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Abstract. Cancer initiating cell (CIC) formation and 
epithelial-mesenchymal transition (EMT) are pivotal events 
in lung cancer cell invasion and metastasis. They have 
been shown to occur in gefitinib resistance. Studying the 
molecular mechanisms of CICs, EMT and acquired gefitinib 
resistance will enhance the understanding of the pathogen-
esis and progression of the disease and offer novel targets 
for effective therapies. TWIK-related acid-sensitive K(+) 
(TASK‑1) is expressed in a subset of non‑small‑cell lung 
cancer (NSCLC) cell lines, where it promotes cell prolifera-
tion while inhibiting apoptosis. In the present study, TASK‑1 
was demonstrated to induce gefitinib resistance in the A549 
NSCLC cell line. Overexpression of TASK‑1 promoted 
the acquisition of CIC‑like traits by A549 cells. CD133, 
octamer‑binding transcription factor 4 (OCT‑4) and Nanog 
have been suggested to be markers of CICs in lung cancer. It 
was demonstrated that overexpression of TASK‑1 promoted 
CD133, OCT‑4 and Nanog protein expression in A549 cells. 
Increased formation of stem cell-like populations results in 
EMT of cancer cells. The present study found that overex-
pression of TASK‑1 promoted EMT of A549 cells. Thus, 
downregulation of TASK‑1 may represent a novel strategy 
for EMT reversal, decreasing CIC-like traits and increasing 
gefitinib sensitivity of NSCLCs.

Introduction

Lung cancer is a heterogeneous malignancy with aggres-
sive phenotypes (1,2). Non‑small‑cell lung cancer (NSCLC) 
accounts for ~85% of lung cancer cases (2). Lung cancers 
harboring somatic mutations in exons encoding the tyrosine 
kinase domain of the epidermal growth factor receptor (EGFR) 
exhibit a significant tumor regression when treated with the 
EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib 
in ~70% of cases (3-5). However, acquired resistance inevi-
tably develops in an overwhelming majority of these patients.

Epithelial to mesenchymal transition (EMT) is associated 
with the acquired resistance of NSCLC to gefitinib (6,7). It 
is a process by which cells undergo a morphological shift 
from the epithelial polarized to the mesenchymal fibroblastoid 
phenotype. EMT has been recognized to have pivotal roles 
in several diverse processes during embryonic development, 
chronic inflammation and fibrosis, as well as tumor progres-
sion (8-11). During EMT, epithelial cells lose their defined 
cell-cell/cell-substratum contacts and their structural/func-
tional polarity, and become spindle-like.

Lung cancer stem cells (CSCs) or cancer‑initiating cells 
(CICs) have been identified and demonstrated to constitute a 
primitive cell population capable of self-renewal and differen-
tiation that have the unique capacity to give rise to new tumors 
upon serial transplantation (12-15). They represent a small 
population of undifferentiated tumorigenic cells responsible 
for tumor initiation, maintenance and spreading. Resistance 
to conventional chemotherapeutic drugs is a common charac-
teristic of CICs (16). It has been reported that lung CICs were 
associated with gefitinib resistance (17).

TWIK-related acid-sensitive K(+) (TASK‑1) is expressed 
in a subset of NSCLCs, where it is functional, and promoted 
the proliferation and inhibited apoptosis in a highly 
TASK‑1‑expressing lung cancer cell line (18). The present 
study demonstrated that TASK‑1 induced gefitinib resistance 
in NSCLC A549 cells. Overexpression of TASK‑1 promoted 
the formation of CICs in A549 cells. CD133, octamer‑binding 
transcription factor 4 (OCT‑4) and Nanong have been 
proposed as markers of CICs in lung cancer (13,19,20). The 

TASK‑1 induces gefitinib resistance by 
promoting cancer initiating cell formation and 

epithelial‑mesenchymal transition in lung cancer
XING-GUANG WANG1,  NA-XIN YUAN2,  XIN-PENG LI2  and  FANG-FANG CHEN3

1Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 
Jinan, Shandong 250021; 2Department of Respiratory Medicine, Dezhou People's Hospital, Dezhou, 
Shandong 253014; 3Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital 

Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China

Received June 23, 2016;  Accepted April 28, 2017

DOI: 10.3892/etm.2017.5426

Correspondence to: Dr Fang-Fang Chen, Department of 
Respiratory Medicine, Shandong Provincial Qianfoshan Hospital 
Affiliated to Shandong University, 16766 Jingshi Road, Jinan, 
Shandong 250014, P.R. China
E-mail: chenfangfang16766@163.com

Key words: cancer initiating cells, epithelial-mesenchymal 
transition, lung cancer, TASK‑1



WANG et al:  MECHANISM OF GEFITINIB RESISTANCE INDUCED BY TASK‑1 IN LUNG CANCER366

present study demonstrated that overexpression of TASK‑1 
promoted CD133, OCT‑4 and Nanong protein expression in 
A549 cells. Increased formation of CSC‑like populations may 
result in EMT of cancer cells (21-24). The present study found 
that overexpression of TASK‑1 promotes EMT of A549 cells.

Materials and methods

Cell line and culture. The A549 NSCLC cell line was 
purchased from the Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China) within 3 months of performing 
the experiments. They were cultured in Dulbecco's modified 
Eagle's medium supplemented with 10% fetal bovine serum 
(both Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) and antibiotics (100 mg/ml penicillin and 100 U/ml 
streptomycin) in a 5% CO2 incubator at 37˚C.

Cell transfection. The pGCMV/EGFP/TASK‑1 plasmid 
and the pGCMV/EGFP/Neo plasmid were constructed 
(Tiangen Biotech Co., Ltd., Beijing, China). The two plasmids 
were transfected into A549 NSCLC cells separately using 
Lipofectamine 2000 transfection reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.). In order to detect the transfection effi-
ciency of the plasmids, green fluorescent signal was measured 
by fluorescence microscopy. Subsequent experimentation was 
performed after 24 h.

Western blot analysis. Total proteins in cells were extracted 
using protein lysis solution (Tiangen Biotech Co., Ltd.). Protein 
concentration was measured using a bicinchoninic acid kit 
(Tiangen Biotech Co., Ltd.). Protein extracts (50 µg/lane) were 
resolved through 8% SDS‑PAGE, transferred onto polyvi-
nylidene difluoride membranes (Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA) and blocked with 5% non‑fat milk for 1 h 
at room temperature. Membranes were probed with antibodies 
against human TASK‑1 (ab135883), vimentin (ab92547), 
E‑cadherin (ab40772), CD133 (ab16518), OCT4 (ab109183), 
Nanog (ab109250), matrix metalloproteinase (MMP)9 
(ab76003), MMP2 (ab92536) or β‑actin (ab8227) (all 1:500; 
Abcam, Cambridge, MA, USA) at 4˚C overnight. Membranes 
were then incubated with anti-rabbit secondary antibodies 
(1:500; ab218695; Abcam) for 1 h at room temperature. 
An enhanced chemiluminescence system (GE Healthcare, 
Chicago, IL, USA) was used to detect the antibody binding.

Sphere formation assay. Cells were seeded at 2.5x104 cells/well 
on 0.5% agar pre-coated 6-well plates. After 1 week, half 
the medium was exchanged every third day. After a total of 
14 days, single spheres were picked and counted (25). Sphere 
formation efficiency was calculated by dividing the total 
number of spheres formed by the total number of live cells 
seeded multiplied by hundred.

MTT assay. To monitor resistance to gefitinib, A549 cells were 
treated with gefitinib (purity >99%; AstraZeneca, Cambridge, 
UK) at different concentrations for 24 h. An MTT assay was 
performed as described previously (2). Data were analyzed 
with the software Origin 7.5 (OriginLab, Northampton, MA, 
USA) to fit a sigmodial curve. The IC50 was the gefitinib 
concentration that reduced the number of viable cells by 50%.

