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Abstract. Cerebral small vessel disease (CSVD) primarily 
affects the perforating cerebral arterioles and capillaries, and 
results in injury to subcortical grey and white matter. Despite 
advances in determining the genetic basis of CSVD, the molec-
ular mechanisms underlying the development and progression 
of CSVD remain unclear. The present study aimed to identify 
significant signaling pathways associated with CSVD based 
on differential pathway network analysis. Combining CSVD 
microarray data with human protein‑protein interaction data 
and data from the Reactome pathway database, pathway 
interactions were constructed using the Spearman's correla-
tion coefficient strategy. Pathway interactions with weight 
values of >0.95 were selected to construct the differential 
pathway network, which contained 715 differential pathway 
interactions covering 312 nodes and was visualized using 
Cytoscape software. A total of 15 hub pathways with a top 
5% degree distribution in the differential pathway network 
were identified. The top 5 hub pathways were associated with 
the synthesis and metabolism of fatty acids. The results of the 
present study indicate that the synthesis and metabolism of 
fatty acids is associated with the occurrence and development 
of CSVD, and may thus provide insights to improve the early 
diagnosis and treatment of CSVD.

Introduction

Cerebral small vessel disease (CSVD) predominantly affects 
the perforating cerebral arterioles and capillaries, and results 
in injury to subcortical grey and white matter (1). CSVD is 
associated with focal motor deficits, stroke and cognitive 
decline, which typically progresses to dementia (2). Genetic 
studies of CSVD indicate that the development and progres-
sion of the disease can be attributed to the accumulation of 

genomic changes  (3). Gene expression profiling has been 
widely used to research the pathogenesis of diseases, including 
CSVD. However, despite advances in our knowledge of the 
genetic basis of CSVD, the underlying molecular mechanisms 
of the development and progression of CSVD remain unclear.

Pathway analysis is a useful tool for gaining insight into the 
biological functions of genes and proteins (4). Given the complex 
nature of biological systems, signaling pathways are typically 
required in order for systems to function in a coordinated fashion 
to produce the appropriate physiological responses to internal 
and external stimuli (5). However, previous studies have focused 
on identifying altered signaling pathways between normal and 
diseased groups, and common genes between different signaling 
pathways. For example, a previous study identified differential 
interactions between two signaling pathways across diseased and 
normal samples (6). Network‑based methods have been used to 
analyze this interaction data and gain insights into the underlying 
molecular mechanisms by which biological systems operate (7). 
Sun et al (8) introduced a network‑based approach, differential 
expression network analysis, which reflects phenotypic differences 
at a network level. Similarly, in the present study, a differential 
pathway network was constructed to conduct analysis on the 
pathogenesis of CSVD, in which nodes represented signaling 
pathways. In this way, CSVD was analyzed at a signaling pathway  
network level.

In the present study, this differential pathway network 
analysis method was applied to identify key signaling pathways 
associated with CSVD. CSVD data, including gene expression 
profiles, protein‑protein interactions (PPIs) and signaling path-
ways, were identified and preprocessed. Differential pathway 
interactions in CSVD were identified using the Spearman's 
correlation coefficient (SCC) strategy and a differential 
pathway network was constructed. Topological analysis of 
the differential pathway network was performed to identify 
hub pathways, which revealed 15 hub pathways with a top 
5% degree distribution. The results of the present study may 
aid in the identification of potential biomarkers for the early 
diagnosis and treatment of CSVD, and provide novel insights 
into the pathological mechanism underlying this disease.

Materials and methods

Gene expression data recruitment and preprocessing. 
Gene expression profiles from CSVD samples (accession 
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no.  E‑MTAB‑3408)  (9) were downloaded using the 
ArrayExpress database (http://www.ebi.ac.uk/arrayexpress). 
The E‑MTAB‑3408 dataset was collected using the A‑AFFY‑14 
Affymetrix GeneChip™ Human Gene 1.0 ST Array (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA). The data were 
obtained from 15 CSVD samples and 15 normal controls.

The oligo package (version 1.14.0) (10) for R software was 
used to read the data. The robust multiarray average algorithm 
was applied to conduct background subtraction (11). Quantile 
normalization and summarization were performed using the 
median polish procedure, and the data were filtered using the 
varFilter function in R software (12). Subsequently, all of the 
gene annotation files were downloaded and all probes were 
mapped onto the genes. A total of 5,786 genes were contained 
in the expression profile.

