8	 Apoptosis‑related protein	 In vivo, A549, PAT2	 ↑P	 (13)
Fas	 Apoptosis‑related protein	 In vivo, A549, PAT2	 ↑P	 (13)
FasL	 Apoptosis‑related protein	 In vivo, A549, PAT2	 ↑P	 (13)
4E‑BP1	 Binding protein	 AEC	 ↑Ph	 (27)
AQP1	 Channel	 In vivo, A549, PAT2	 ↑R,P	 (21,23)
AQP5	 Channel	 In vivo, A549, PAT2	 ↑R,P	 (21,23)
α‑ENaC	 Channel	 In vivo	 ↓R	 (30)
IL‑10	 Cytokine	 In vivo	 ↑P	 (15‑17,28)
IL‑1β	 Cytokine	 In vivo, NR8383	 ↑P	 (15‑17,27)
IL‑6	 Cytokine	 In vivo, NR8383	 ↑P	 (20,27)
IL‑8	 Cytokine	 In vivo	 ↑P	 (24,25)
MIF	 Cytokine	 In vivo	 ↑P	 (20)
TNF‑α	 Cytokine	 In vivo, NR8383	 ↑P	 (16,17,20,27,28,30)
MPO	 Enzyme	 In vivo	 ↑A	 (20,28,30)
MYPT‑1	 Enzyme	 In vivo, A549, RPMVECs	 ↑Ph	 (31)
T‑SOD	 Enzyme	 In vivo	 ↓A	 (17)
VEGF	 Growth regulator	 In vivo	 ↑R,P	 (19,22)
Akt	 Kinase	 In vivo, AEC	 ↑Ph	 (14,19)
ATM	 Kinase	 AEC	 ↑Ph	 (19)
eIF4E	 Kinase	 AEC	 ↑Ph	 (27)
JAK1	 Kinase	 NR8383	 ↑Ph	 (15)
JAK2	 Kinase	 NR8383	 ↑Ph	 (15)
p70S6K1	 Kinase	 AEC	 ↑Ph	 (27)
PI3K	 Kinase	 AEC	 ↑Ph	 (19)
PKC	 Kinase	 In vivo, A549	 ↑Ph	 (26)
ERK1/2	 MAP kinase	 In vivo	 ↑Ph	 (14)
p38	 MAP kinase	 AEC	 ↑Ph	 (19)
LC3	 Microtubule associated protein	 In vivo	 ↑R	 (25)
LC3‑II	 Microtubule associated protein	 In vivo	 ↑P	 (25)
SEMA7A	 Neuronal guidance protein	 In vivo, RPMVECs	 ↑P	 (32)
MDA	 Peroxidation product	 In vivo	 ↑A	 (17)
NE	 Protease	 In vivo	 ↑P	 (28)
ERβ	 Receptor	 In vivo	 ↓P	 (21)
sVEGFR1	 Receptor	 In vivo	 ↑P	 (22)
VDR	 Receptor	 In vivo, A549, RPMVECs	 ↑R, P	 (31)
S6 ribosomal	 Ribosomal protein	 AEC	 ↑Ph	 (27)
SP‑A	 Secretory protein	 In vivo	 ↓R	 (30)
GTP‑RhoA	 Signaling G protein	 In vivo, A549, RPMVECs	 ↑P	 (31)
HIF‑1α	 Transcription factor	 In vivo, A549, AEC	 ↑P	 (17,19,27)
NF‑κB	 Transcription factor	 In vivo, A549	 ↑Ph, TL	 (17,20,28,31)
STAT1	 Transcription factor	 In vivo, NR8383	 ↑P, Ph	 (15)
Cx43	 Transmembrane channel	 In vivo, A549	 ↑R, Ph	 (16,26)
Cx43	 Transmembrane channel	 In vivo	 ↓P	 (16)
Na+/K+‑ATPase	 Transporter	 In vivo	 ↓A, P	 (29,30)

