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Abstract. The proliferation and migration of Schwann 
cells (SCs) are key events in the process of peripheral nerve 
repair. This is required to promote the growth of SCs and is 
a challenge during the treatment of peripheral nerve injury. 
Baicalin is a natural herb‑derived flavonoid compound, which 
has been reported to possess neuroprotective effects on rats 
with permanent brain ischemia and neuronal differentiation 
of neural stem cells. The association of baicalin with neuro-
protection leads to the suggestion that baicalin may exert 
effects on the growth of SCs. In the present study, the effects 
of baicalin on SCs of RSC96 were investigated. RSC96 SCs 
were treated with various concentrations of baicalin (0, 5, 
10 or 20 µM) for 2, 4 and 6 days. Cell attachment, viability 
and gene expression were monitored via the MTT assay and 
reverse transcription‑quantitative polymerase chain reaction. 
The gene expression levels of several neurotrophic factors, 
such as glial cell‑derived neurotrophic factor, brain‑derived 
neurotrophic factor and ciliary neurotrophic factor, which 
are considered important factors in the process of never 
cell regeneration, were detected. The results indicated that 
baicalin was able to promote the viability of RSC96 SCs in 
a dose‑dependent manner and the concentration of 20 µM 

of baicalin exhibited the greatest cell viability and gene 
expression of the studied neurotrophic factors. The present 
findings suggested that baicalin likely affects SCs metabo-
lism, through modulating the expression of neurotrophic 
factors. To conclude, the present study indicates that baicalin 
may be potential therapeutic agent for treating peripheral 
nerve regeneration.

Introduction

Peripheral nerve injuries occur with a high frequency, 
accounting for up to 3% of all trauma injuries (1,2). In the 
majority of cases, surgical intervention is necessary due to 
the self‑regenerative capability of nerves; however, this is 
time‑consuming and incomplete, as described in (3), which 
may cause functional impairment. Although autograft trans-
plantation is the first choice of treatment, the shortage of donor 
resources and the repercussions of this invasive treatment 
to the donor present as major limitations (4,5). However, the 
discovery of an alternative therapy to replace autografts and 
treat peripheral nerve injury has presented as a challenge.

Among the typical approaches for treating nerve crush 
injury, Schwann cell (SC)‑based therapy is highly recom-
mended (6). SCs, the principle glia in the peripheral nervous 
system, have an important role in the development, function 
and regeneration of peripheral nerves (7). Following periph-
eral nerve injury, SCs aid in phagocytizing the damaged end of 
the axon and provide physical support to regenerate axons by 
forming ‘Bands of Büngner’. Furthermore, SCs create a suit-
able axonal growth environment by producing neurotrophic 
factors, such as brain‑derived neurotrophic factor (BDNF), 
glial cell‑derived neurotrophic factor (GDNF), ciliary neuro-
trophic factor (CNTF) and neurotrophic factors‑3, ‑4/5 and ‑6 
(NT‑3, NT‑4/5, and NT‑6, respectively) (8‑12). However, the 
slow growth rate of SCs is reported to be one of the major 
limitations of SC application in regenerative medicine (13). In 
addition, elevating the proliferation ability of SCs is important 
for constructing tissue‑engineered nerves  (6). As a result, 
researchers have been exploring various promoting agents for 
SCs proliferation, such as interleukin‑1β (14) and tanshinone 
IIA (15).
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Utilizing plant‑derived traditional Chinese medicines to 
treat various types of diseases has a long history in East Asian 
countries, such as China, Korea and Japan (16). Furthermore, 
some western medicines are derived from major constituent 
of traditional Chinese medicine (17) Scutellaria baicalensis 
Georgi (Huangqin in Chinese), a traditional Chinese medicine, 
has been used to treat inflammation, fever, ulcers and cancer 
for hundreds of years (18‑20) and a recent study has reported 
that flavonoids from the stems and leaves of S. baicalensis 
Georgi have neuroprotective effects (21). Baicalin, one of the 
major flavonoid isolated from the root of S. baicalensis, has a 
variety of biological functions, including anti‑inflammatory, 
anti‑oxidant and anti‑apoptotic activities (22‑24). Previous 
studies have revealed that baicalin had neuroprotective 
effects on permanent brain ischemia in rats  (25) and was 
able to promote the neuronal differentiation of neural stem 
cells (26,27). However, little is known on whether baicalin 
is capable of exerting positive or negative effects on SC 
proliferation and differentiation. The present study aimed to 
investigate the effects of different concentrations of baicalin 
on the viability of RSC96 SCs. The results revealed that 
baicalin was able to promote the viability of RSC96 SCs at a 
particular concentration.

