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Abstract. The aim of the present study was to investi-
gate key genes in fibroids based on the multiple affinity 
propogation‑Krzanowski and Lai (mAP‑KL) method, which 
included the maxT multiple hypothesis, Krzanowski and 
Lai (KL) cluster quality index, affinity propagation (AP) 
clustering algorithm and mutual information network (MIN) 
constructed by the context likelihood of relatedness (CLR) 
algorithm. In order to achieve this goal, mAP‑KL was 
initially implemented to investigate exemplars in fibroid, 
and the maxT function was employed to rank the genes of 
training and test sets, and the top 200 genes were obtained for 
further study. In addition, the KL cluster index was applied 
to determine the quantity of clusters and the AP clustering 
algorithm was conducted to identify the clusters and their 
exemplars. Subsequently, the support vector machine (SVM) 
model was selected to evaluate the classification perfor-
mance of mAP‑KL. Finally, topological properties (degree, 
closeness, betweenness and transitivity) of exemplars in MIN 
constructed according to the CLR algorithm were assessed 
to investigate key genes in fibroid. The SVM model validated 
that the classification between normal controls and fibroid 
patients by mAP‑KL had a good performance. A total of 9 
clusters and exemplars were identified based on mAP‑KL, 
which were comprised of CALCOCO2, COL4A2, COPS8, 
SNCG, PA2G4, C17orf70, MARK3, BTNL3 and TBC1D13. 
By accessing the topological analysis for exemplars in 
MIN, SNCG and COL4A2 were identified as the two most 
significant genes of four types of methods, and they were 
denoted as key genes in the progress of fibroid. In conclu-
sion, two key genes (SNCG and COL4A2) and 9 exemplars 

were successfully investigated, and these may be potential 
biomarkers for the detection and treatment of fibroid.

Introduction

Affinity propagation (AP) is a relatively new clustering algo-
rithm that was introduced by Frey and Dueck (1) to determine a 
so‑called exemplar for clustered data, which is a sample that is 
most representative for the respective cluster. It works for any 
meaningful measure of similarity between data samples, but 
does not require a vector space structure and the exemplars are 
selected amongst the data samples observed and not computed 
as hypothetical averages of cluster samples (2). These advan-
tages make AP clustering particularly suitable for applications 
in bioinformatics, which has been verified by previously 
published studies (3‑5). For instance, Kiddle et al (3) success-
fully revealed transcriptional modules in Arabidopsis thaliana 
based on temporal clustering of gene expression data by AP.

Prior to controlling the quality of the partition of a 
known number of clusters with AP, Sakellariou et al  (6) 
supplemented the Krzanowski and Lai (KL) index  (7) to 
evaluate the optimum number of clusters, by retaining maxT 
function in order to rank the genes in microarray data. This 
combination offers a more meaningful way of investigating 
exemplars or informative genes for disease and the relative 
target treatment. However, genes typically work together with 
other genes in complex processes associated with tumors. A 
network‑based approach is capable of extracting informative 
and notable genes dependent on biomolecular networks. For 
instance, a protein‑protein interaction network, co‑expres-
sion network and mutual information network (MIN) rather 
than individual genes (8,9).

Therefore, the present study combined multiple (m) AP‑KL 
and MIN to investigate key genes in fibroids, which made the 
results, more reliable. mAP‑KL was initially implemented to 
investigate clusters and exemplars in fibroid, and the support 
vector machines (SVMs) model was selected to evaluate the clas-
sification performance of mAP‑KL. MIN for cluster genes was 
constructed based on the context likelihood of relatedness (CLR) 
algorithm, and topological analysis (degree, closeness, between-
ness and transitivity) of exemplars was performed to investigate 
key genes in fibroid. Key genes may be potential biomarkers for 
further prognostic and therapeutic insights for fibroid.
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Materials and methods

Microarray data. In the present study, the gene expression data 
for the fibroid (access number E‑GEOD‑64763) originated 
from the A‑AFFY‑37‑Affymetrix GeneChip Human Genome 
U133A 2.0 [HG‑U133A_2] Platform of the ArrayExpress data-
base (ebi.ac.uk/arrayexpress/), and shared a set of 25 fibroid 
samples that had been compared to 29 normal controls. The 
total samples were divided into two sets according to a ratio of 
3:2, and 32 were kept to build a balanced training set (16 fibroid 
and 16 normal samples). In total, 22 were used to construct a 
test set for the purpose of validating the classification models 
(9 fibroid and 13 normal samples). In E‑GEOD‑64763, a total 
of 22,277 probes were detected.