4E‑BP, eukaryotic translation initiation factor 4E binding protein 1; AQP, aquaporin; α‑ENaC, epithelial sodium channel subunit alpha; IL, interleukin; MIF, 
macrophage migration inhibitory factor; TNF‑α, tumor necrosis factor alpha; MPO, myeloperoxidase; MYPT‑1, myosin light‑chain phosphatase‑1; T‑SOD, 
total superoxide dismutase; VEGF, vascular endothelial growth factor; Akt, protein kinase B; eIF4E, eukaryotic translation initiation factor 4E; JAK, janus 
kinase; P70S6K1, ribosomal protein S6 kinase beta‑1; PI3K, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase; PKC, protein kinase C; ERK, extracellular 
signal‑regulated kinase; LC3, microtubule‑associated protein 1 light chain 3 alpha; SEMA7A, semaphorin 7A; MDA, malondialdehyde; NE, neutrophil elastase; 
ERβ, estrogen receptor beta; sVEGFR1, soluble vascular endothelial growth factor receptor 1; VDR, vitamin D receptor; SP‑A, secretory protein A; GTP‑RhoA, 
guanosine‑5'‑triphosphate‑ras homolog gene family member A; HIF‑1α, hypoxia‑inducible factor 1‑alpha; NF‑κB, nuclear factor‑kappa B; STAT1, signal 
transducer and activator of transcription 1; Cx43, connexin 43; A, activity; P, protein abundance; Ph, phosphorylation; A, activity; R, mRNA abundance; TL, 
translocation; PAT2, primary alveolar type II cells; AEC, alveolar epithelial cells; RPMVECs, rat pulmonary microvascular endothelial cells.
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three subunits (α, β and γ) (49,50). Their key function is Na+ 
uptake and to aid the removal of excess pulmonary edema fluid 
from the alveolar space (51). A previous study indicated the 
importance of AFC by demonstrating that knockout α‑EnaC 
mice succumbed within 48 h following birth, due to their 
inability to clear alveolar edema fluid (52). Na+/K+ adenosine 
triphosphatase (Na+/K+‑ATPase) is a basolateral membrane 
protein that exchanges sodium and potassium (53). In concert 
with ENaC, Na+/K+‑ATPase produces an osmotic gradient that 
aids in the reabsorption of alveolar fluid (51). As described 
in previous reports  (54,55), impaired Na+/K+‑ATPase may 
trigger severe lung edema. Aquaporins (AQPs) are a family of 
integral membrane proteins that contribute to transcellular and 
trans‑epithelial water movement (56). The predominant types 
exhibited in the lung are AQP1 and AQP5 (57). AQP1 is primarily 
expressed in the microvascular endothelium, while AQP5 is 
located in the apical membrane of type II epithelium cells (57). 
Previous studies (58,59) have indicated that AQP levels are 
altered in multiple models of lung injury, likely contributing to 
lung edema formation. For seawater‑drowning‑induced ALI, 
the expression levels and activity of Na+/K+‑ATPase in the lung 
tissue are reduced (29,30). In addition, ENaC transcription is 
also decreased (30). In contrast, seawater exposure increases 
AQP1 and AQP5 expression levels, indicating elevated water 
permeability of the blood‑air barrier (21,23). All these changes 
promote lung edema.

Inflammation. Development of ALI/ARDS is accompanied 
by increased inflammatory responses (60). Key ALI/ARDS 
characteristics induce inflammatory cell adhesion and 
exudation, which result in the release of large quantities of 
inflammatory cytokines and chemokines (15,17,20,32). These 
reaction cascades have an important role in the defense against 
pathogens (61). However, an abnormal hyperactive inflam-
matory response may promote and/or aggravate ALI/ARDS. 
Stimulation by seawater, pathogen invasion and pulmonary 
edema may all influence neutrophil activation (17), subse-
quently releasing large quantities of inflammatory cytokines, 
such as interleukin (IL)‑1β (15‑17), IL‑6 (20,27), IL‑8 (25) 
and tumor necrosis factor‑α (20,25). In addition, neutrophilic 
activation also promotes the release of reactive oxygen species 
(ROS), in addition to some vasoactive substances (such as 
hypoxia‑inducible factor‑1α and vascular endothelial growth 
factor), which further aggravate lung injury (17).

