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Abstract. Due to the clinical durable scanning time and 
other physical constraints, the spatial resolution of diffu-
sion‑weighted magnetic resonance imaging (DWI) is highly 
limited. Using a post‑processing method to improve the 
resolution of DWI holds the potential to improve the investiga-
tion of smaller white‑matter structures and to reduce partial 
volume effects. In the present study, a novel non‑local mean 
super‑resolution method was proposed to increase the spatial 
resolution of DWI datasets. Based on a non‑local strategy, joint 
information from the adjacent scanning directions was taken 
advantage of through the implementation of a novel weighting 
scheme. Besides this, an efficient rotationally invariant simi-
larity measure was introduced for further improvement of 
high‑resolution image reconstruction and computational effi-
ciency. Quantitative and qualitative comparisons in synthetic 
and real DWI datasets demonstrated that the proposed method 
significantly enhanced the resolution of DWI, and is thus 
beneficial in improving the estimation accuracy for diffusion 
tensor imaging as well as high‑angular resolution diffusion 
imaging.

Introduction

Diffusion‑weighted magnetic resonance imaging (DWI) has 
been established as an important non‑invasive technique for 
probing and characterizing the microstructure of living tissue 
in vivo (1). While probing the capability of water to diffuse 
in various directions and scales, multiple 3‑dimentional (3D) 
DWIs have been acquired using echo‑planar imaging (EPI). 
However, the spatial resolution and signal‑to‑noise ratio 
(SNR) is limited by several physical, clinical and economical 

considerations (2). Poor spatial resolution in fact poses signifi-
cant limits on the scale of tissue structure that may be 
characterized by DWI. For instance, individual axon diameters 
are in the order of 1‑30 µm, while the typical DWI resolution is 
~2x2x2 mm3, which only provides summative measures from 
millions of axons. In addition, the partial volume effect also 
limits the DWI to the investigation of the major fiber bundles 
in the brain (3). Therefore, increasing spatial resolution of 
DWI is beneficial for reducing partial volume effects, which 
allows fine details of the tissue structure to be resolved and 
characterized with enhanced certainty (4).

Several methods have been proposed to increase the spatial 
resolution of DWI, and may be broadly divided into two 
categories: The acquisition procedure and the post‑processing 
procedure. Increasing spatial resolution through image acqui-
sitions typically involves the use of high‑quality diffusion 
gradient coils, and a longer echo time (TE) that is necessary for 
encoding a larger k‑space in a single shot. However, increasing 
TE leads to increased error accumulations during spatial 
encoding and enhanced geometric and intensity distortion 
along the phase encoding direction (5). Alternatively, higher 
magnetic fields (7 Tesla or more) may be employed, which 
offers an effective solution to improving SNR while reducing 
image distortion caused by larger spatial encoding (6). Other 
methods have also been proposed for improving spatial resolu-
tion, for instance, using a specifically designed gradient coil 
such as Gradient Insert (7). While all these methods require 
a hardware upgrade in the scanner, methods that are based 
on changing image acquisition schemes for the purpose of 
improving spatial resolution are also available. A representa-
tive method of this type is anisotropic orthogonal acquisition, 
which employs a maximum of a posteriori estimations from 
multiple scans to exploit spatial homogeneity and provide 
regularized solutions for isotropic high‑resolution (HR) (8).

Enhancing spatial resolution in the post‑processing 
procedures shares the common concept as the well‑known 
super‑resolution (SR) technology, which was developed for the 
same problem in video sequences (9). A preliminary study on 
SR of DWI data was performed by Peled and Yeshurun (2), who 
resorted to a set of spatially shifted DWI for enhanced spatial 
resolution. Later, Arsigny et al (10) introduced Log‑Euclidean 
metrics into interpolation of diffusion tensor magnetic reso-
nance imaging (DTI) data, which naturally allows for tensor 
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super‑resolution. Furthermore, Calamante et al (11) proposed a 
tract density imaging‑based method that weighs the interpola-
tion with tract density, which elegantly achieves an appealing 
visualization effect.

