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Abstract. Tibialis anterior (TA) muscle and other somite‑ 
derived limb muscles remain the prototype in skeletal muscle 
study. The majority of head muscles, however, develop from 
branchial arches and maintain a number of heterogeneities in 
comparison with their limb counterparts. Levator veli palatini 
(LVP) muscle is a deep‑located head muscle responsible for 
breathing, swallowing and speech, and is central to cleft palate 
surgery, yet lacks morphological and molecular investigation. 
In the present study, multiscale in vivo analyses were performed 
to compare TA and LVP muscle in terms of their myofiber 
composition, in‑situ stem cell population and augmentation 
potential. TA muscle was identified to be primarily composed 
of type 2B myofibers while LVP muscle primarily consisted 
of type 2A and 2X myofibers. In addition, LVP muscle main-
tained a higher percentage of centrally‑nucleated myofibers 
and a greater population of satellite cells. Notably, TA and LVP 
muscle responded to exogenous Wnt7a stimulus in different 
ways. Three weeks after Wnt7a administration, TA muscle 
exhibited an increase in myofiber number and a decrease in 
myofiber size, while LVP muscle demonstrated no significant 
changes in myofiber number or myofiber size. These results 
suggested that LVP muscle exhibits obvious differences in 
comparison with TA muscle. Therefore, knowledge acquired 
from TA muscle studies requires further testing before being 
applied to LVP muscle.

Introduction

The human body possesses ~640 skeletal muscles, which 
account for ~40% of the whole body mass (1). These skeletal 
muscles are responsible for body movement and fulfill the 
functions of locomotion, respiration, swallowing and speech. 
Although they share the common architectural traits of stri-
ated muscles, the skeletal muscles have distinct embryonic 
origins  (2). Trunk and limb muscles derive from somites; 
the majority of head muscles, such as masseter muscle and 
pharyngeal muscles, derive from branchial arches; extraocular 
muscles derive from prechordal mesoderm (3‑5).

The prototype for skeletal muscle study is somite‑derived 
limb muscles, but these represent only a small proportion of 
the whole skeletal muscle population (1). Investigations into 
head muscles have revealed that they exhibit heterogeneity in 
comparison with their limb counterparts. During embryonic 
myogenesis, T‑box 1 and pituitary homeobox 2 mediate the 
formation of head muscles, yet are absent in limb muscle devel-
opment (4,6). Head muscles possess a visceral mesodermal 
origin and are closely associated with heart development in 
myogenesis (7,8). Mesoderm in the cardiopharyngeal field gives 
rise to both the branchiomeric muscles and part of the heart (3). 
In addition, masseter muscle was reported to regenerate less 
effectively compared with tibialis anterior (TA) muscle (9). 
These results point to the notion that head muscles and limb 
muscles are markedly different skeletal muscle populations.

TA muscle has been studied extensively, particularly its 
developmental origin, morphological characteristics and 
augmentation potential  (9‑11). Levator veli palatini (LVP) 
muscle, however, lacks investigation in spite of its critical role 
in fulfilling velopharyngeal function and its core status in 
cleft palate surgery (12‑14). Plastic surgeons have long been 
searching for strategies to augment LVP muscle, in order 
to facilitate velopharyngeal closure and improve speech in 
patients with cleft palates (15‑17).

Strategies for muscle augmentation have been sought 
for decades. Effective agents, such as insulin‑like growth 
factor (IGF)‑1, angiotensin and Wnt7a, have previously been 
proposed to increase myofiber diameter and enhance muscle 
function in atrophied or normal muscle  (10,18‑20). These 
studies were primarily performed in limb muscles like the 
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TA muscle. Considering the general differences between limb 
and head muscle, combined with the knowledge gap for LVP 
muscle augmentation, the present study was performed for two 
reasons: i) To glean background information of LVP muscle, 
in comparison with TA muscle; ii) to investigate whether the 
two muscles exhibited different augmentation potential. In the 
present study, the differences between TA and LVP muscle 
were characterized in terms of muscle fiber composition, 
in situ stem cell population and activation level of the Wnt 
signaling pathway under basal conditions. Furthermore, it was 
investigated whether the two muscles responded differently to 
growth factor stimulus.