PPI data recruitment and preprocessing. Global PPIs were 
obtained from the Search Tool of the Retrieval of Interacting 
Genes/Proteins database (http://string‑db.org). Currently, this 
database covers 932,553,897 total interactions from 2,031 
organisms. Here only human PPIs were retrieved, including 
a total of 787,896 interactions after removing self‑loops and 
duplicated interactions. The gene expression profile was 
mapped onto the global PPI network and these intersections 
were selected to construct a novel PPI network, which was 
regarded as the background PPI network. In this case, a back-
ground PPI network with 89,574 interactions covering 4,971 
nodes was constructed.

Signaling pathway data identification and preprocessing. 
All human signaling pathways were downloaded from the 
Reactome pathway database (http://www.reactome.org), and 
a total of 1,675 pathways were obtained. Pathways with too 
many genes may be considered too complex analysis, while 
pathways with too few genes may not have sufficient biological 
content (13). Thus, to enhance the confidence and stability of 
the signaling pathways identified, the number of common 
genes between each pathway and the background PPI network 
was calculated, and pathways with common gene size >100 
or <5 were discarded. Following this, a total of 706 signaling 
pathways were obtained for further analysis.

Identifying differential interactions between signaling 
pathways. To evaluate interactions between signaling pathways, 
gene interactions were constructed randomly and then evalu-
ated. In addition, these pathway genes were mapped onto the 
background PPI network. In this way, interactions between 
signaling pathways were constructed. In order to describe the 
strengths of signaling pathway interactions, the SCC method (14) 
was utilized to rank pairwise interactions between the CSVD 
samples and normal controls. The SCC absolute difference value 
of a pathway interaction between CSVD and normal samples 
was defined as the weight value of this pathway interaction.

For example, in pathway 1, genes in pathways 1 and 2 were 
used to construct gene interactions and these interactions were 
integrated with the background PPI network. All gene inter-
sections were considered to be interactions of pathways 1 and 
2. Subsequently, the pathway intersections between CSVD and 
normal samples were weighted by SCC, respectively. The SCC 
of a pair of gene interactions (a and b), was defined as:

Where n was the number of gene interactions, g(a, i) or 
g(b, i) was the expression level of gene a or b in the pathway, i 
indicated a specific condition (CSVD or normal), g(a) and g(b) 
represented the mean expression level of gene a or b, respec-
tively, and σ(a) and σ(b) represented the standard deviation of 
the expression level of genes a and b.

The absolute SCC difference of a gene interaction between 
CSVD and normal conditions was calculated, and the mean 
value of the absolute SCC differences of all gene interactions 
between pathways 1 and 2 was defined as the weight value. If 
there was no intersection between pathway 1 and 2, this indi-
cated that there was no interaction between the two pathways. 
Similarly, gene interactions were constructed based on genes 
in pathways 1 and 3, and the method used to explore interac-
tions and the weight value between the pathways was the same 
as described above. By such analogy, all of the interactions and 
weight values between any two pathways were obtained.

Differential pathway network construction. Once all pathway 
interactions and weight values were obtained, the weight 
values were set in descending order and pathway interactions 
with weight values >0.95 were considered as differential 
interactions. These differential interactions were selected to 
construct a differential pathway network, which was visual-
ized using Cytoscape software (version 2.8) (15).

Centrality analysis. To further investigate the significance 
of signaling pathways in the differential pathway network, 
the biological importance of pathways was characterized 
using indices of centrality. Centrality analysis is a network 
analysis method to investigate biological networks, including 
gene regulatory, protein interaction and metabolic networks, 
in order to identify important elements of a network (16,17). 
Degree centrality is a simple local centrality measure, which 
is based on the notion of neighborhood. The degree is useful in 
statistical graphs to identify vertices that have the most direct 
connections to other vertices (18). In the present study, the 
nodes indicated the signaling pathways and the edges indicated 
the interactions between signaling pathways. The connectivity 
degree of a signaling pathway was quantified by considering 
the pathway as a node and the number of adjacent pathways 
as the degree value. The pathways whose degree values were 
at the top 5% of the degree distribution (≥95% quantile) in the 
network were defined as hub signaling pathways.