Intuitively, the resolution of DWI may be enhanced by 
adapting state‑of‑the‑art SR methods from simple scene 
images, such as the non‑local method (12) and overcomplete 
dictionaries (13). However, as pointed out in numerous DWI 
applications  (14‑16), due to the particular nature of DWI 
data, only a combination of multiple channels may reveal 
the complex structure of white matter, since a single channel 
simply captures partial information regarding the underlying 
neuronal structure. In the present study, a novel SR method 
for a multiple‑channel DWI dataset was proposed based on 
a well‑known non‑local mean filter. The proposed method 
introduced joint information, which encapsulates the intrinsic 
similarity redundancy of adjacent DWI channels, to improve 
the regularization of the SR procedure. In addition, an efficient 
rotational invariant similarity measure was also applied to the 
proposed SR method. This not only increased the redundant 
pattern, which is beneficial for more accurate HR image 
reconstruction, but also reduced the computational burden for 
more practical applications.

A preliminary version of the proposed method was first 
described in a conference paper  (17). The present study 
consolidated this work and expanded on the results. The 
proposed SR method is described in detail in the method 
section. After quantitative and qualitative comparison of the 
proposed SR framework on a synthetic and a real DWI dataset, 
the advantages and limitations of the proposed technique were 
discussed.

Materials and methods

Methods. To recall the problem of SR, it may be assumed that 
the low‑resolution (LR) image Y corresponds to the original 
HR image X according to the following model:

    (1)

where H is the degradation operator, D is the decimation  
operator and η is additive noise. The SR reconstruction 
problem is to estimate the underlying HR version X from Y 
as follows:

   (2)

where  is a regulation term and λ is the regulation param-
eter that balances the fidelity term and regulation term.

A non‑local strategy has been proposed primarily as an 
efficient denoising method  (18), and was then adapted to 
multiply modifications (12,19‑21). In addition to denoising 
applications, the non‑local method may also be adapted for an 
SR reconstruction task (12,22‑24). In these applications, the 
patch‑based non‑local estimator was used to define the regula-
tion term:

     (3)

where X̂p is acquired with a non‑local estimator:

  (4)

in which Xp and Xq are the voxels at location p and q, respec-
tively, ω is a searching window and w weighs the similarity 
betweenpatches S(Xp) and S(Xq) as below:

where h is the decay parameter and Zp is a normalization 
constant that is defined as the sum of all the weights.

As previously reported (12), after computing this regular-
ization term, the fidelity term is then applied for subsampling 
consistency (25):

      (6)

Finally, this non‑local interpolation framework is imple-
mented iteratively until convergence, and this two‑step 
iteration may be defined as follows:

    
(7)

   (8)
where NN is the nearest neighbor interpolation, and t is the 
iteration number. Equations 7 and 8 correspond to the non‑local 
reconstruction and mean correction, respectively.

This non‑local SR method was proposed primarily for 3D 
MRI, and was then adapted for DWI application, which uses 
non‑diffusion image (b0) information as the HR reference to 
guide the reconstruction (24).

Of note, joint information, as indicated previously, 
gathers the information from all correlated gradient images, 
providing extra redundancy, which is beneficial for SR recon-
struction.

XN
p and XN

q denote the DWI patches, with N corresponding 
to the Nth gradient direction. Due to the fact that DWI is stored 
sequentially, an adjacent gradient direction is associated with 
a higher correlation. As previously reported (19,21), a more 
efficient non‑local estimation may be acquired through a more 
accurate weighting scheme. Intuitively, it is possible for joint 
information from correlation gradient directions to improve 
weighting accuracy, which leads to better SR reconstruction: 

,    (9)

 
(10)

where , with n being a constant resembling the 
number of gradient directions.

It should be noted that the similarity measure in equa-
tion 10 is not rotationally  invariant. As previously pointed 
out (19,20), the rotationally invariant measure may be applied 
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to the proposed SR method for further improvement of the 
HR image reconstruction. Manjon et al (19) proposed a simple 
but effective rotationally invariant measure, which is based on 
voxel intensity and the corresponding patch means. The present 
study we adopted this rotationally invariant measure into a 
non‑local SR method with joint information of DWI, so that the 
similarity measure in equation 10 may be rewritten as follows:

(11)

where µ is the mean of the patches around voxel  
XN

p  (or XN
q) and its corresponding n nearby gradient  

directions.
As presented in equation 8, the mean correction step in 

order to ensure that the reconstructed HR image is consistent 
with the original LR image is as follows:

      (12)

where NN is the nearest neighbor interpolation, H is the degra-
dation operator, D is the decimation operator and X̂N is the 
reconstructed HR image.