Immunofluorescence staining. Cells seeded on glass 
coverslips in 6‑well plates were fixed in 4% formaldehyde 
solution for 30 min at room temperature and permeabilized 
with 0.5% Triton-X-100/PBS. Cells were blocked with 
5% BSA‑PBS (BSA from Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) for 1 h at room temperature and incu-
bated with primary antibodies against E‑cadherin (1:500; 
ab92547; Abcam) or vimentin (1:500; ab40772; Abcam) at 
4˚C overnight. Cells were then incubated with rhodamine‑ or 
fluorescein isothiocyanate‑conjugated secondary antibodies 
(1:500; ab150077; Abcam) for 1 h at room temperature. The 
coverslips were counterstained with DAPI and imaged under a 
confocal microscope (TCS SP5; Lecia Microsystems, Wetzlar, 
Germany).

Wound healing assay. Cells (5x105) were seeded onto each 
35‑mm glass bottom dish (MatTek Co., Ashland, MA, USA) and 
cultured at 37˚C with 5% CO2 for 24 h. The confluent monolayer 
of cells was wounded with yellow 200 µl pipette tips (Tiangen 
Biotech Co., Ltd.). After washing with warm PBS, the cells were 
incubated in fresh serum-free culture medium. Images of the 
wounded areas were captured at different time-points with an 
inverted microscope (Eclipse TE‑2000U; Nikon, Tokyo, Japan) 
equipped with a video camera (DS‑U1; Nikon). Results were 
examined at five randomly selected fields in each field, at x20 
magnification. The wound areas were calculated by ImageJ 
1.43b software (NIH, Bethesda, MD, USA).

Statistical analysis. Values are expressed as the mean ± stan-
dard error of the mean. SPSS 16.0 software (SPSS, Inc., 
Chicago, IL, USA) was used for the analysis of experimental 
data. Student's t‑test (two‑tailed) was used for comparison 
between two groups. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Overexpression of TASK‑1 promotes gefitinib resistance. 
In order to confirm the efficiency of plasmid-mediated 
TASK‑1‑expression,  A549 cel ls  t ransfected with 
TASK‑1‑expressing plasmid and empty vector were subjected 
to western blot analysis. The results showed that TASK‑1 
protein was significantly upregulated in A549 cells trans-
fected with TASK‑1‑expressing plasmid (Fig. 1A). To further 
identify whether TASK‑1 affected the efficacy of gefitinib in 
A549 cells, A549 cells transfected with TASK‑1‑expressing 
plasmids or empty vector were subjected to an MTT assay 
(Fig. 1B). The results demonstrated that TASK‑1 transformed 
native, gefitinib‑sensitive A549 cells into gefitinib‑resistant 
A549 cells, suggesting that its overexpression induced gefitinib 
resistance (Fig. 1B).

TASK‑1 gives A549 cells CIC‑like traits. In order to identify 
whether TASK‑1 affects CIC‑like traits in A549 cells, a sphere 
formation assay was performed to assess the capacity of A549 
cells for self renewal, which is associated with CICs and 
CSCs. The results demonstrated that after 14 days of culture 
TASK‑1‑overexpressing cells formed bigger spheres than 
control cells, indicating markedly increased CIC-like traits 
provided by the TASK‑1‑expressing plasmids (Fig. 2A). To 
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identify whether TASK‑1 regulates CD133, OCT‑4 and Nanog 
protein expression, western blot analysis of A549 cells trans-
fected with TASK‑1‑expressing plasmids and empty vector was 
performed. The results revealed that CD133, OCT‑4 and Nanog 
protein were upregulated in A549 cells by TASK‑1 (Fig. 2B).