To further control the quality of data and eliminate batch 
effects caused by experimental parameters and other factors, 
all data underwent mean‑centering (10), z‑score (11), quan-
tile (12) and cyclic loess (13) normalization across samples, 
and log2 transformation was subsequently performed on the 
normalized data. The preprocessed results are illustrated in 
Fig. 1 and a better association was identified between the 
density and intensity of genes following cyclic loess prepro-
cessing compared with that of raw data and other methods. 
Therefore, the preprocessed training set and test set data 
underwent further analysis for fibroid.

mAP‑KL. A data‑driven and classifier‑independent hybrid 
feature selection method was implemented, mAP‑KL, which 
included maxT multiple hypothesis testing (14), KL cluster 
quality index (7) and the AP clustering algorithm (1), in order 
to select a small subset of informative genes of fibroid. The 
hypothesis was that among the statistically significant genes 
there should be clusters of genes that share similar biological 
functions correlated with the disease investigated, thus, instead 
of keeping a number of the top ranked genes, it would be 
more appropriate to define and keep a number of gene cluster 
exemplars (6). Subsequently, the index of KL was applied to 
determine the number of clusters solely on the fibroid samples 
of the training test set. Finally, the AP clustering method was 
engaged to detect clusters and provide a list of the most infor-
mative genes of each cluster, the so‑called exemplars.

MaxT hypothesis testing. In the present study, the maxT 
function, which computes permutation adjusted P‑values for 
step‑down multiple testing procedures (15), was employed to 
rank the genes of the training set and the top N genes were then 
reserved for further exploitation (16). The family‑wise error rate 
was evaluated in order to correct P‑values using the Wilcoxon 
rank sum statistic with permuted class labels. Furthermore, the 
maximum Wilcoxon statistic was recorded for 1,000 random 
permutations and the P‑value for each gene was estimated as 
the proportion of the maximum permutation‑based t‑statistics 
that were greater than the observed value (17).

KL cluster quality index. Prior to clustering analysis with 
AP, KL as induced in the ClusterSim package version 0.45‑1 
(University of Economics, Wroclaw, Poland) was utilized to 
define the number of clusters, which in essence would be the 
number of representative genes. The KL was calculated by the 
following formula:

Of which 

Where k was the number of clusters and Wk represented 
the within‑cluster sum of squared errors. The clusters that 
met a threshold of gene numbers <50 were regarded as KL 
clusters.

AP clustering algorithm. An AP clustering method included 
in the APCluster package version  1.3.2 (Johannes Kepler 

Figure 1. Preprocessing for microarray data by mean centering, z‑score, 
quantile and cyclic loess methods.
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University, Linz, Austria) identifies an exemplar for each cluster, 
which was most representative for this cluster. It regards each 

Table I. Continued.

Number	 Gene

53	 EGFR
54	 HTATIP2
55	 PDGFC
56	 PCBP2
57	 SULT1A1
58	 GCN1L1
59	 COL5A2
60	 COPS8
61	 FBXL7
62	 LMBRD1
63	 DPT
64	 PCNA
65	 ADGRE5
66	 PARVB
67	 SULT1A2
68	 ACAN
69	 KLF4
70	 PHLDA3
71	 BMP7
72	 SERPINF1
73	 ADD3
74	 VPS13D
75	 MST1
76	 USP3
77	 SERINC5
78	 LRP5
79	 FAM46A
80	 PA2G4
81	 AIM1
82	 TIA1
83	 SYT11
84	 MAPK10
85	 IGFBP6
86	 KLF4
87	 FAM131B
88	 C1R
89	 FSD1
90	 CADM1
91	 SYT11
92	 ADIRF
93	 R3HCC1
94	 SMC6
95	 PIK3R1
96	 ARRB1
97	 SLC48A1
98	 TNFRSF10B
99	 DYRK2
100	 MYO7A

Table I. Top 100 genes based on maxT multiple hypothesis 
testing.