Experiments. A synthetic dataset, a high‑field in vivo DWI 
dataset and a physical phantom dataset were selected to evaluate 
the proposed method. Regarding the use of the in vivo dataset, 
the study was approved by the ethics committee of Vanderbilt 
University Institutional Review Board (Nashville, TN, USA). 
Prior to experiments, written informed consent was obtained 
from the participant. In addition, different interpolation 
methods and super‑resolution methods were also involved for 
comparison. The first is B‑spline interpolation, which was intro-
duced for DWI resolution enhancement in the literature (26,27) 
and was used for comparison. A non‑local approach for MRI 
super‑resolution (12) was also involved for comparison, together 
with the proposed method implementing joint information 
(Proposed‑n) and rotationally invariant similarity measure 
(Proposed‑RI‑n). For the methods used in the present study, all 
scenarios were tested (n=1, 3, 5), since using more gradients 
becomes computationally prohibitive. As presented in equation 
10, if n=1, the algorithm is simplified to the classical non‑local 
method. The searching window was set as suggested in (12), and 
the decremental approach alone was used in the convergence 
process to define the delay parameter h (24).

The simulation dataset consists of the 3D structure 
field presented at the 2012 high‑angular resolution diffu-
sion imaging (HARDI) Reconstruction Challenge (28) and 
has a 16x16x5 volume attempting to simulate a realistic 3D 
configuration of tracts occurring. As presented in Fig. 1A, this 
dataset is comprised of five different fiber bundles, which gave 
rise to the nonplanar configurations of bending, crossing and 
kissing tracts. All fiber tracts were characterized with a frac-
tional anisotropy between 0.75 and 0.90. To better explore the 
proposed method, this synthetic dataset was also corrupted by 
Rician noise (SNR, 30) and displayed in Fig. 1F. The original 
dataset and the noisy one were down‑sampled by a factor of 
2 using the nearest neighbor interpolation along each axis. 

Next, the LR datasets were super‑resolved using the B‑spline 
method, the non‑local method, and the proposed methods with 
5 directions. In addition to the visual comparison demonstrated 
in Fig. 1, the angular accuracy was also involved for quantita-
tive evaluation (28). The angular accuracy in the orientation 
of the estimated fiber compartments was assessed by means 
of the average error (in degrees) between the estimated fiber 
directions and the true ones present in a voxel:

      (13)

where the unitary vectors dtrue and destimated are a true fiber 
population in the voxel and the ones closest to the estimated 
directions. 

The in vivo DWI dataset was acquired by a 7T Philips 
Achieva whole‑body scanner (Philips Healthcare, Cleveland, 
OH, USA) with a volume head coil for transmission and 32‑chan-
nels. A DW dual spin‑echo, SENSE accelerated multi‑shot 
EPI was used to acquire the DWI data (b‑value, 700 sec/mm2; 
15 diffusion directions; field of view, 210x210x30  mm3; 
matrix size, 300x300 with 15 slices and a spatial resolution 
of 0.7x0.7x2 mm3). A gold standard image was constructed 
based on this in vivo HR DWI dataset to quantitatively and 
qualitatively validate the proposed approach. For this, 10 
acquisitions of HR DW images were averaged in the image 
space (0.7x0.7x2 mm3). The LR images used for the experi-
ment were then simulated by down‑sampling the gold standard 
by a factor of 2 using the nearest neighbor interpolation along 
each axis, i.e., [2 2 2], which resulted in simulated LR images 
of 1.4x1.4x4 mm3. The HR and LR data were filtered using 
the UNLM3D filter to remove random noise prior to HR 
reconstruction. Two objective measure matrixes, namely the 
Peak SNR (PSNR) and the structural similarity (SSIM) (29) 
were used to quantitatively evaluate the super‑resolved DWI 
dataset. The PSNR measures the differences between each of 
the images and the image quality, while the SSIM measures 
the structure and perceptual similarities between the original 
and reconstructed images.

        (14)

where µx and µy are the mean value of images x and y, Σx and 
Σy are the standard deviation of x and y, respectively, Sxy is the 
covariance between them, and constants c1 and c2 were set as 
suggested in a previous study (29).