TASK‑1 induces EMT in A549 cells. Cell morphological obser-
vation revealed that overexpression of TASK‑1 induced EMT 
phenotypes in A549 cells (transition from a cobblestone‑like to 
a spindle‑like morphology; Fig. 3A). In order to detect whether 
TASK‑1 affects E‑cadherin (epithelial marker) and vimentin 
(mesenchymal marker) protein, immunofluorescence analysis 
of A549 cells transfected with TASK‑1 and empty vector 
was performed. It was found that overexpression of TASK‑1 
promoted vimentin expression and inhibited E‑cadherin 
expression in A549 cells (Fig. 3B). Western blot analysis was 
also performed to detect E-cadherin and vimentin protein in 
A549 cells transfected with TASK‑1 and empty vector. The 
results revealed that vimentin protein is upregulated, while 
E‑cadherin is downregulated in A549 cells transfected with 
TASK‑1 overexpression vector (Fig. 3C).

Overexpression of TASK‑1 promotes migration of A549 cells. 
In an attempt to identify the role of TASK‑1 in regulating the 

migration of A549 cells, a would healing assay was performed 
to detect the migration of A549 cells transfected with 
TASK‑1‑expressing plasmid and empty vector. Overexpression 
of TASK‑1 was found to promote the migration in the cells 
(Fig. 4A). In order to detect whether TASK‑1 affects MMP‑2 
and MMP‑9 protein expression, western blot analysis of A549 
cells transfected with TASK‑1 and empty vector was performed. 
It was revealed that expression of TASK‑1 promotes MMP‑2 
and MMP‑9 expression in A549 cells (Fig. 4B).

Discussion

NSCLC patients with early‑stage disease are treated by 
surgery, and 30-60% develop recurrent tumors, which results 
in mortality (26,27). Chemotherapeutic agents, including 
gemcitabine, platinum compounds and taxanes, improve 
survival to a limited extent, but overall survival rates remain 
low due to recurrence of more aggressive, drug-resistant 
tumors (28,29). NSCLC in non‑smokers predominantly has 
mutations in EGFR (30); such patients respond well to EGFR 
inhibitors such as gefitinib, but eventually develop resistance 
and succumb to the disease (31). The recurrence may be local 
or metastatic, and commonly occurs after a period of clinical 
dormancy. Resistance to EGFR inhibitors occurs through 
various mechanisms, including the appearance of a T790M 
gatekeeper mutation, expression of the c‑Met gene or activation 
of alternate signaling pathways (32,33). Development of strate-
gies to combat resistance to EGFR inhibitors in NSCLC will 
provide an immense benefit to a large number of patients (34).

A recent study reported that knockdown of TASK‑1 by 
small interfering RNA significantly enhanced apoptosis and 
reduced proliferation in A549 cells (18). For the first time, to 
the best of our knowledge, the present study demonstrated 
that overexpression of TASK‑1 induced gefitinib resistance in 

Figure 1. Overexpression of TASK‑1 promotes gefitinib resistance. 
(A) Western blot analysis of TASK‑1 in A549 cells. β-actin was used as a 
loading control. (B) MTT cell viability assay. A549 cells transfected with 
TASK‑1 expressing plasmids or empty vector (mock) were untreated or 
treated with gefitinib. Values are expressed as the mean ± standard error of 
the mean (n=3). TASK‑1, TWIK‑related acid‑sensitive K(+).

Figure 2. TASK‑1 induces formation of CIC phenotypes in A549 cells. 
(A) Sphere growth of A549 cells transfected with TASK‑1‑expressing 
plasmids and empty vectors (mock) (scale bar, 100 µm). (B) Western blot 
analysis of CD133, OCT‑4 and Nanog in A549 cells transfected with 
TASK‑1‑expressing plasmids and empty vectors (mock). β-actin was used 
as a loading control. Representative images of triplicate experiments are 
shown. TASK‑1, TWIK‑related acid‑sensitive K(+); OCT‑4, octamer‑binding 
transcription factor 4.
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A549 cells, implying that TASK‑1 may represent a novel target 
to reverse gefitinib resistance.