Number	 Gene

  1	 IGSF3 
  2	 NAV2 
  3	 KIF5C 
  4	 CAPN6 
  5	 FMO4 
  6	 BAX 
  7	 EPB41L2 
  8	 KCNS3 
  9	 COL4A1 
10	 SYBU 
11	 GPSM2 
12	 ABLIM3 
13	 CAMKMT 
14	 POPDC2 
15	 MAP4K4 
16	 CALCOCO2 
17	 TIMM44 
18	 NPDC1 
19	 HEPH 
20	 ANXA1 
21	 COL4A2 
22	 KCNN1 
23	 PIK3R1 
24	 COPS8 
25	 BCAN 
26	 ITM2C
27	 C9orf3
28	 DCHS1
29	 ADGRL1
30	 ALDH2
31	 PHYHIP
32	 FAM63B
33	 CYR61
34	 LGALS3
35	 BCAN
36	 SNCG
37	 PLAT
38	 UST
39	 VAMP2
40	 SAV1
41	 COL9A2
42	 RPL38
43	 GATA2
44	 TEX10
45	 IRF2
46	 CBX8
47	 MST1
48	 PRR5L
49	 PXDN
50	 PRKD1
51	 PEX7
52	 TMEM246
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data point as a node in a network and recursively transmits 
real‑valued messages along edges of the network until a good 
set of exemplars and corresponding clusters emerge (2). In this 
final step, n (n=k, the KL index) clusters were explored among 
the top N genes according to the pre‑defined number, and a list 
of n exemplars was obtained (18). These were expected to form 
a classifier to discriminate between the normal and fibroid 
classes in a test set that was formulated through retaining only 
those n genes required to proceed with the classification.

Classification and evaluation. In the present study, SVM (19) 
with linear kernel (20) was applied to evaluate the perfor-
mance of mAP‑KL. Initially, a five‑fold cross‑validation was 
conducted on the training set to evaluate the potential clas-
sification strength of the models, and then its prediction was 
computed on a separate test set.

For the purpose of accessing the classification results, 
several measures were selected, which included the area under 
the receiver operating characteristics curve (AUC), the true 
negative rate (TNR), true positive rate (TPR) and the Matthews 
coefficient correlation classification (MCC). In detail, accuracy 
(ACC) was one of the most popular performance measures in 
machine learning classification; however, it did not take into 
account the nature of the incorrect predictions. Therefore, the 
AUC was used, as it had been introduced as a better measure for 
evaluating the predictive ability of machine learners compared 
with ACC (21). Additionally, TNR or specificity represented the 
ratio of correctly classified negatives to the actual number of 
negatives, as well as TPR or sensitivity, which was defined to be 
the ratio of positives correctly classified to the actual number of 
positives (22). Furthermore, MCC was a measure of the quality 
of binary classification and considered the true and false positive 

and negatives (23). The combination of those measures provided 
an adequate overview of the classification's performance.

MIN construction and topological analysis
MIN construction. MIN typically relied on the estimation of 
mutual information (MI) between all pairs of variables, and 
has previously attracted the attention of the bioinformatics 
community for the inference of very large networks (24,25). 
MIN construction for cluster related top N genes was 
comprised of three steps. The first step was the computation 
of the MI matrix (MIM), a square matrix whose i, j‑th element 
was the mutual information between the random genes Xi and 
Xj, and q was a probability measure.

The second step was the computation of an edge score for 
each pair of nodes by the algorithm. The CLR algorithm was 
an extension of the relevance network approach (25) and the 
MI for each pair of genes was computed and a score related to 
the empirical distribution of the MI values was derived (26). 
In particular, instead of considering the information I (Xi; Xj) 
between genes Xi and Xj, it took into account the edge score:

Where 

Table II. Clusters identified by the mAP‑KL method for fibroids.