For further investigation, a physical phantom dataset used 
in tracking analysis was also implemented. As proposed in 
previous studies (30,31), this phantom dataset was scanned 
in two spatial resolutions; a dataset with a resolution of 
6x6x6 mm3 was selected for interpolation and a dataset with a 
resolution of 3x3x3 mm3 was used for comparison.

Finally, a diffusion tensor image  (32) and a HARDI 
model using spherical deconvolution (33) were reconstructed 
using the super‑resolved DWI dataset for evaluation in a 
quantitative as well as a qualitative manner. For a synthetic 
phantom, the diffusion tensor field and principal eigenvector 
were computed using CAMINO (34) and are displayed in 
Fig. 1. Table I presents the mean and standard deviation of the 
angular error estimated by equation 13. For the in vivo dataset, 
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the DWI reconstruction results were quantitatively and quali-
tatively compared in Figs. 2 and 3, respectively, followed by 
comparison of the effect of motion artifacts and geometric 
distortions in Figs. 4 and 5. Fractional anisotropy (FA), the 
FA‑weighted color map of the principal eigenvector and the 
principal eigenvector of the estimated tensor and were deter-
mined and displayed in Figs. 6, 7 and 8, respectively. For the 
physical phantom dataset, the orientation distribution function 
(ODF) using spherical deconvolution (33) was estimated and 
displayed in Fig. 9.

All experiments were performed on a personal computer 
running MATLAB R2013b (Mathworks, Natick, MA, USA) 
in Windows 7, with an Intel(R) core i7‑4600 U processor and 
8 GB RAM.

Results

Simulation results. Fig. 1 demonstrates the principal eigenvector 
of the tensor model in the synthetic phantom and the results of the 
reconstruction performed using the above‑mentioned methods. 
It was indicated that the proposed methods outperformed the 
interpolated method in noisy as well as no‑noise situations. By 
carefully observing Fig. 1E and J, it may be observed that the 
proposed method achieved more robust reconstruction results 
with no irregular tensors, as indicated by arrows. This was also 
in accordance with the quantitative comparison of the angular 
error in Table I, in which the proposed method achieved the 
most accurate reconstruction results of tensor direction in the 
original and noisy datasets.

In vivo dataset results. The quality of DWI reconstruction is 
demonstrated in Figs. 2 and 3. Fig. 2 presents the PSNR and 
SSIM of the proposed method compared with B‑spline inter-
polation and non‑local upsampling (12). As indicated in the 
study by Manjón et al (12), the patch‑based method was better 
than the classical interpolation. For the proposed method of 
the present study, the super‑resolution using joint information 
enhanced the reconstructed image quantitatively for every 
DWI image with different directions. In addition, PSNR as 
well as SSIM improved with the increasing involvement of 
nearby DWI images. Fig. 3 presents the visual comparison 
of the reconstructed DWI images. The reconstructed image 
(Fig. 3B) had the blurriest result of all, while the proposed 
method using seven nearby gradient images (Fig. 3E) achieved 
the image most similar to the golden standard (Fig. 3A). The 
crack in the enlarged region demonstrates that using joint 
information, the proposed‑RI‑5 grad (Fig. 3E) reconstructed 
the best spatial features of the cracked area as indicated by 
the blue arrow, compared with the same area reconstructed by 
other methods, in which the edges are blurry and difficult to 
distinguish.

As indicated by Coupé et al (24), DWI datasets are vulner-
able to motion artifacts and geometric distortions. Therefore, 
the impact of misalignments on the quality of results using 
the proposed method was studied. First, the displacements 
between b0 and DW images were obtained with an FSL eddy 
current correction (35) and the mean displacements estimated 
from the reconstruction results are displayed in Fig.  4A. 
Fig. 4B demonstrates the correlation between image quality 
in terms of PSNR and the estimated mean displacements. 

No significant linear correlation between the results from the 
proposed method and the estimated mean displacements was 
observed, which demonstrates the robustness of the proposed 
method towards the limited misalignment.

The impact of distortion corrections on the results of 
the proposed method was also studied in Fig. 5. The experi-
ment in Fig. 1 was repeated using the corrected dataset, and 
data were then subjected to the FSL eddy current correc-
tion. Subsequently, the PSNR and SSIM of the results using 
B‑spline, non‑local upsampling and the proposed method were 
computed using the corrected gold standard and presented in 
Fig. 5.