Materials and methods

Animals. All experimental procedures on animals were 
approved by the Institutional Animal Care and Use 
Committee at Sichuan University (Chengdu, China). Adult 
male Sprague‑Dawley rats (age, 10 weeks; weight, 280‑300 g) 
were purchased from Chengdu Dashuo Experimental Animal 
Center (Chengdu, China). The animals were raised in a temper-
ature‑ and humidity‑controlled room (temperature, 21±2˚C; 
relative humidity, 50±5%) on a 12‑h light/dark schedule. Food 
and water were freely accessible. A total of 18 animals were 
used in the present study and were randomly allocated to the 
following three groups: i) comparison between TA muscle and 
LVP muscle under basal conditions (n=6); ii) intramuscular 
Wnt7a administration of TA muscle (n=6); iii) intramuscular 
Wnt7a administration of LVP muscle (n=6).

Intramuscular Wnt7a delivery. Recombinant human Wnt7a 
(R&D Systems, Inc., Minneapolis, MN, USA) was injected 
directly into the muscles. For each TA muscle (n=6), 75 µl 
Wnt7a (100 µg/ml) was injected and 75 µl PBS was injected to 
the TA muscle in the contralateral leg as control; for each LVP 
muscle (n=6), 25 µl Wnt7a (100 µg/ml) was injected and 25 µl 
PBS was injected to the LVP muscle on the contralateral side 
as control. Injection into LVP muscle was carried out via an 
intraoral procedure. Rats were sacrificed 3 weeks after treat-
ment and muscles were harvested for analyses.

Muscle harvest. TA muscle was cut from tendon to tendon 
on the tibia anterior bone. LVP muscle was approached and 
isolated according to Carvajal Monroy et al (21), with small 
modifications. Briefly, a ventral incision extending from 
the mandibular symphysis to the clavicle was made and the 
subcutaneous tissue was separated to expose the salivary 
gland. After removal of the salivary gland, the digastric and 
sternocleidomastoid muscle was visible. The posterior belly 
of the digastric muscle was dissected to its origin to expose 
the stylohyoid muscle beneath it and the tympanic bulla. The 
stylohyoid muscle was cut at its junction to the hyoid and 
pulled laterally to visualize the LVP muscle with its tendon 
clearly attached to the tympanic bulla. The LVP muscle was 
carefully dissected from its origin in the tympanic bulla to its 
insertion in the soft palate.

Immunofluorescence analysis. Muscle samples were attached 
to the chuck using Tissue‑Tek Optimal Cutting Temperature 
compound (Sakura Finetek USA, Inc., Torrance, CA, USA) 

and frozen in isopentane cooled with liquid nitrogen using 
Lawlor's method (22). Cryosections were made at 10 µm thick-
ness and fixed in 0˚C acetone (100%) for 20 min. The sections 
were dried at room temperature for 20  min and washed 
in 0.01  mol/l phosphate‑buffered saline (PBS). Sections 
were then blocked with PBS containing 5% bovine serum 
albumin (Amresco, LLC, Solon, OH, USA), and 5% donkey 
serum (Beijing Solarbio Science & Technology Co., Ltd., 
Beijing, China) for 1 h at 25˚C, and subsequently incubated 
overnight at 4˚C with primary antibodies. Following washing 
in PBS, sections were incubated for 1 h at 25˚C with Alexa 
Fluor 488‑conjugated (A‑21206; 1:500) and 568‑conjugated 
(A10037; 1:500) secondary antibodies (Invitrogen; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA). After several 
washes in PBS, the nuclei were stained with DAPI. Images 
were captured with an Olympus BX63 fluorescence microscope 
(Olympus Corporation, Tokyo, Japan). The primary antibodies 
used were as follows: Rabbit anti‑laminin polyclonal antibody 
(L9393; 1:500; Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany), mouse anti‑Pax7 monoclonal antibody (PAX7; 1:5; 
Developmental Studies Hybridoma Bank, Iowa City, IA, USA), 
rabbit anti‑Ki67 monoclonal antibody (ab1667; 1:500; Abcam, 
Cambridge, MA, USA), mouse anti‑myosin heavy chain 1 
(MyHC‑1) monoclonal antibody (A4.840; 1:40; Developmental 
Studies Hybridoma Bank), mouse anti‑MyHC‑2A monoclonal 
antibody (SC‑71; 1:20; Developmental Studies Hybridoma 
Bank), mouse anti‑MyHC‑2X monoclonal antibody 
(6H1; 1:5; Developmental Studies Hybridoma Bank) and 
mouse anti‑MyHC‑2B monoclonal antibody (BF‑F3; 1:5; 
Developmental Studies Hybridoma Bank).