Cluster	 No. of genes 	 Genes

1	 31	 NAV2, CALCOCO2, NPDC1, PLAT, RPL38, COPS8, LMBRD1, PCNA, SERPINF1, SERINC5,
		  KLF4, C1R, ADIRF, R3HCC1, FNBP1L, RTN3, YARS, ABLIM1, IVNS1ABP, TRPS1, ADD3,
		  C1S, IFT20, UBE2L6, SMARCA2, LOXL2, SUCLG2, RPL38, BCAM, H1FX, MAFB
2	 12	 COL4A1, COL4A2, PDGFC, COL5A2, FN1, COL3A1, PALLD, SOX4, CST3, CD74, SPARC, FN1
3	 21	 HEPH, ANXA1, PIK3R1, COPS8, ITM2C, C9orf3, DCHS1, ALDH2, CYR61, LGALS3, PXDN,
		  FBXL7, ADGRE5, PIK3R1, FYN, SMS, ENAH, SPCS3, SLC24A3, GNG11, CYR61
4	 18	 SNCG, HTATIP2, DPT, SULT1A2, KLF4, AIM1, ARRB1, SLC48A1, NPR1, TPSAB1, HFE, RAC2,
		  RPS11, TOE1, SLC7A6, TESC, VRK3, SERPINB1
5	 33	 KIF5C, CAPN6, EPB41L2, MAP4K4, ADGRL1, VAMP2, SAV1, TEX10, IRF2, PRKD1, GCN1,
		  PHLDA3, ADD3, USP3, FAM46A, PA2G4, TIA1, SYT11, MAPK10, IGFBP6, SMC6,
		  TNFRSF10B, DYRK2, LRP12, NUDT3, TFAP2C, INPP1, ABCC1, ECI2, FLOT2, PPARD, GPSM2,
		  TFPI
6	 13	 BAX, GPSM2, TIMM44, UST, COL9A2, LRP5, CADM1, FAAP100, AEN, TTC27, GSTM5,
		  KNOP1, C1QL1
7	 20	 IGSF3, KCNS3, POPDC2, GATA2, PCBP2, SULT1A1, FAM131B, SYT11, NRN1, ENOX2, 
		  NUDT11, TDRD7, MTCL1, ALDH1A1, RARRES3, MARK3, ST3GAL2, ST3GAL1, SLC46A3
8	 22	 FMO4, ABLIM3, CAMKMT, KCNN1, FAM63B, BCAN, CBX8, PRR5L, PARVB, ACAN, BMP7,
		  VPS13D, FSD1, MYO7A, CDK18, TMEM59L, FLT3LG, NPR1, PLCE1, BTNL3, POLG, CSPP1
9	 18	 SYBU, BCAN, RTP4, PHYHIP, MST1, PEX7, TMEM246, EGFR, MST1, PTK2B, TBC1D13,
		  RALGDS, SP140L, ZMYND8, CCDC22, CLCN7, PIDD1, NKX3‑1,
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Of which µi and σi represented the sample mean and stan-
dard deviation of the empirical distribution of the values I (Xi; 
Xj), respectively.

The final step was to input the genes and edge scores into 
the igraph software package (27) and to visualize the MIN.

Topological analysis of MIN. In order to investigate the 
biological functions and significance of nodes in the MIN, 
the importance was characterized using indices of topological 
analysis [degree (28), closeness (29), betweenness (30) and 
transitivity (31)]. The degree quantifies the local topology of 
each gene by summing up the number of its adjacent genes. 
Closeness centrality was a measure of the average length of 
the shortest paths to access all other genes in the network. 
Betweenness centrality was a shortest paths enumeration‑based 
metric in graphs for determining how the neighbors of a node 
were interconnected, and was considered the ratio of the node 
in the shortest path between two other nodes. Furthermore, 
transitivity, a measure for clustering coefficient, gave an indi-
cation of the clustering in the whole network.

Results 

In the present study, the top 200 genes in the gene expres-
sion profile were reserved based on maxT multiple hypothesis 
testing for further exploitation, and the top 100 genes are listed 
in Table I. Following the AP‑KL, an elaborate set of analytical 
clusters with SVM on the training set was executed, and vali-
dation was conducted on a separate test set in order to evaluate 
its performance across the gene expression data. Meanwhile, 
MIN for the top 200 genes was constructed and its topological 
properties were identified in order to investigate the roles and 
significance of cluster genes and exemplars obtained from 
mAP‑KL in fibroid.

