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Abstract. Infection with hepatitis A virus (HAV) is a major 
cause of acute hepatitis globally and it is important to iden-
tify the mechanisms of HAV replication. Glucose-regulated 
protein 78 (GRP78) is an endoplasmic reticulum (ER) 
chaperone and serves a role in unfolded protein response 
pathways. Previous studies have demonstrated that GRP78 
functions as an endogenous antiviral factor. In the present 
study, two loss-of-function studies using GRP78 were 
completed to elucidate the role of GRP78 in HAV infection. 
HAV replication was observed to be enhanced by deficient 
GRP78 although GRP78-deficiency also led to lower 
expression of ER stress molecules downstream of GRP78. 
Therefore, GRP78 appears to be a potential novel defensive 
molecule against HAV in hepatocytes.

Introduction

The hepatitis A virus (HAV) belongs to the Hepatovirus 
genus of the Picornaviridae family. HAV is a positive 
single-stranded RNA virus ~7.6 kb in length. Although effec-
tive prophylactic vaccines have been available for a number 
of years, HAV infection remains a major cause of acute hepa-
titis globally. HAV infection may lead to acute liver failure, 
resulting in certain patients requiring a liver transplant (1,2). 
Therefore, it is important to improve the understanding of the 
pathogenesis of hepatitis A.

Glucose-regulated protein 78 (GRP78) is an endoplasmic 
reticulum (ER) chaperone and serves a role in signaling 
unfolded protein response (UPR). Viral infection induces 
ER stress and interferon responses, and certain viruses 

interact with GRP78 (3). GRP78 also acts as a master control 
interacting with the following three mediators: PKR-like 
ER kinase (PERK), activating transcription factor (ATF)-6 
and the ER transmembrane protein kinase/endoribonuclease 
(IRE1) (3). Downstream of IRE1 is X-box-binding protein 1 
(XBP1) and C/EBP homologous proteins, while downstream 
of PERK, growth arrest and DNA damage gene 34 exist. They 
function as effector molecules activated by ER stress (4).

A previous study (5) demonstrated that GRP78 functions 
as an endogenous anti-hepatitis B virus (HBV) factor, which 
works through the interferon-β-mediated signaling pathway in 
hepatocytes. Ma et al (5) reported that suppression of GRP78 
increases HBV replication and HBV antigen expression. 
Treatment with thapsigargin, an unfolded response inducer, 
may decrease hepatitis C virus replication (6). However, the 
role of GRP78 in HAV infection is not well known. The 
present study investigated the association between HAV 
replication and ER stress marker GRP78 expression.

Materials and methods

Cell lines and HAV strain. Huh7 human hepatoma cells, 
kindly provided by Professor R. Bartenschlager (University 
of Mainz, Mainz, Germany), were grown in Dulbecco's 
modified Eagle's medium (DMEM; Sigma‑Aldrich, Merck 
KGaG, Darmstadt, Germany) supplemented with 10% fetal 
calf serum (FCS; Sigma‑Aldrich; Merck KGaG) at 5% CO2 
and 37˚C (7). The HAV HA-11-1299 genotype IIIA strain 
was used for HAV infection in all experiments (8). This HAV 
cell culture-adapted strain was established in Department of 
Infection and Immunity, Jichi Medical University School of 
Medicine, Shimotsuke, Tochigi, Japan (8).

Infection with HAV in Huh7 and its derived cells. HAV 
infection was performed as previously described (8). 
Briefly, cells were plated for 24 h prior to infection at a 
density of 1x106 cells/well in 6-well plates (AGC Techno 
Glass, Shizuoka, Japan). The cells were washed twice with 
phosphate‑buffered saline (PBS) and infected with HAV 
HA-11-1299 genotype IIIA at a multiplicity of infection 
(MOI) of 0.1 in DMEM supplemented with 2% FCS (8). At 
24 h after infection, the cells were washed three times with 
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PBS, followed by the exchange of DMEM supplemented 
with 2% FCS. At 96 h after infection, total cellular RNA was 
extracted for the quantification of HAV RNA (8).