Seawater‑induced inflammatory cytokine release is 
associated with multiple pathways, including nuclear 
factor‑κB (17), hypoxia‑inducible factor ‑1α (16,19), macro-
phage migration inhibitory factor  (20) and RhoA/Rho 
kinase signaling (31). Furthermore, seawater inhalation may 
promote lung injury through activating the Janus kinase/signal 
transducer and activator of transcription 1 (15) and p38 path-
ways (19). Inflammatory cytokine release in ALI may promote 
inflammatory cell activation, creating a vicious cycle, or even 
a ‘cascade effect’.

Oxidative stress. Excessive generation of ROS and oxidative 
stress are processes that have been indicated in ALI/ARDS, 
promoting cell injury and apoptosis (62). Inflammatory reac-
tions that occur within airways produce ROS and trigger a 
redox imbalance in the lungs (63). Indeed, scavenging of ROS 

significantly attenuates lipopolysaccharide (LPS)‑induced 
lung injury (62). To date, no studies have demonstrated that 
seawater may promote ROS generation and induce oxida-
tive stress; however, previous results have demonstrated that 
exposure to seawater induces myeloperoxidase and malondi-
aldehyde activation and decreases total superoxide dismutase 
activity, indicating that seawater may cause oxidative stress in 
the lungs (17).

Autophagy and apoptosis. Autophagy is a vital process within 
the lysosomal degradation pathway. The predominant func-
tion of autophagy is the disposal of denatured proteins and 
damaged organelles (64). Furthermore, autophagy exhibits a 
homeostatic function at low basal levels and affects multiple 
critical cellular processes, including cell apoptosis, cell prolif-
eration and immune function (65). Promotion of autophagy 
is triggered by various stressors, such as hypoxia, oxidative 
stress and hyperosmosis, which causes abnormal activation 
of inflammatory reactions or programmed cell death (66). 
Increasing evidence indicates that autophagy participates in 
multiple lung diseases (65). Previous studies have indicated 
that seawater aspiration may activate autophagy  (24,25). 
Indeed, alveolar epithelial cells have been revealed to generate 
more autophagosomes following treatment with seawater (24) 
and notable upregulation of the autophagy protein, LC3‑II was 
detected (25). Furthermore, autophagy inhibition by 3‑methyl-
adenine significantly attenuates seawater‑inhalation‑induced 
effects by reducing the partial pressure of oxygen, increasing 
the lung weight coefficient and destroying the alveolar struc-
ture (24).

Seawater aspiration is able to induce apoptosis in alveolar 
epithelial cells  (13,14). Apoptosis may be initiated by two 
pathways: The extrinsic pathway, which is mediated through 
extracellular ligand binding, including Fas ligand (FasL), 
to specific receptors on the cell surface; and the intrinsic 
pathway, which is mediated by the mitochondria (67). Notably, 
seawater was revealed to activate the extrinsic pathway (13). A 
previous study indicated that, following seawater inhalation, 
Fas and FasL levels in the lung were increased to the extent 
where caspase‑8 and caspase‑3 cleavage was induced, which 
resulted in apoptosis (13). Alternative studies have identified 
that seawater induced apoptosis by significantly reducing 
the expression levels of the anti‑apoptotic molecule, B‑cell 
lymphoma 2 (13,14). Activation of Akt, which modulates cell 
survival and apoptosis, and extracellular signal‑regulated 
kinases 1 and 2 that are involved in the protective action 
against cell death, was indicated to be triggered immediately 
following seawater exposure (14).