Figs. 6 and 7 demonstrate the FA map and color map, 
respectively, of the estimated DTI data from the reconstructed 
DWI. Table II presents the PSNR and SSIM of the FA map. 
Consistent with Figs. 2 and 3, the FA and color map estimations 
using B‑spline interpolation were worst among all methods. 
Following careful observation of the results in the boxed 
areas, it became apparent that the proposed method provides 
a better estimation for FA, application of the upsampling 
method resulted in coarse edges and the proposed method 
reconstructed the highest volume corresponding to the gold 
standard image. For the anterior horn of the lateral ventricle 
(indicated by the blue arrow) and external capsule tract (indi-
cated by the red arrow), the artifacts introduced by upsampling 
methods are visible on strong edges, but these artifacts are not 
present when using the proposed method. Compared with the 
non‑local upsampling method (Fig. 7C), the proposed method 
(Fig. 7D and E) preserved greater details along association 
tracts (indicated by the green arrow). The qualitative perfor-
mance of proposed‑5 grad (Fig. 7D) and proposed‑RI‑5 grad 
(Fig. 7E) is somewhat similar, however, this is likely due to 
the tolerance of the DTI reconstruction method to small 
quantitative differences (Fig. 2). Fig. 8 presents the principal 
eigenvector of the tensor around the corpus callosum for the 
gold standard and the compared methods. Although all five 
methods maintained tensor orientation of most pixels, some 
single fiber tensors in the corpus callosum (the region indi-
cated by the red box) were smoothed by B‑spline interpolation 
(Fig. 8C) and non‑local upsampling (Fig. 8D), whereas this did 
not appear with the proposed method (Fig. 8E and F). In addi-
tion, the proposed method achieved sharper interpolation than 
the other methods in the fiber crossing area from the corpus 
callosum to the ventricle.

Physical phantom results. Fig. 9 presents the ODF obtained 
by spherical deconvolution for the B‑spline, non‑local upsam-
pling, proposed‑5 grad and proposed‑RI‑5 grad methods with 
the gold standard used as a reference. For better visualization, 
the regions of the sharp turn (second row) and crossing (third 
row) were enlarged. The B‑spline interpolation was obtained 
over smoothed results from which a great deal of ODF infor-
mation is missing. As indicated in Fig. 9J and K, the proposed 
method better resolves fiber sharp turn and crossing areas to 
facilitate fiber tracking. Circles are used to indicate the differ-
ences in performance (Fig. 9J). Close inspections reveal that 
the proposed‑RI‑5 grad better resolved the vertical component, 
which is represented by the green lobe of each ODF and with 
a stronger green lobe, better tracking of the sharp turn can be 
achieved.
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Discussion

The present study developed a novel SR method based on a 
non‑local mean filter to increase the spatial resolution of the 
DW/I dataset. The proposed method comprised an extension of 
the non‑local SR method for more accurate HR image recon-
struction using the joint information from adjacent scanning 
directions. Furthermore, an efficient rotationally invariant 
similarity measure was introduced for further improvement 
of the reconstruction together with reduction of computational 
complexity. The experimental results demonstrated that the 
proposed method not only improved the spatial resolution 
of DWI in a qualitative and quantitative manner, but also 
improved the estimation of diffusion parameters in DTI and 
HARDI.

First, the impact of the DWI direction numbers involved 
in the reconstruction was studied. Quantitative and qualitative 
experimental results demonstrated that the involvement of 
similarity redundancy in the nearby directions, namely joint 
information, allowed for a more accurate reconstruction of the 
DWI dataset. This is probably due to the fact that through the 
use of joint information, intrinsic information was retrieved 
from adjacent DWI channels, which is beneficial for more 
detailed reconstruction in the HR images. However, the increase 
of direction numbers is not unlimited and in the present experi-
ment, using >5 directions did not improve the results in any 
notable way. This may be attributed to the fact that a similarity 
comparison used for the non‑local super‑resolution was not effi-
ciently improved through increasing the DWI images involved, 
which is also in accordance with previous denoising results (16).

Table I. Angular error on estimated tensors in original phantom and noisy phantom (signal‑to‑noise ratio, 30) using B‑spline, 
non‑local upsampling and proposed method.