Materials and methods

Cell culture. RSC96 SCs were purchased from China Center 
for Type Culture Collection (Wuhan, China) and cultured 
in Dulbecco's modified Eagle medium (DMEM)‑F12 (1:1; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (Hangzhou Sijiqing 
Biological Engineering Materials Co., Ltd., Hangzhou, China) 
and 1% of penicillin/streptomycin in an incubator at 37˚C 
with 95% air and 5% CO2. Baicalin (Chengdu Best‑Reagent 
Chemical, Co., Ltd., Chengdu, China) was dissolved in 0.2% 
dimethyl sulfoxide (DMSO) and prepared as a stock solution 
with a final concentration of 100 mM and stored at ‑20˚C. The 
stock solution was diluted with culture medium immediately 
prior to treatment.

Cytotoxicity assay. To determine the level of cytotoxicity of 
baicalin on RSC96 SCs, cell cytotoxicity was detected with 
a MTT assay (Gibco; Thermo Fisher Scientific, Inc.) method. 
RSC96 SCs were seeded in 96‑well plates at a density of 
1,000 cells/well and the cell viability was determined by using 
the MTT assay on day 3. Following treatment with various 
concentrations of baicalin (0 to 1,000 µM where 0 µM was 
used as a control) for 3 days, 20 µl MTT (5 mg/ml) was added 
to each well and plates were incubated in the dark at 37˚C 
for 4 h. Once MTT was removed, cells were treated with 
200 µl DMSO (Amresco, LLC, Solon, OH, USA) for crystal 
solubilization. The spectrometric absorbance at 570 nm was 
read using Multiskan™ GO microplate spectrophotometer 
(Thermo Fisher Scientific, Inc., USA).

Measure of cell viability via the MTT assay. RSC96 SCs were 
seeded in 96‑well plates at a density of 1,000 cells/well and the 
cell viability was determined by using the MTT assay on days 
2, 4, and 6. Once cells were treated with various concentration 
of baicalin (5, 10 and 20 µM), MTT solution (5 mg/ml) was 

added and the cells were incubated for 4 h at 37˚C. Following 
removal of the incubation medium, the dark blue formazan 
crystals formed in the intact cells and all samples were solu-
bilized with 200 µl DMSO. Subsequently, the absorbance 
was measured at 570 nm on a microplate spectrophotometer 
(Thermo Fisher Scientific, Inc.).

Measure of cell viability via fluorescein diacetate staining. Live 
RSC96 SCs were examined using fluorescein diacetate (FDA) 
on days 2, 4 and 6. A stock solution of FDA (Sigma‑Aldrich; 
Merck Millipore, Darmstadt, Germany) was prepared by 
dissolving 5 mg FDA in 1 ml acetone. Staining solution was 
prepared by mixing 5 ml PBS with 8 µl FDA stock solution. 
Once the culture medium was removed, 0.5 ml staining solution 
was added and the cells were stained in the dark for 5 min. The 
evaluation of viability was conducted by fluorescent microscopy 
(magnification, x100, Nikon Corporation. Tokyo, Japan). ImageJ 
software (version 1.48v; National Institutes of Health, Bethesda, 
MA, USA) was used for quantitative analysis of the fluorescein 
diacetate stained cells.