RNA extraction and quantification of HAV RNA. Cellular 
RNA extraction and the quantification of HAV RNA were 
performed as previously described (8). In brief, total cellular 
RNA was extracted using an RNeasy Mini kit (Qiagen 
GmbH, Hilden, Germany) according to the manufacturer's 
protocol. cDNA was synthesized using the Prime Script RT 
reagent (Perfect Real Time; Takara Bio, Inc., Otsu, Japan), 
and reverse transcription was performed at 37˚C for 15 min, 
followed by 85˚C for 5 sec. The primer sets for HAV and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
measurements have been described previously (8). Reverse 
transcription-quantitative polymerase chain reaction 
(RT‑qPCR) was performed as follows: 95˚C for 10 min, 
followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min, 
with Power SYBR Green Master mix (Applied Biosystems; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) on 
a StepOne Real‑Time PCR system (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). Specificity was confirmed 
by melting curve analysis. Each experiment was performed 
in triplicate. Data were analyzed based on the ∆∆Cq 
method (8,9).

Knockdown of GRP78. Small interfering RNA (siRNA) 
against GRP78 (si-GRP78) and control siRNA (si-C) were 
obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA). These siRNA were validated in a previous study (4). 
These siRNAs (50 nM) were electroporated into Huh7 cells 
using the GenePulser Xcell system (Bio-Rad Laboratories, 
Hercules, CA, USA) at 850 µF and 220 V, according to the 
manufacturer's protocol (10).

Knockout of GRP78 by clustered regularly interspaced 
short palindromic repeats (CRISPR)/CRISPR‑associated 
protein 9 (Cas9)‑mediated genome editing. Human GRP78 
CRISPR/Cas9 knockout plasmids were purchased from 
Santa Cruz Biotechnology, Inc. Huh7 cells were electropor-
ated with GRP78 CRISPR/Cas9 knockout plasmids using the 
GenePulser Xcell system. Surviving cells were reseeded at 
0.5 cells per well into a 96-well plate, 48 h after transfection. 
Expression of GRP78 in the expanded colonies was detected 
by western blot analysis using anti-GRP78 antibodies to 
select GRP78-depleted colonies. Clone #5 was subjected to 
HAV infection because GRP78 was well knocked out in this 
clone.

Western blot analysis. Western blot analysis was performed 
as previously described (4). In brief, cells were lysed 
with a sodium dodecyl sulfate (SDS) lysis buffer [0.5 M 
Tris‑HCl (pH 6.8), 10% SDS, 2‑mercaptoethanol, glycerol 
and 1% bromophenol blue]. All reagents were purchased 
from Sigma‑Aldrich; Merck KGaG. Protein concentra-
tion was determined by the Bradford method (4). Cellular 
proteins (5 µg per each well) were separated by a gradient 
gel of 5‑20% SDS‑PAGE and transferred onto nitrocel-
lulose membranes (ATTO Corporation, Tokyo, Japan). 
The membranes were probed with primary antibodies 

against GRP78 (#3177), ATF4 (#11815; all 1:1,000; all from 
Cell Signaling Technology, Danvers, MA, USA), ATF6 
(sc‑166659), XBP1 (sc‑80154) or GAPDH (sc‑25778; all 
1:1,000; all from Santa Cruz Biotechnology, Inc.) at 4˚C for 
16 h. Anti‑mouse IgG HRP‑linked antibody (NA931; dilu-
tion, 1:7,000; GE Healthcare Life Sciences, Chalfont, UK) 
or anti‑rabbit IgG HRP‑linked antibody (#7074; dilution, 
1:3,500; Cell Signaling Technology) were used as secondary 
antibodies, incubated at room temperature for 1 h. Proteins 
were visualized using an enhanced chemiluminescent ECL 
Western blot substrate (Amersham ECL Prime Western 
Blotting Detection Reagent; GE Healthcare Life Sciences) 
and scanned with an image analyzer LAS‑4000 (Fujifilm 
Corporation, Tokyo, Japan) and Image Gauge (version 3.1; 
Fujifilm) (4).

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation, unless otherwise stated. Statistical analyses 
were performed using Student's t-test. P<0.05 was considered 
to represent a statistically significant difference.

Results and Discussion

Effects of the knockdown of GRP78 on HAV replication. 
The effects of the knockdown of GRP78 on HAV replica-
tion were investigated. si-GRP78 and si-C were respectively 
transfected into Huh7 cells. These siRNAs were validated 
as in previous studies (4,11). At 24 h after transfection, cells 
were infected with HAV HA11‑1299 genotype IIIA at a MOI 
of 0.1. HAV RNA levels were measured 96 h after infection 
using RT‑qPCR. This confirmed that HAV replication was 

Figure 1. Effects of GRP78 knockdown on HAV replication in Huh7 cells. 
Cells were transfected with si-GRP78 or si-C 1 day prior to HAV infection. 
Cellular RNA was extracted and subjected to reverse transcription-quantita-
tive polymerase chain reaction 96 h after HAV HA-11-1299 genotype IIIA 
strain infection at a multiplicity of infection of 0.1. Data are expressed as 
the mean ± standard deviation. *P<0.05 vs. si-C-transfected controls using 
Student's t-test. All experiments were performed in triplicate. GRP78, 
glucose regulated protein 78; HAV, hepatitis A virus; si‑GRP78, siRNA 
against GRP78; si‑C, control siRNA.
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significantly increased 8.7‑fold in Huh7 cells transfected with 
si-GRP78, compared with those with si-C (Fig. 1).