	 B‑Spline	 Non‑local	 Proposed‑5 grad	 Proposed‑RI‑5
Phantom 	 angular error (˚)	 angular error (˚)	 angular error (˚)	 angular error (˚)

Original 	   8.6±24.5	   7.4±20.5	   7.2±20.3	   7.0±20.1
Noisy 	 14.2±31.2	 12.6±32.7	 12.3±32.4	 12.1±32.1

Proposed‑5 grad, proposed method implementing joint information using 5 gradients; proposed‑RI 5 grad, proposed method implementing 
rotationally invariant similarity measure using 5 gradients.

Table II. PSNR/SSIM values from the fractional anisotropy map compared between the different methods. 

Parameter	 B‑Spline	 Non‑local	 Proposed‑5 grad	 Proposed‑RI‑5 grad

PSNR/SSIM	 22.0/0.90	 22.3/0.91	 23.3/0.92	 24.14/0.94

PSNR, peak signal to noise ratio; SSIM, structural similarity; proposed‑5 grad, proposed method implementing joint information using  
5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.

Figure 1. Principal eigenvector of tensor model in the synthetic phantom. Phantoms for (A) original dataset and datasets reconstructed using (B) B‑spline, 
(C) non‑local upsampling, (D) proposed‑5 grad and (E) proposed‑RI‑5 grad; (F‑J) noisy phantom (signal‑to‑noise ratio, 30); reconstructed phantom datasets 
for (F) the original dataset and datasets reconstructed using (G) B‑spline, (H) non‑local method, (I) proposed‑5 grad and (J) proposed‑RI‑5 grad. Pixels with 
different results are indicated by arrows. Proposed‑5 grad, proposed method implementing joint information using 5 gradients; proposed‑RI 5 grad, proposed 
method implementing rotationally invariant similarity measure using 5 gradients.
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The impact of diffusion parameter estimations was 
then compared. As mentioned above, the use of joint 
information improved the accuracy of diffusion parameter 
estimations using the DTI and the HARDI model, which 
may be beneficial for further clinical applications to image 
the brain in more detail. In comparison, the HARDI model 

is more beneficial in this framework. As indicated in Fig. 9, 
the estimated ODF using spherical deconvolution  (33) 
has a more distinct geometric structure in the complex 
region, including crossing and sharp corners. Since the ODF 
estimation in a complex region remains an open problem for 
investigation, super‑resolution using joint information may 

Figure 2. (A) PSNR and (B) SSIM compared between the gold standard and the images reconstructed from the simulated low‑resolution image. PSNR, peak 
signal to noise ratio; SSIM, structural similarity. Proposed‑5 grad, proposed method implementing joint information using 5 gradients; proposed‑RI 5 grad, 
proposed method implementing rotationally invariant similarity measure using 5 gradients. 

Figure 3. Comparison of diffusion‑weighted image reconstruction obtained using different methods. (A) The gold standard. Results for (B) B‑spline reconstruc-
tion, (C) non‑local upsampling, (D) proposed‑5 grad and (E) proposed‑RI‑5 grad. (F‑J) Enlarged details for (F) the gold standard, (G) B‑spline reconstruction, 
(H) non‑local upsampling, (I) proposed‑5 grad and (J) proposed‑RI‑5 grad. The cracked area is indicated by the blue arrow. Proposed‑5 grad, proposed method 
implementing joint information using 5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.

Figure 4. Effects of misalignments on the quality of results. (A) Estimated mean displacement in mm using FSL eddy current correction. (B) PSNR obtained 
with proposed‑RI‑5 grad according to estimated mean displacement. No significant linear correlation was found (P=0.51). PSNR, peak signal to noise ratio; 
proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.
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resemble a supplementary methodology for studies in the 
field.

In addition, compared with most conventional interpolation 
algorithms, which process each DWI component independently, 
the proposed method achieved notably higher‑quality results, 
which can be contributed to two main features. Firstly, conven-
tional interpolation techniques tend to increase the smoothness 
of the images, while the proposed non‑local based reconstruc-
tion is highly anisotropic due to similar voxels being involved 

in averaging operations (12), yielding greater sharpness in the 
results. Secondly, a combination of all the DWI data reveals 
complex structures in the white matter. A significant amount 
of information redundancy between adjacent directions is 
utilized to fit the reconstruction of the white matter bundle 
(Figs. 6 and 7). Although the improvement is not so evident 
in qualitative observations from the in vivo experiments, the 
evaluation presented in Table II suggests that quantitative DTI 
may benefit from the joint information approaches.