Resistance to radiation therapies and conventional 
chemotherapeutic drugs is a common characteristic of 
CSCs (35-37). It has been reported that aldehyde dehydro-
genase 1 family member A1 (ALDH1A1)‑positive CSCs 
promote gefitinib resistance in lung cancer (17). The present 
study found that overexpression of TASK‑1 promoted A549 
cells to adopt CIC‑like properties. In addition, overexpres-
sion promoted CD133, OCT‑4 and Nanog protein expression 
in A549 cells, indicating that TASK‑1 induces the develop-
ment of CIC-like traits. However, it remains elusive whether 
TASK‑1 promotes the formation of ALDH1A1‑positive lung 
CICs.

Figure 3. TASK‑1 induces epithelial to mesenchymal transition of A549 
cells. (A) Phase‑contrast microscopy images of A549 cells transfected with 
TASK‑1‑expressing plasmids and empty vectors (mock). Scale bar=100 µm. 
(B) Immunofluorescence analyses for vimentin and E‑cadherin in A549 cells 
transfected with TASK‑1‑expressing plasmids and empty vectors (mock). The 
nuclei were counterstained with DAPI. Scale bar=100 µm. (C) Western blot 
analysis of vimentin and E‑cadherin in A549 cells transfected with TASK‑1 
expressing plasmids and empty vectors (mock). β-actin was used as a loading 
control. Representative images of triplicate experiments are shown. TASK‑1, 
TWIK-related acid-sensitive K(+).

Figure 4. Overexpression of TASK‑1 promotes migration of A549 cells. 
(A) Wound‑healing assay of A549 cells transfected with TASK‑1‑expressing 
plasmids and empty vectors (mock). Images of the cell monolayers were 
captured directly after scraping and subsequent to 48 h of incubation. 
The wound healing rate was quantified by detecting the percentage of 
wound closure vs. that of the original wound. Values are expressed as the 
mean ± standard error of the mean (n=3). Scale bar=100 µm. (B) Western blot 
analysis of MMP‑2 and MMP‑9 expression in A549 cells transfected with 
TASK‑1‑expressing plasmids and empty vectors (mock). β-actin was used as 
a loading control. Representative images of triplicate experiments are shown. 
MMP, matrix metalloproteinase; TASK‑1, TWIK‑related acid‑sensitive K(+).
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Increased formation of a CIC population may result in 
EMT of cancer cells and EMT has been shown to contribute 
to the formation of CIC-like characteristics (38). It has been 
suggested that the reversal of the EMT phenotype potentially 
enhances the sensitivity of lung cancer cells to gefitinib (39). 
Consistent with these results, the present study demonstrated 
that overexpression of TASK‑1 induced EMT of A549 cells. 
The degradation of ECM and the destruction of basement 
membrane are prerequisites for tumor infiltration and metas-
tasis (40). Tumor cells must have the ability to degrade ECM 
and basement membranes, and this degradation process 
depends on proteolytic enzymes, mainly serine-degrading 
enzymes, cysteine proteases and MMPs. MMPs are considered 
to be the most important. MMP2 and MMP9 are important 
members of the MMP family, encoding 72 KDa gelatinase A 
and 92 KDa gelatinase B, respectively, which have a partial 
co-acting substrate that degrades the major constituents of the 
basement membrane IV type collagen. This is conducive to the 
migration of tumor cells (41,42).

In conclusion, the results of the present study provided 
strong molecular evidence demonstrating that TASK‑1 
promotes gefitinib resistance, EMT and CIC‑like properties 
of NSCLCs. Thus, downregulation of TASK‑1 appears to be a 
novel strategy for the reversal of the EMT, decreasing CIC-like 
traits and increasing gefitinib sensitivity of NSCLCs.
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