Hematoxylin and eosin staining. RSC96 SCs were grown at 
1x105 cells/ml in DMEM/F12 (1:1) with 0, 5, 10 or 20 µM 
of baicalin for 2, 4, and 6 days on a 24‑well plate with a 
coverslip set at the bottom. Following fixing in 95% ethanol 
for 20 min, the coverslip contents were washed in PBS twice, 
immersed in hematoxylin for 2 min, and washed in water for 
1 to 3 sec to remove hematoxylin. The coverslip was washed 
in 1% hydrochloric acid and ethanol for 2 to 3 sec, water for 
10 sec, ammonia for 15 sec and running water for 10 sec. Eosin 
staining was performed for 1 min and the stain was removed 
by washing with water for 2 sec, 80% ethanol for 2 sec, 95% 
ethanol for 5 min and 100% ethanol for 10 min. Subsequently, 
the coverslip was air‑dried and mounted with neutral gum for 
light microscopy analysis. Images of five random fields of the 
culture were captured (magnification, x100).

Reverse transcription‑quantitative polymerase chain reac-
tion (RT‑qPCR). Total RNA was extracted from RSC96 SCs 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.), following the manufacturer's instructions. cDNA 
was synthesized from reverse transcribed total RNA using 
a PrimeScript RT reagent kit with gDNA Eraser (Takara 
Biotechnology Co., Ltd., Dalian, China). Briefly, residual 
DNA was removed as follows: 10 µl total volume of 2 µl 5x 
gDNA eraser buffer, 1 µg total RNA, 1 µl gDNA eraser and 
RNase‑free dH2O at 42˚C for 2 min. For reverse transcription, 
20 µl total volume was used with 10 µl of the reaction solution 
as described, 4 µl 5x PrimeScript buffer 2, 1 µl PrimeScript 
RT enzyme mix I, 1 µl RT primer mix and 4 µl RNase‑free 
dH2O. This reaction was performed at 37˚C for 15  min, 
followed by incubation in an 85˚C water bath for 5 sec. The 
synthesized cDNA was cooled at 4˚C for 5 min and then stored 
at ‑20˚C until real‑time quantitative PCR reactions. PCR was 
performed on Mastercycler® ep realplex 4 system (Eppendorf, 
Hamburg, Germany) using FastStart Universal SYBR Green 
Master (Roche Diagnostics, Indianapolis, IN, USA) according 
to the manufacturer's protocol. Briefly, a total reaction volume 
of 20 µl was used containing 10 µl SYBR Master Mix, 0.4 µl 
each primer (0.4 µmol/l), 2 µl cDNA, and 7.6 µl RNase‑free 
dH2O. The cycling conditions were as follows, for 35 cycles: 
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Denaturing, at 94˚C for 30 sec, annealing at 54˚C for 30 sec 
and extension at 72˚C for 30 sec. A final melting curve analysis 
was performed utilizing conditions of 95˚C for 15 sec, 60˚C 
for 60 sec, followed by 95˚C for 15 sec. The PCR products 
for glial cell‑derived neurotrophic factor (GDNF), BDNF and 
ciliary neurotrophic factor (CNTF) were 129, 182 and 191 bp, 
respectively. The primer sequences are indicated in Table I. 
All reactions were performed in triplicate. The relative expres-
sion levels of mRNA were calculated using the comparative 
2‑ΔΔCq method (28) and normalized against GAPDH.

Immunohistochemistry. RSC96 SCs were fixed in 95% ethanol 
for 20 min and washed in PBS twice. Cells were incubated in 
H2O2 (3%) for 10 min to block peroxidase and rinsed using 
distilled water. Sections were subsequently washed with PBS 
three times for 2 min. Rabbit anti‑rat S100B antibody (1:200; 
catalogue no. BA0120; Wuhan Boster Biological Technology, 
Ltd., Wuhan, China) was added and incubated at room temper-
ature for 2 h and subsequently rinsed with PBS, containing 
0.05% Tween‑20, three times for 2 min. Slides were incubated 
with peroxidase‑conjugated goat anti‑rabbit IgG (1:100; 
catalogue no. SP‑9001; Zhongshan Jin Qiao Biotechnology  
Co., Beijing, China) for 30 min at 37˚C. Following incubation, 
sections were washed with PBS, containing 0.05% Tween‑20, 
three times for 2 min. Diaminobenzidine was added to visu-
alize primary antibody staining and samples were washed 
in distilled water. Subsequently, slides were counterstained 
with hematoxylin for 20 sec, washed once in water, mounted, 
dried and dehydrated by immersing in 70% ethanol for 
10 min, 95% ethanol for 10 min and 100% ethanol for 10 min. 
Following dehydration, the mounted slides were observed by 
using a Nikon light microscope at a magnification, x100).