Western blot analysis. Muscle samples were minced 
and prepared in RIPA lysis buffer (Beyotime Institute of 
Biotechnology, Haimen, China). Tissues were incubated for 
30 min on ice, followed by centrifugation at 12,000 x g for 
10 min at 4˚C. Total protein concentration in the superna-
tant was determined using a BCA protein assay kit (Beijing 
Solarbio Science & Technology Co., Ltd.). Protein extract 
(7 µl/lane) was loaded on 10% SDS‑PAGE and transferred 
onto polyvinylidene fluoride membranes (EMD Millipore, 
Billerica, MA, USA). After blocking with 5% bovine serum 
albumin in 0.5% TBS‑Tween‑20 at room temperature for 
1 h, the membranes were incubated with primary antibodies 
at 4˚C overnight. Then, the membranes were incubated with 
horseradish peroxidase‑conjugated secondary antibody 
for 1 h at 37˚C. The protein bands were visualized using 
an enhanced chemiluminescence system (G2014; Wuhan 
Goodbio Technology Co., Ltd., Wuhan, China). Densitometry 
values were normalized to the intensity of corresponding 
bands for GAPDH. Quantitative analysis of western blotting 
was performed using ImageJ version 1.50e (National Institutes 
of Health, Bethesda, MD, USA). Primary antibodies were used 
as follows: Rabbit polyclonal anti‑Axin2 antibody (ab32197; 
1:1,000; Abcam), sheep polyclonal anti‑Vangl2 antibody 
(AF4815; 1:1,000; R&D Systems, Inc.), rabbit polyclonal 
anti‑pS6 antibody (2211; 1:1,000; Cell Signaling Technology, 
Inc., Danvers, MA, USA), rabbit polyclonal anti‑pAkt antibody 
(9271; 1:1,000, Cell Signaling Technology, Inc.) and rabbit 
polyclonal anti‑GAPDH antibody (ab9485; 1:1,000; Abcam). 
Secondary antibodies were used as follows: Goat anti‑rabbit 
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IgG (ab6721; 1:5,000; Abcam) and donkey anti‑sheep IgG 
(ab97125; 1:5,000; Abcam).

Quantification and statistical analyses. Myofiber size and 
overall cell density were calculated using ImageJ 1.50e. 
Numbers of Pax7‑positive nuclei, Ki67‑positive nuclei and the 
percentage of each specific fiber type were manually counted 
with three fields of view selected for each sample type. All 
data were analyzed using SPSS 19.0 (IBM Corp., Armonk, 
NY, USA) and results are presented as the mean ± standard 
deviation. Student's t‑test was used to evaluate statistical 
differences. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Fiber type composition of TA and LVP muscle. Sections of 
muscle samples revealed that individual fibers in TA muscle 
were larger compared with LVP muscle (data not shown). With 
their corresponding markers immunostained, different types 
of muscle fibers were identified and quantified in TA and LVP 
muscle. The percentage of MyHC‑1 fibers was significantly 
higher in LVP muscle compared with TA muscle (~25 vs. ~5%; 
Fig. 1A). The percentage of MyHC‑2A fibers was significantly 
higher in LVP muscle compared with TA muscle (~60 vs. 
~15%; Fig. 1B). The percentage of MyHC‑2X fibers was signif-
icantly higher in LVP muscle compared with TA muscle (~40 
vs. ~25%; Fig. 1C). By contrast, the percentage of MyHC‑2B 

fibers was significantly higher in TA muscle compared with 
LVP muscle (~75 vs. ~5%; Fig. 1D). These results indicated 
that the vast majority of TA muscle is composed of type 2B 
fibers, while the majority of fibers in LVP muscle are types 
2A and 2X.