Clusters and exemplars. By performing the AP clustering 
algorithm in conjunction with KL cluster quality for the top 
200 genes, the quantity of clusters with <50 genes was 9, 
whose gene compositions are displayed in Table II. In addition, 
the gene compositions of different clusters were varied, and 
amongst them cluster 5 contained the highest number of genes 

Figure 2. Mutual information network for clusters related the top 200 genes of fibroid. There were 174 nodes and 820 edges, where nodes represented genes, and 
edges were the interactions between two genes. The yellow nodes, CALCOCO2, COL4A2, COPS8, SNCG, PA2G4, C17orf70, MARK3, BTNL3 and TBC1D13, 
stood for exemplars of nine clusters identified via the multiple affinity propogation‑Krzanowski and Lai method.
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(33 genes), whereas, only 12 genes were present in cluster 2. 
Furthermore, for each cluster, an exemplar was detected on the 
basis of the AP clustering method, which may be important 
in the progress of fibroid. From cluster 1 to 9, their exem-
plars were CALCOCO2, COL4A2, COPS8, SNCG, PA2G4, 
C17orf70, MARK3, BTNL3 and TBC1D13, respectively.

Evaluation by the SVM model. The test set consisted of the 
9 exemplars. SVM with linear kernel was used to possess the 
performance of mAP‑KL. This method achieved the highest 
classification scores (AUC=1.00, TNR=1.00, TPR=1.00 and 
MCC=1.00); therefore, it was concluded that the classifica-
tion results were almost ideal during the SVM evaluation, 

Figure 3. Sub‑network for key genes (SNCG and COL4A2) extracted from the mutual information network, in which a total of 149 nodes and 222 edges were 
mapped. Nodes represented genes, and edges were the interactions between two genes. The yellow nodes were key genes of fibroid.

Table III. Topological properties of exemplars in mutual information network.

Exemplar	 Degree	 Closeness	 Betweenness	 Transitivity

CALCOCO2	 104	 174.81	 3.54	 1022
COL4A2	 110	 237.21	 3.71	 1075
COPS8	 88	 147.27	 3.29	 657
SNCG	 127	 263.29	 3.89	 1122
PA2G4	 91	 152.57	 1.83	 35
C17orf70	 85	 155.03	 0.50	 0
MARK3	 93	 149.75	 3.05	 44
BTNL3	 87	 131.67	 3.01	 0
TBC1D13	 90	 158.98	 3.55	 897
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and inferred that the mAP‑KL methodology that combined 
ranking‑filtering and cluster analysis was feasible and suitable 
for identifying exemplars of fibroid.

Topological analysis of MIN. The ideal evaluation of the clas-
sification for the mAP‑KL method gave more confidence to 
the significance of 9 exemplars in fibroid, whereas those were 
also expected to form a classifier or module that is distinct 
between the normal controls and fibroid patients. Therefore, 
an MIN was constructed for the top 200 genes associated 
with cluster genes. A total of 178 genes were mapped to the 
MIN and 820 interactions were observed (Fig. 2). The topo-
logical properties of the 9 exemplars in the MIN are shown 
in Table III. The results for exemplars were inconsistent due 
to different methods, except for SNCG and COL4A2. Notably, 
the degree, closeness, betweenness and transitivity of SNCG 
were the highest among exemplars with 127, 263.29, 3.89 and 
1122, separately. The second highest results were observed in 
COL4A2 with a degree, closeness, betweenness and transitivity 
of 110, 237.21, 3.71 and 1,075, respectively. Therefore, the two 
exemplars were more important for fibroid, thus we mined 
their connections from the MIN. The two genes were able to 

interact with each other and build a small module (Fig. 3) with 
149 genes and 222 interactions. Furthermore, a MIN with 174 
nodes and 1,002 interactions for the top 200 ranked genes in 
the microarray data was demonstrated in Fig. 4.

Discussion

Fibroid, also known as uterine leiomyoma or uterine fibroid, is 
begin smooth muscle neoplasm of the uterus and the most wide-
spread gynecological problem amongst women (32). Important 
symptoms of fibroid include abnormal uterine bleeding, 
heavy or painful menstrual periods, abdominal discomfort or 
bloating, painful defecation, back ache, urinary frequency or 
retention, and in some cases, infertility (33). Although surgical 
staging and nomograms may help predict the clinical outcome, 
the five‑year survival rate for uterus‑confined disease remains 
<50% (34). Therefore, understanding the molecular biology 
and investigating potential biomarkers of fibroid may provide 
further prognostic and therapeutic insights.