Statistical analysis. Data were statistically analyzed using the 
SPSS software package, version 17.0 (SPSS, Inc., Chicago, 
IL, USA). Statistical analysis among multiple samples was 
performed by one‑way analysis of variance followed by 
post hoc least significant difference (LSD) tests. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Cytotoxicity of baicalin. The cytotoxicity of baicalin on 
RSC96 SCs was examined by MTT assay. RSC96 SCs were 
treated with baicalin at increasing concentrations (0.1 to 
1,000 µM). Minimal cytotoxic effects were observed when 
RSC96 SCs were treated with baicalin for 3 days at doses 
0.1, 0.5, 1, 5 or 10 µM (Fig. 1). However, significant cytotoxic 
effects were observed in cells treated with >50 µM, indicated 
by the significantly reduce viability exhibited by the SCs 
(P<0.001 vs. 0 µM; Fig. 1). Therefore, concentrations of 5, 10 
or 20 µM of baicalin were selected for subsequent investiga-
tions.

Cell viability. The cell viability of RSC96 SCs was explored 
using the MTT assay in the present study. The viability of 
SCs was indicated to be time‑ and dose‑dependent (Fig. 2). 
Furthermore, SCs were more viable when incubated with 
various concentrations of baicalin (0, 5, 10 or 20 µM) when 
compared with the control at different time points. Cell 

viability following treatment of baicalin (20 µM) significantly 
increased up to ~15% when compared with the control on day 
2 (P<0.05; Fig. 2). In all groups of SCs treated with baicalin, 
20 µM of baicalin was the optimal concentration that promoted 
the highest cell viability of RSC96 SCs.

To further investigate the effects of baicalin on RSC96 
SC viability, the live viability of RSC96 SCs was analyzed 
by FDA staining. As shown in Fig. 3, the number of viable 
cells, which were green in color, increased with time in all 
groups. In agreement with the MTT analysis, a greater number 
of viable cells were presented in baicalin‑treated groups when 
compared with the control at different corresponding culture 
times. These data support the beneficial effect of baicalin 
on SC survival. In all baicalin groups, the number of viable 
cells was highest when incubated in medium with 20 µM 
baicalin (Fig. 4).

Figure 1. Cytotoxicity analysis of RSC96 Schwann cells treated with different 
concentrations of baicalin (0 to 1,000 µM) for 3 days (mean ± standard 
deviation; n=5). *P<0.05; **P<0.01; ***P<0.001 vs. the control group.

Figure 2. Proliferative effects of baicalin on RSC96 SCs. SCs were incubated 
with 0 (control), 5, 10 or 20 µM of baicalin for 2, 4 and 6 days. Cell viability 
was measured by MTT assay. *P<0.05, **P<0.01 vs. the control group. 
#P<0.05 between the indicated experimental groups. Data are presented as 
the mean ± standard deviation (n=3). SC, schwann cells.
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Cell morphology. Hematoxylin and eosin staining was used to 
observe RSC96 SC morphology. Dendrites, the typical compo-
nent of nerve cells, were clearly observed under the microscope 
following 2 days of culture; however, over time, the number of 
cells with dendrites decreased whereas the number of rounded 
cells increased. As showed in Fig. 5, the SCs grew slower in 
control when compared with the groups treated with baicalin at 
2, 4 and 6 days. Furthermore, among the three concentrations, 
the present data suggests that 20 µM of baicalin stimulated cell 
proliferation the most prominently.