Satellite cells and centrally‑nucleated myofibers in TA and 
LVP muscle. The number of nuclei per area was significantly 
higher in LVP muscle compared with TA muscle (Fig. 2A). 
The number of Pax7‑positive nuclei, an indicator of satel-
lite cells, was significantly higher in LVP muscle compared 
with TA muscle (~2.2% vs. ~0.3%; Fig. 2B). Satellite cells 
are resident stem cells in skeletal muscle tissue, wedged in 
the interspace between sarcolemma and basal lamina (23). 
When activated, satellite cells proliferate and differentiate 
either to merge into pre‑existing fibers or form new fibers, 
distinguishing the involved myofibers as centrally‑nucleated 
myofibers (24). In TA muscle, centrally‑nucleated myofibers 
were only scarcely identified (~0.1% of total fibers), but they 
were observed significantly more frequently in LVP muscle 
(~1.5% of total fibers; Fig. 2C). These data suggested that LVP 
muscle possesses a broader stem cell pool and more active 
myonuclei turnover compared with TA muscle. Given that Wnt 
signaling is closely associated with satellite cell activity (25), 
further investigation was performed in the Wnt pathway.

Wnt signaling hubs in TA muscle and LVP muscle. In 
canonical Wnt pathways, Axin2 is a direct target gene 

Figure 1. Muscle fiber types in TA and LVP muscle. (A) Immunofluorescence staining of MyHC‑1 (red) and laminin (green). Quantification of MyHC‑1 is indi-
cated on the right panel. (B) Immunofluorescence staining of MyHC‑2A (red) and laminin (green), Quantification of MyHC‑2A is indicated on the right panel. 
(C) Immunofluorescence staining of MyHC‑2X (red) and laminin (green). Quantification of MyHC‑2X is indicated on the right panel. (D) Immunofluorescence 
staining of MyHC‑2B (red) and laminin (green). Quantification of MyHC‑2B is indicated on the right panel. Scale bar=50 µm. ***P<0.001 as indicated. TA, 
tibialis anterior; LVP, levator veli palatini; MyHC, myosin heavy chain.
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of Wnt and its expression is a reliable marker for the 
activation of Wnt signaling  (26). For non‑canonical Wnt 
pathways, the expression of Vangl2 reflects the activa-
tion of Wnt/planar cell polarity pathway (27), while pAkt 
and pS6 are indicators of Wnt/Akt/mechanistic target of 
rapamycin pathway activation  (10). No significant differ-
ences were identified in the expression of Axin2 between 
TA muscle and LVP muscle (Fig. 3). The expression level 
of Vangl2 was observed to be significantly higher in TA 
muscle compared with LVP muscle (Fig. 3). Similarly, pAkt 
was expressed at a significantly higher level in TA muscle 
compared with LVP muscle (Fig. 3). No significant differ-
ences were identified in the expression of pS6 between TA 
muscle and LVP muscle (Fig. 3). Based on these differences 
in the baseline level of Wnt hubs, it was investigated 
whether LVP and TA muscle responded differently to Wnt 
ligand stimulus.