Hypertonic stimulation. High osmotic pressure is able to 
inflict cell damage and result in the loss of normal physi-
ological function  (68). Intestinal epithelial cells produce 
inf lammatory mediators when exposed to hypertonic 
fluids, which promotes inflammatory bowel disease  (69). 
Furthermore, stimulation with hypertonic fluids may cause 
a series of pathological perturbations in various cells in the 
lung tissue, including lung epithelial and vascular endothelial 
cell shrinkage, apoptosis, neutrophil chemotaxis, blood‑gas 
barrier damage, as well as infiltration and secretion of 
inflammatory cytokines (12‑15).
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The osmosis‑sensitive transcription factor, osmotic 
response element‑binding protein (OREBP) is a member of the 
Rel transcriptional activators family, which has been previously 
described (69). OREBP transactivates several genes responsible 
for cell protection against injury derived from hyperosmosis, 
such as organic osmolytes (70), heat shock protein 70 (71) 
and vasopressin‑activated urea transporters (72). Although 
no direct evidence has demonstrated that seawater activates 
OREBP in ALI/ARDS, it has been reported that multiple 
OREBP regulators are altered in seawater‑drowning‑induced 
ALI/ARDS (27,68).

Increased ROS levels are necessary for OREBP activation; 
however, these levels may be decreased following ROS 
reduction by antioxidants (73). Actin cytoskeleton reorgani-
zation has been indicated in the activation of OREBP though 
RhoA/Rho kinase signaling (68). Burg et al (68) reported that 
seawater‑induced changes in p38, ataxia telagiectasia mutated 
kinase (ATM) and Phosphatidylinositol‑4,5‑bisphosphate 
3‑kinases (PI3Ks) regulated OREBP activity. p38 belongs 
to the mitogen‑activated protein kinases family and its 
inhibition has been revealed to partially reduce hyperto-
nicity‑induced activation of OREBP  (74). Furthermore, 
as does ATM, which participates in cell cycle regulation,  
DNA repair and cell survival. PI3Ks are intracellular lipid 
kinases may mediate OREBP activity though ATM (68). 
Therefore, we hypothesize that OREBP, an osmosis sensitive 
protein, is likely involved in seawater‑drowning‑induced 
ALI/ARDS.

Other possible mechanisms. Alternative possible mechanisms 
related to seawater‑inhalation‑induced ALI/ARDS include 
calcium oscillation and intracellular calcium overload. It has 
been indicated that high salt levels increase the production 
of pro‑inflammatory molecules and potentiate LPS‑induced 
macrophage activation  (75); therefore, seawater may elicit 
similar effects.

4. Potential treatments and therapeutic targets of 
seawater‑drowning‑induced acute lung injury

Hospital management. Although the pathophysiological and 
molecular mechanisms of ALI/ARDS are well‑acknowledged, 
no specific and effective treatments are currently available. 
The main treatment is supportive care, including pulmonary 
support, to avoid of complications (1).

Potential treatments suggested by animal experiments. 
Previous studies in rats and rabbits have indicated various 
treatments (as shown in Table  II) that may be effective 
for seawater inhalation induced ALI/ARDS (Table  II; 
14‑17,20,21,23,25,27,28,30,31). These therapeutic strate-
gies predominantly focus on modulating the over‑activated 
immunoreactions, such as dexamethasone, tanshinone II 
A and 1α, 25‑dihydroxyvitamin D3. Additionally, some 
therapeutic agents are able to alleviate increased edema, 
such as 17β‑Estradiol and tanshinone II A. However, many 
of these therapeutic strategies, including the therapeutic 
agents and their doses, have not been evaluated for safety in 
humans and the exact effects these may exert requires further  
investigation.

5. Conclusions

To conclude, seawater drowning is a complex injury process 
that involves pulmonary edema formation, inflammatory 
response enhancement, oxidative stress, hypertonic stimulation 
and pathogen invasion. In addition, other possible mechanisms 
require further exploration; these include the exact roles of 
OREBP, calcium oscillation and high salt concentrations. 
For potential treatments, further studies and confirmation are 
required.
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