Gene expression. The effect of 0, 5, 10 or 20 µM of baicalin 
on RSC96 SCs was further investigated by detecting the gene 
expression of the important neurotrophic factors, GDNF, BDNF 
and CNTF. The expression levels of these genes were examined 
at 2, 4 and 6 days. Gene expression levels of GDNF, BDNF and 
CNTF were markedly increased in all baicalin‑treated RSC96 
SCs and significantly increased in RSC96 SCs treated with 
20 µM baicalin when compared with the control (P<0.01), 

Figure 3. Cell viability was measured by fluorescein diacetate staining under a light microscope. RSC96 Schwann cells were incubated with 0 (control), 5, 10 
or 20 µM of baicalin for 2, 4 and 6 days (magnification x100; scale bar, 200 µm).

Figure 4. Quantitative analysis of the fluorescein diacetate stained cells, 
derived from ImageJ software. The mean gray value was obtained by inte-
grated density divided by the area. *P<0.05, **P<0.01 vs. the control group. 
#P<0.05 between the indicated experimental groups.

Table I. Genes and oligonucleotide primers used in PCR analysis.

Gene	 Primer sequence (5' to 3')	 Length (bp)	 Amplicon size (bp)

GDNF	 F: AGACCGGATCCGAGGTGC	 18	 129
	 R: TCGAGAAGCCTCTTACCGGC	 20
BDNF	 F: TACCTGGATGCCGCAAACAT	 20	 182
	 R: TGGCCTTTTGATACCGGGAC	 20
CNTF	 F: ATGGCTTTCGCAGAGCAAAC	 20	 191
	 R: CAACGATCAGTGCTTGCCAC	 20
GAPDH	 F: GTCATCATCTCAGCCCCCTC	 20	   99
	 R: GGATGCGTTGCTGACAATCT	 20

PCR, polymerase chain reaction; GDNF, glial cell‑derived neurotrophic factor; BDNF, brain‑derived neurotrophic factor; CNTF, ciliary 
neurotrophic factor; F, forward primer; R, reverse primer.
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which indicated that baicalin may stimulate the transcription 
of GDNF, BDNF and CNTF genes (Fig. 6). In addition, the 
present data suggested that SCs treated with 20 µM baicalin 
exhibited the highest gene expression levels of GDNF, BDNF 
and CNTF genes.

Expression of S100β. Expression of S100β was detected by 
immunohistochemical staining. RSC96 SCs were treated 
with 0, 5, 10 or 20 µM of baicalin at different time points. As 
indicated in Fig. 7, the expression of S100β was upregulated 
when the concentration of baicalin increased and treatment 

Figure 5. Hematoxylin‑eosin staining images showing the morphology of RSC96 SCs cultured in vitro with 0 (control), 5, 10 or 20 µM of baicalin for 2, 4 and 
6 days (magnification x100; scale bar, 200 µm).

Figure 6. Gene expression analysis of the neurotrophic factors, (A) GDNF, 
(B) BDNF and (C) CNTF by reverse transcription‑quantitative polymerase 
chain reaction. RSC96 Schwann cells were cultured with 0 (control), 5, 10 
or 20 µM of baicalin for 4 days. The gene expression levels were analyzed 
by the 2‑ΔΔCq method using GAPDH as the internal control. **P<0.01 vs. the 
control group. #P<0.05, ##P<0.01 between the indicated experimental groups. 
Data are presented as the mean ± standard deviation (n=3). GDNF, glial 
cell‑derived neurotrophic factor; BDNF, brain‑derived neurotrophic factor; 
CNTF, ciliary neurotrophic factor.
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with 20 µM of baicalin resulted in the highest expression of 
S100β in SCs.

Discussion

The present study focused on the effect of baicalin on RSC96 
SCs in  vitro. The present findings indicated that baicalin 
significantly enhanced the viability of SCs. In addition, the 
expression of GDNF, BDNF and CNTF was significantly 
upregulated in the presence of 20 µM baicalin. These findings 
revealed that baicalin is capable of enhancing SCs survival 
and function in vitro. This may corroborate that baicalin is 
a key component that is able to contribute to nerve repair by  
S. baicalensis (29). Moreover, the present study highlights the 
possibility of promoting nerve regeneration in cellular nerve 
grafts through baicalin‑induced neurotrophin secretion in SCs.