Network clustering. Genes and signaling pathways that are 
involved in a similar function are frequently coexpressed or 
activated, respectively, which establishes conserved transcrip-
tion modules  (19). These modules are groups of genes or 
pathways whose expression profiles or activations, respectively, 
are highly correlated across samples (20). In the present study, 
the signaling pathways in the differential pathway network 
were clustered using ClusterONE (version 1.0) plugin for 
Cytoscape, which uses a cohesiveness measurement to deter-
mine the likelihood of an overlap between a group of proteins 
or pathways in a complex is based on the weight of interactions 
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within the group and with the rest of the network (21). During 
module searching, the three primary parameters were as 
follows: Module size, weighted density and overlap threshold. 
In the present study, pathway modules were selected under the 
thresholds of a module size ≥20, a weighted density ≥0.1 and 
an overlap threshold ≥0.5.

Results

Pathway network construction. In the present study, micro-
array data from CSVD samples was combined with human 
PPI and signaling pathway data to identify differential 
pathway interactions using the SCC strategy. Pathways whose 
gene set size was >100 or <5 were discarded, leaving a total of 
706 pathways for further analysis. Once these pathways were 
intersected with background PPI data, the pathway interac-
tions were screened to construct a pathway network. The 
results demonstrated that these 706 pathways formed 188,420 
pathway interactions in total. The distribution of weight values 
are demonstrated in Fig. 1. It was identified that the weight 
values of the interactions ranged from 0.2‑1.3, and that the 
majority of interactions ranged between 0.2 and 0.5. Because 
small weight values indicated small differences in pathway 
interactions between disease and normal conditions, pathway 
interactions with weight values of >0.95 were selected to 
construct the differential pathway network. The differen-
tial pathway network constructed included 715 differential 
pathway interactions and 312 pathways (Fig. 2).

Centrality analysis. In order to further investigate the impor-
tance and significance of the 312 differential pathways in the 
differential pathway network, degree centrality analysis was 
applied to obtain hub pathways. Using the top 5% degree 
distribution, a total of 15 hub pathways were identified (Fig. 2). 
The detailed degrees for the 15 hub pathways are listed in 
Table I. Notably, signaling pathways for fatty acyl‑co‑enzyme 
A (CoA) biosynthesis (node 194), linoleic acid (LA) metabo-
lism (node 320) and the synthesis of very long‑chain fatty 
acyl‑CoAs (node 624) produced the highest connectivity 
degree (degree=54). This was closely followed by α‑linolenic 
(omega 3) and linoleic (omega 6) acid metabolism (node 32), 
and α‑LA (ALA) metabolism (node 33), which scored a degree 
of 53. These signaling pathways were all associated with 
the synthesis of fatty acyl‑CoA and LA metabolism, which 
suggests the involvement of these metabolic processes with 
the development and progression of CSVD.

Network clustering. ClusterONE was applied to identify 
modules from the differential pathway network that were 
involved in similar biological processes and thus had similar 
functions. After applying the thresholds for module size (≥20), 
weighted density (≥0.1) and the overlap threshold (≥0.5), 3 
pathway modules were identified (Fig. 3). There were 6, 5 and 
1 hub pathways indicated in modules 1, 2 and 3, respectively. 
The 6 hub pathways with the highest degree scores were all 
clustered in module 1, indicating that module 1 serves an 
important role in CSVD. As shown in Fig. 3, the 6 hub path-
ways in module 1 were fatty acyl‑CoA biosynthesis (node 194, 
degree=54), LA metabolism (node 320, degree=54), synthesis 
of very long‑chain fatty acyl‑CoAs (node 624, degree=54), 

Table I. Detailed degrees of the identified hub pathways.

Node	 Pathway term	 Degree

194	 Fatty acyl‑CoA biosynthesis	 54
320	 Linoleic acid metabolism	 54
624	 Synthesis of very long‑chain fatty acyl‑CoAs	 54
32	 α‑linolenic (omega 3) and linoleic (omega 6) 	 53
	 acid metabolism	
33	 α‑linolenic acid metabolism	 53
683	 Triglyceride biosynthesis	 48
318	 Laminin interactions	 27
252	 Glycogen breakdown (glycogenolysis)	 23
613	 Syndecan interactions	 23
183	 Ephrin signaling	 21
386	 Non‑integrin membrane‑extracellular matrix	 15
	 interactions	
181	 Ephrin A‑mediated growth cone collapse	 13
128	 Cytosolic tRNA aminoacylation	 11
301	 Intraflagellar transport	 11
684	 tRNA aminoacylation	 11

Acyl‑CoA; acyl co‑enzyme A; tRNA, transfer RNA. 