Effects of knockout of GRP78 on HAV replication. To 
confirm the effects of GRP78 on HAV replication, GRP78 
was knocked out using a CRISPR/Cas9 system in Huh7 
cells (12-14), and whether HAV replication was increased 
by the knockout of GRP78 was examined. As observed 
in Fig. 2A, Huh7-knockout clones exhibited significant 
enhancement of HAV replication compared with the parent 
Huh7 cells. As presented in Fig. 2B, GRP78-knockout Huh7 
cells also had lower expression levels of ATF6, ATF4 and 
XBP1, which are located in ER stress pathways downstream 
of GRP78 and are of particular interest. Thus, the knockout 
of GRP78 appears to lead to reduced expression of other ER 
stress molecules such as ATF4, ATF6 and XBP1.

In the present study, HAV replication was increased by 
the knockdown or complete knockout of GRP78. A previous 
study (5) demonstrated that GRP78, an ER stress marker, is 
one of the intracellular antiviral factors against HBV. The 
silencing of GRP78 has also been shown to inhibit Dengue 
viral entry and multiplication in HepG2 cells (15).

A study involving GRP78-knockout mice (16) indicated 
that the level of XBP1s was reduced in GRP78-deficient 
mouse embryonic fibroblasts with impaired adipogenesis. 
In PERK-knockout mice (17) and XBP1-knockout mice (18), 
dysregulation of GRP78 occurred during the early ablation 
of these genes. In the present study in addition to a previous 
study (11), GRP78‑deficiency in hepatic cells leads to the 
downregulation of ATF4, ATF6 and XBP1.

Recent genome-editing technology makes it possible 
for Cas9 nucleases to be directed by short RNAs to 
induce precise cleavage at endogenous genomic loci in 
human cells and to be converted into a nicking enzyme to 

facilitate homology-directed repair with minimal mutagenic 
activity (13,14). Targeting HBV covalently closed circular 
DNA with CRISPR/Cas9 may efficiently inhibit viral repli-
cation (19,20). In general, there are two forms of antiviral 
agents, namely direct-acting antivirals and host-targeting 
agents (21). GRP78 is potentially a candidate host-targeting 
agent.

HAV infection may lead to the swelling of the perinuclear 
space and the ER (22). HAV interacts with the host cell and 
modifies the ER-Golgi intermediate compartment struc-
ture (23). HAV appears to induce ER stress and, confronted 
with the UPR, may lead to the type of apoptotic cell death 
observed with other picornaviruses (24). Coxackievirus A9 
infection of permissive cells requires GRP78 and major 
histocompatibility complex class I molecules, which are 
essential for virus internalization (25). It has been reported 
that the expression of GRP78 is activated by an enterovirus 
71-dependent mechanism and that enterovirus 71 infection 
induces ER stress, but modifies the outcome to assist viral 
replication (26).

The results of the present study support the recent 
study (27) and indicate that GRP78 is an attractive target for 
controlling HAV infection. In conclusion, GRP78 may be an 
intracellular anti-HAV factor, and is a novel line of defense 
against HAV in hepatocytes.
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Figure 2. Effects of GRP78 KO on HAV replication in Huh7 cells. (A) Effect of KO of GRP78 on HAV replication in control Huh7 cells and GRP78 KO cells. 
Cellular RNA was extracted and subjected to reverse transcription-quantitative polymerase chain reaction 96 h after HAV HA-11-1299 genotype IIIA strain 
infection at a multiplicity of infection of 0.1. Data are expressed as mean ± standard deviation. *P<0.05 vs. si‑C‑transfected controls using Student's t-test. All 
experiments were performed in triplicate. (B) Effects of knockout of GRP78 on endoplasmic reticulum stress molecules. Western blot analysis was performed 
using specific primary antibodies. Clone #5 was subjected to HAV infection. GRP78, glucose regulated protein 78; HAV, hepatitis A virus; KO, knockout; si‑C, 
control siRNA; ATF, activating transcription factor; XBP, X‑box‑binding protein.
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