Acceleration of the proliferation of nerve cells is important 
due to the slow axonal growth that is the cause of poor func-
tional recovery, which may lead to prolonged denervation of end 
organs, raising the specter of permanent paralysis (30). In the 
present study, baicalin exhibited an effect in a dose‑dependent 
manner on the viability of RSC96 SCs, whereby at the 
concentration of 20 µM, SCs exhibited the highest viability, 
as evidenced by cell viability assay and histological evalua-
tion. S100, which is a SC marker (31), was elevated when SCs 
received baicalin treatment, as demonstrated by the increased 
protein expression levels of S100 in baicalin‑treated cells when 
compared with the control, via immunohistochemical exami-
nation. Natural substrates, such as traditional medicinal herbs, 
are well‑known for their relatively minor adverse effects (32). 
Extracts from S. baicalensis are considered to exhibit low 
cytotoxicity (33) and have neuroprotective properties (34). As 
one of the active components, baicalin has been reported to 
promote neuroprotective effects in rats (25,35), which is in 
agreement with the findings of the present study.

Nerve growth factor and several neurotrophic factors have 
been reported to elicit stimulatory effects on specific neuronal 
populations  (36,37). They affect several vital aspects of 
regeneration, including axon growth, SC function and myelin-
ation (38). GDNF, BDNF and CNTF are several important 
neurotrophic factors that are important in the process of nerve 
cell regeneration (39). A previous study indicated that CNTF 
is able to enhance myelin formation and myelinate regener-
ating axons in the course of regrowth (40,41). Furthermore, 
it has been suggested that BDNF is a necessary component 
for axon regeneration (42) and a small peptide mimetic of 
BDNF was demonstrated to promote peripheral myelina-
tion (43). Moreover, GDNF has been indicated to be beneficial 
to peripheral nerve regeneration and functional recovery in 
multiple experimental nerve injury models (44,45). In addition, 
a recent study on autograft‑based repair revealed that BDNF, 
GDNF and nerve growth factor showed considerable promise 
as these factors enhanced modality‑specific axon regeneration 
in autografts (46). In the present study, when RSC96 SCs were 
incubated with 20 µM baicalin, the gene expression levels 
of BDNF, CNTF and GDNF were significantly elevated, as 
determined by RT‑qPCR. These findings suggest that baicalin 
likely promotes SCs viability and proliferation by stimulating 
neurotrophic factors, such as CNTF and GDNF.

S100 is associated with cell proliferation and differentia-
tion (47). In the S100 protein family, S100B has been reported 
to be a potentially important factor contributing to neuronal 
development (48) and differentiation. A previous study has 
indicated that S100A4 is capable of stimulating neuronal 
differentiation in cultures of rat hippocampal neurons (49). In 
the present study, S100 protein expression levels were elevated 
by baicalin‑treatment, as demonstrated by immunohistochem-
ical examination. These findings suggest that baicalin may 
stimulate SC viability and differentiation via upregulation of 
S100.

Figure 7. Immunohistochemical staining images revealed the presence of S100β. RSC96 Schwann cells were cultured in vitro with 0 (control), 5, 10 or 20 µM 
of baicalin for 2, 4 and 6 days (magnification x100; scale bar, 200 µm).
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The present results showed that the different concentra-
tions of baicalin (5 to 20 µM) affected the viability of RSC96 
SCs, with 20 µM having a significant effect. Among the chosen 
concentrations, treatment with 20 µM of baicalin indicated 
the optimal cell viability and stimulated the most secretion of 
S100 in RSC96 SCs.

In conclusion, the present study corroborated that 
baicalin has a regulative effect on the viability of RSC96 
SCs. Furthermore, the present findings suggest baicalin 
likely affects SC metabolism by modulating the expression 
of several neurotrophic factors, such as BDNF, GDNF and 
CDNF. To conclude, the present study suggests that baicalin 
may be a promising therapeutic agent for peripheral nerve 
regeneration.
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