TA and LVP muscles respond differently to exogenous Wnt7a 
stimulus. Wnt7a has been demonstrated to be effective in 
expanding TA muscles (10,28), but to the best of our knowl-
edge, has not been tested in LVP muscle before. At 3 weeks 
after a single injection of recombinant Wnt7a protein, TA and 
LVP muscles were harvested for comparison. After Wnt7a 
administration, the percentage of Ki67‑positive nuclei, which 
indicated proliferative cells, increased significantly in TA and 
LVP muscle (Fig. 4A and B). The two muscle types exhibited a 
marked increase in centrally‑nucleated myofibers after Wnt7a 
administration (Fig. 4C). Notably, in TA muscle, a significant 
increase in myofibers was observed after Wnt7a injection, 
leading to a five‑fold increase in the number of myofibers and 
a significant decrease in the average myofiber size (Fig. 4C and 
D). In LVP muscle, however, the number and the average size 
of the myofibers stayed constant after Wnt7a administration 
(Fig. 4C and E).

Figure 2. Distribution of satellite cells and centrally‑nucleated myofibers in TA and LVP muscle. (A) DAPI staining of muscle sections from TA muscle and 
LVP muscle. Quantification of total nuclei per field is indicated on the right panel. (B) Immunofluorescence staining of laminin (green), Pax7 (red) and DAPI 
(blue) in TA and LVP muscle. Quantification of Pax7‑positive nuclei is indicated on the right panel. (C) Immunofluorescence staining of laminin (green) and 
DAPI (blue). Yellow arrowheads indicate centrally‑nucleated myofibers. Quantification of centrally‑nucleated myofibers is indicated on the right panel. Scale 
bar=50 µm. ***P<0.001 as indicated. TA, tibialis anterior; LVP, levator veli palatini.

Figure 3. Protein analysis of Wnt signaling hubs in TA and LVP muscle. Blots of Axin2, Vangl2, pAkt, pS6 and their densitometric analyses are indicated. All 
values were normalized to GAPDH levels. **P<0.01 as indicated. TA, tibialis anterior; LVP, levator veli palatini.
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Discussion

From the perspective of embryonic origin, TA and LVP 
muscle fall into different categories: TA muscle derives from 
somites (2), while LVP muscle derives from the fourth and 
sixth branchial arches (13). Apart from their differences in 
embryonic origin, the current study has characterized further 
heterogeneities between the two muscle types.

Until now, the predominant model of fiber types has 
been based on four major MyHC isoforms: MyHC‑1, ‑2A, 
‑2X and ‑2B (29). From type 1 to type 2B fibers, the short-
ening velocity gradually increases and resistance to fatigue 
decreases (29). The composition of different fiber types is 
closely associated with the muscle function. Specifically, TA 
muscle is more suitable for fast and powerful actions such 
as jumping and kicking, while LVP muscle is streamlined 
for slower contractions with longer durations in elevating and 
stretching the soft palate (30,31). Consequently, it was identi-
fied in the present study that TA muscle is largely composed 
of MyHC‑2B myofibers, while LVP muscle primarily 
consists of MyHC‑2A and MyHC‑2X fibers. Hybrid fibers 
co‑expressing different MyHC isoforms are common (29), 
since boundaries between different fiber types are not clear. 
This could explain why the sum of all four MyHC isoforms 
in the muscles was >100%. Apart from gleaning baseline 
information of fiber type composition in the two specific 
muscles, the data presented here could also be relevant to 
clinical practice. Fiber type composition can have profound 
impacts on the specific muscle's susceptibility to disease. For 
example, type 2 fibers are preferentially affected in Duchenne 
muscular dystrophy (DMD), and inducing type 1 fibers can 
ameliorate DMD (32).