Figure 5. (A) PSNR and (B) SSIM compared between the corrected gold standard and the reconstructed images. PSNR, peak signal to noise ratio; SSIM, struc-
tural similarity. Proposed‑5 grad, proposed method implementing joint information using 5 gradients; proposed‑RI 5 grad, proposed method implementing 
rotationally invariant similarity measure using 5 gradients.

Figure 6. FA maps estimated using the gold standard and several other methods. (A) FA maps estimated for the gold standard; FA maps obtained for the recon-
structed datasets of (B) B‑spline reconstruction, (C) non‑local upsampling, (D) proposed‑5 grad and (E) proposed‑RI‑5 grad. (F‑J) Enlarged details of (F) the 
gold standard, (G) B‑spline reconstruction, (H) non‑local upsampling, (I) proposed‑5 grad and (J) proposed‑RI‑5 grad. Visually, the FA map obtained using the 
proposed method is closer to the FA of the gold standard. FA, fractional anisotropy; proposed‑5 grad, proposed method implementing joint information using 
5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.

Figure 7. FA color maps estimated for the gold standard and several other methods. (A) FA color map for the gold standard; FA color map for the reconstructed 
dataset using (B) B‑spline, (C) non‑local upsampling, (D) proposed‑5 grad and (E) proposed‑RI‑5 grad. The blue arrow indicates the anterior horn of the 
lateral ventricle; the red arrow indicates the external capsule and the green arrow indicates tract association tracts. FA, fractional anisotropy; proposed‑5 grad, 
proposed method implementing joint information using 5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity 
measure using 5 gradients.
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Furthermore, compared with another intermodality 
method implemented previously  (23), the method of the 
present study does not require any registration steps, since 
only the DWI dataset is required. This avoids bias introduced 
by registration and other modality images.

Finally, Computational complexity is another impor-
tant issue for non‑local based SR methods as well as DWI 
processing. For a typical DWI dataset with a matrix size of 
128x128, 60 slices and 32 directions, the runtime for a single 
direction was ~8 min for non‑local upsampling, 30 min for the 

proposed‑5 grad, and 10 min for the proposed‑RI‑5 grad. It is 
expected that the implementation of parallel computing on a 
graphic processing unit may further speed up the reconstruc-
tion and therefore further studies focusing on this are required.

In conclusion, the present study proposed a single image 
non‑local SR method for a DWI dataset. Compared with 
currently used methods, the proposed framework introduced 
joint information to improve the weighting scheme yet with 
a better image reconstruction. Furthermore, the reconstruc-
tion of the HR image was further improved by introducing 

Figure 8. Diffusion tensor estimations on a central slice, centered and zoomed on the corpus callosum. (A) Tensor estimated for the gold standard. (B) Enlarged 
tensor estimations for the gold standard. Enlarged tensor estimations for reconstructed datasets using (C) B‑spline, (D) non‑local upsampling, (E) proposed‑5 
grad and (F) proposed‑RI‑5 grad. The blue lines indicate the main eigenvectors of the diffusion tensor; proposed‑5 grad, proposed method implementing joint 
information using 5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.

Figure 9. ODF obtained from phantom data. The images at the second row are an enlarged view of red box and third row are of blue box area. 
(A‑C) ODF obtained with the gold standard. ODF obtained for reconstructed data set with (D and E) the B‑spline, (F and G) non‑local upsampling, 
(H and I) proposed‑5 grad and (J and K) proposed‑RI‑5 grad. ODF, orientation distribution function; proposed‑5 grad, proposed method implementing joint 
information using 5 gradients; proposed‑RI 5 grad, proposed method implementing rotationally invariant similarity measure using 5 gradients.
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a rotationally invariant similarity measure to ensure a more 
accurate regularization procedure in SR and effectively 
reduce the computational burden. Experimentation using a 
synthetic as well as a real DWI dataset demonstrated that the 
proposed method achieved better reconstruction of detailed 
information in DWI and more accurate estimations of diffu-
sion parameters from DTI and HARDI models. In addition, 
the present method did not require any extra data acquisition 
or preprocessing procedures, and may potentially improve on 
other super‑resolution algorithms.
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