Figure 1. Weight distribution of pathway interactions. (A) Total weight distri-
bution of pathway interactions. (B) Expanded view of weight distributions 
between 0.9 and 1.3.
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Figure 2. Differential pathway network in cerebral small vessel disease. Nodes represent pathways and edges indicated the interactions between pathways. 
Orange nodes indicate hub pathways with a top 5% degree distributions. The details of hub pathways are shown in Table I.

Figure 3. Modules extracted from the differential pathway network. Nodes represent pathways and edges indicate the interactions between pathways. Orange 
nodes indicate hub pathways with a top 5% degree distributions. The details of hub pathways are shown in Table I.
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α‑linolenic (omega3) and linoleic (omega6) acid metabolism 
(node 32, degree=53), ALA metabolism (node 33, degree=53), 
and triglyceride biosynthesis (node 683, degree=48).

Discussion

High‑throughput biological experiments that probe various 
genes simultaneously have generated unprecedented amounts 
of data. Candidate diagnostic and prognostic biomarkers are 
typically the most significant differentially expressed genes 
(DEGs) between the control and disease samples  (22‑24). 
However, the most significant DEGs obtained from different 
studies for a particular disease are frequently different (25). 
The cross validation of datasets, including via network‑based 
methods, reduces false findings and increases the sensitivity 
of the identification of significant DEGs (26). Furthermore, 
pathway networks provide insight into the potential under-
lying molecular mechanisms of disease (27). Therefore, in the 
present study, differential pathway network analysis was used 
to identify hub signaling pathways in CSVD. The differen-
tial pathway network was composed of differential pathway 
interactions using background PPIs, the Reactome pathway 
database and a gene expression profile dataset. In addition, 
modules within the differential pathway network were identi-
fied using ClusterONE.

The results of the present study revealed that there were 
15 hub pathways associated with CSVD, and that the top 
hits were associated with the synthesis of fatty acyl‑CoA 
and LA‑associated metabolism, which indicates that these 
processes contribute to the development and progression of 
CSVD. In addition, network clustering analysis indicated 
that the top 5 hub pathways were all within module 1, which 
suggests that these pathways exerted their role in the develop-
ment and progression of CSVD in a cooperative way.

Fatty acids are a family of molecules within the lipid 
macronutrient class (28). A previous study indicated that satu-
rated fatty acids and trans‑fatty acids are particularly harmful 
to blood vessels and that omega 3 fatty acids are considered 
good fats (29). Long‑chain acyl‑CoA esters serve as important 
intermediates in lipid biosynthesis and fatty acid degrada-
tion. Bortz and Lynen (30) proposed that acyl‑CoA esters are 
key regulators of fatty acid synthesis, and that long‑chain 
acyl‑CoA esters affect a large number of cellular systems and 
functions, including ion channels, ion pumps, enzyme activity, 
membrane fusion and gene regulation. Polyunsaturated fatty 
acids (PUFAs), particularly ALAs, have a protective func-
tion against focal and global ischemia (31,32). The ratio of 
membrane omega 3 to omega 6 PUFAs may be modulated by 
dietary intake, and this ratio influences neurotransmission and 
prostaglandin formation, which are vital to the maintenance 
of normal brain function (33). Previous studies indicate that 
omega 3 PUFAs may influence vascular tone by affecting 
membrane potential and inhibiting migration of vascular 
smooth muscle cells (34) and maintain vascular integrity by 
decreasing numerous soluble markers of endothelial hemo-
static activity (35). Experimental analysis of animal models 
and human subjects has demonstrated that omega 3 PUFAs 
cause a moderate reduction in blood pressure, indicating 
altered vascular neuroeffector responses (36). In the present 
study, the top 5 hub pathways were associated with the 

synthesis and metabolism of fatty acids, and were clustered 
in module 1. These findings suggest that the synthesis and 
metabolism of fatty acids is associated with the occurrence 
and development of CSVD.

To the best of our knowledge, the present study is the first 
to report the analysis of CSVD using a differential pathway 
network method. The present study identified several path-
ways that were associated in the occurrence and development 
of CSVD. However, several limitations were associated with 
the present study. For example, all of the data were obtained 
from databases and these data themselves may be unreliable. 
In addition, only a small sample size was used in the present 
study and the results obtained using bioinformatics methods 
were not verified via wet lab experiments. Although disadvan-
tages exist, the used method and the results obtained by the 
present study provide investigators with valuable resources 
for improving understanding of the underlying molecular 
mechanisms of CSVD, and for the identification of potential 
biomarkers for the early diagnosis and treatment of CSVD. 
Furthermore, the method proposed may be considered as a 
framework for optimizing further pathway analysis.
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