Satellite cells are well‑recognized resident stem cells 
within skeletal muscle tissue  (23). It was revealed in the 
present study that LVP muscle maintains a higher satellite cell 
content compared with TA muscle. During muscle repair or 
regeneration, satellite cells undergo asymmetric division and 
differentiate into myogenic progenitors, either fusing into 
the existing myofibers or becoming de novo myofibers (33). 
In this process, the involved myofibers are distinguished as 
centrally‑nucleated myofibers. It has long been speculated that 
satellite cells remain quiescent in their sublaminar niche until 
required for skeletal muscle repair (23,25,33). However, recent 
studies performed by Randolph et al (34) and Keefe et al (35) 
have demonstrated that satellite cells contribute nuclei to 
myofibers in adult muscles in sedentary mice, challenging 
this conventional view. Similarly, in the present study, satellite 
cell activity in 2‑month‑old rat skeletal muscle was detected 
under basal conditions, as evidenced by the presence of 
centrally‑nucleated myofibers. It was also identified that the 
percentage of centrally‑nucleated myofibers was significantly 
higher in LVP muscle compared with TA muscle. With regards 
to the core components in Wnt signaling, protein analyses 
revealed that Vangl2 and pAkt are expressed at a higher level 
in TA muscle compared with LVP muscle. These molecular 
differences indicated different Wnt pathway activation 
levels under basal conditions in TA muscle and LVP muscle. 
However, the mechanisms underlying the broader stem cell 
pool and more active myonuclei turnover in LVP are yet to be 
elucidated.

In the present study, it was further examined whether TA 
and LVP muscle responded differently to exogenous myogenic 
growth factor. Wnt7a was selected because it was less likely to 
induce resistance to growth hormone or cause hypoglycemia, 

Figure 4. Effect of exogenous Wnt7a stimulus on TA and LVP muscle. (A) Immunofluorescence staining of Ki67 (red) and DAPI (blue) in tissue sections from 
TA or LVP muscle treated with PBS or Wnt7a. (B) Quantification of Ki67‑positive nuclei. (C) Immunofluorescence staining of laminin (green), and DAPI 
(blue) in tissue sections from TA or LVP muscle treated with PBS or Wnt7a. (D) Quantification of the number of myofibers per field with and without Wnt7a 
treatment. (E) Quantification of myofiber size with and without Wnt7a treatment. **P<0.01, ***P<0.001 as indicated. Scale bar=50 µm. TA, tibialis anterior; 
LVP, levator veli palatini.
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when compared with IGF‑1  (10). Previous studies by 
von Maltzahn et al  (10,28) have indicated the key role of 
recombinant Wnt7a protein in augmenting mouse limb muscle, 
leading to significant myofiber hypertrophy and enhanced 
muscle function. Notably, there were two primary findings 
in the present study. First, Wnt7a induced hyperplasia rather 
than hypertrophy in TA muscle. This discrepancy may be 
attributed to the different postnatal growth patterns in muscle 
fibers between mice and rats. Typically, the number of myofi-
bers remains constant after birth in mice, while the number 
and size of myofibers continue to increase for 10 weeks in 
rats (20,36). Secondly, TA and LVP muscle reflected different 
augmentation potential after Wnt7a delivery. In TA muscle, 
the number of myofibers increased significantly, a large 
proportion of which were observed to be centrally‑nucleated 
myofibers. However, LVP muscle did not exhibit an increase in 
myofiber number, despite markedly upregulating the number 
of centrally‑located myofibers. The two muscle types exhibited 
augmentation potential in response to Wnt7a stimulus, but had 
different responses. The reason for these differences requires 
further investigation.

LVP muscle was selected for investigation in the current 
study primarily due to its clinical significance. LVP muscle 
elevates the soft palate and serves a critical function in 
velopharyngeal closure. Reduced LVP muscle volume and 
compromised LVP muscle function in patients with cleft 
palate results in affected speech (12). Effective augmentation 
of LVP muscle via biological therapeutics may revolutionize 
the management of cleft palate.

The present study has cer tain limitations. The 
newly‑formed myofibers with small diameters observed in TA 
muscle 3 weeks after Wnt7a administration were immature. 
To probe the augmentation effect, a longer observation time is 
required in order to assess the development of these new fibers. 
In addition, the notable discrepancies between the responses 
of TA and LVP muscle to Wnt7a administration highlights 
the requirement for more in‑depth work in order to reveal the 
underlying mechanisms.

In conclusion, LVP muscle is distinct from TA muscle 
in its myofiber composition, in‑situ stem cell population, 
Wnt signaling hub expression and augmentation potential. 
Therefore, therapeutics that are effective in TA muscle may not 
be effective in LVP muscle, and further studies are required in 
order to elucidate the differences between the muscle types.
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