In the present study, nine exemplars were investigated for 
clusters, which were obtained from the top 200 genes via the 
mAP‑KL method, including CALCOCO2, COL4A2, COPS8, 

Figure 4. MIN for the top 200 ranked genes in the microarray data. There were 174 nodes and 1,002 interactions, where nodes represented genes, and edges 
were the interactions between two genes. The pink nodes were hub genes with top 5% degree distribution of the MIN. MIN, mutual information network.



CHEN et al:  INVESTIGATION OF KEY GENES IN FIBROIDS258

SNCG and PA2G4. Subsequently, the SVM model was used 
to assess the performance of the mAP‑KL method to clas-
sify normal controls and fibroid patients, and the results 
demonstrated that there was a good classification, which 
indicated the feasibility of the mAP‑KL method to identify 
exemplars in fibroid. In order to further explore the biological 
significance of exemplars, the topological analysis (degree, 
closeness, betweenness and transitivity) for MIN constructed 
by the CLR algorithm were conducted and two key genes, 
SNCG and COL4A2, were obtained resulting from their 
better topological properties compared with the other seven 
genes.

Constructing the MIN for the cluster related top 200 genes 
and building a network for them allowed for the determination 
of the activities of the genes in the network. Fig. 4 shows the 
MIN for the 200 top ranked genes in the microarray data, but 
four types of topological properties had no intersections and 
it may be inferred that this network was not as strict as the 
cluster MIN. In general, the degree was a familiar index, thus 
genes with a quantile of the top 5% degree distributions were 
defined as hub genes. Therefore, 8 hub genes were obtained 
in total, which included RARRES3, RPL38, ADD3, C1R, 
KLF4, SULT1A1, SNCG and C1S. In addition, there were great 
differences between exemplars and hub genes, except for one 
common gene, SNCG.

SNCG is a member of the synuclein neuronal protein family 
along with SNCA and SNCB, and is highly tissue‑specific. In 
addition, it is expressed at presynaptic terminals in the brain 
and the peripheral nervous system (35). It promotes migration, 
invasion and metastasis of tumor cells (36), which have proven 
that expression of SNCG protein is elevated in the advanced 
stages of various types of cancers, including ovarian (37), 
lung, liver (38), esophagus (39), colon (38) and in particular, 
breast (40,41). For example, Singh and Jia (41) revealed that 
SNCG protein expression was correlated with pathological 
factors, including lymph node metastasis, tumor size and 
stage, and follow‑up revealed that the survival rate of patients 
with SNCG‑positive protein expression were significantly 
lower than the patients with negative expression for 438 cases 
with breast cancer. Furthermore, it had been demonstrated that 
overexpression of SNCG was a predictor for aggressive tumor 
behavior and adverse outcome in patients with endometrial 
cancer (42), and was a prognostic tool and therapeutic target in 
uterine serous carcinoma (43). However, there is currently no 
published research reporting the association between SNCG 
and fibroids, although it correlated with other uterine‑associ-
ated cancers as described above. To the best of our knowledge 
the present study proposed for the first time that SNCG acts as 
a key role in fibroid.

COL4A2 was the other key gene for fibroids, which was 
implicated in extracellular matrix formation and encoded 
for collagen α, which is one of the main components of the 
endothelial basement membrane  (44). Previous research 
reported that COL4A2 was overexpressed in fibroid, and that 
it displayed an anti‑angiogenic gene expression profile in 
fibroids when compared with adjacent normal myometrium. 
These observations may explain the reduced microvascular 
density observed in fibroids relative to the myometrium (45) 
and was in accordance with the reduced microvessel density 
based on anti‑von Willebrand factor immunostaining that was 

observed in fibroid with respect to normal myometrium (46). 
Additionally, Gilden et al (47) suggested that protein expres-
sion of COL4A2, versican and fibromodulin was increased 
in untreated leiomyoma cells compared with untreated 
patient‑matched myometrial cells. Therefore, COL4A2 was 
differentially expressed between normal controls and fibroids.

In conclusion, nine exemplars were identified based on the 
mAP‑KL method, and two key genes (SNCG and COL4A2) 
were investigated according to a topological analysis of MIN. 
These genes may be potential biomarkers for the detection and 
therapy of fibroids. Furthermore, the present study may give an 
insight for future studies associated with fibroid.
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