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Abstract. Stem cell‑based therapy serves a key role in clinical 
treatments, and mesenchymal stem cells (MSCs) have been 
widely used in clinical tumor therapy trials. In the present study, 
MSCs were isolated from umbilical cord (UC) and co‑cultured 
with the lung cancer cell line H1299. The effects of UC‑derived 
MSCs (UCMSCs) on H1299 cell invasion and proliferation 
were evaluated using a Matrigel‑based Transwell assay and 
CCK8 assay, respectively. Apoptosis and cell cycle progres-
sion among H1299 cells were detected by flow cytometry, and 
kinase expression in H1299 cells was detected by western blot-
ting. The results indicated that UCMSCs significantly inhibited 
H1299 cell invasion and significantly induced apoptosis of 
H1299 cells, but exhibited no effect on H1299 cell prolif-
eration and cell cycle progression. It was also identified that 
H1299 cell expression of key kinases (AKT, phosphoinositide 
3‑kinase, signal transducer and activator of transcription 3 and 
mechanistic target of rapamycin) was significantly suppressed 
in the presence of UCMSCs. To the best of our knowledge, the 
present study demonstrates for the first time that UCMSCs 
have an anti‑tumor effect against lung cancer cells, which may 
indicate that AKT/phosphoinositide 3‑kinase/signal transducer 
and activator of transcription 3 signaling is important in the 
UCMSC‑mediated regulation of H1299 cell functions.

Introduction

Mesenchymal stem cells (MSCs) are a key type of multipotent 
stem cells in clinical applications (1). MSCs are ubiquitous and 
can be isolated from bone marrow, skin, heart, adipose tissue, 

brain, deciduous teeth, umbilical cord (UC) and peripheral 
blood  (2). In specific in  vivo microenvironments or when 
cultured in specific differentiation medium, MSCs can be 
induced to differentiate into many cell types including adipo-
cytes, tenocytes, osteoblasts and visceral mesoderm (3). MSCs 
also reduce immune responses by suppressing the activation 
and proliferation of immune cells such as T cells (4), B cells (5), 
natural killer cells (6) and antigen‑presenting cells, and the 
complement system (7). Regarding surface marker expression, 
MSCs are negative for co‑stimulatory molecules CD80, CD86 
and human leukocyte antigen‑II and positive for CD29, CD90 
and CD59, which makes MSCs unable to stimulate allo‑ or 
xenogeneic lymphocytes due to a lack of immunogenicity (8). 
MSCs also secrete multiple trophic molecules that can benefit 
remote tissues and serve a key function in tissue repair (9).

Based on cellular characteristics, MSCs are now the best 
candidate in many cell‑based therapies. Their immunosup-
pressive capability serves a key function in the induction of 
transplantation tolerance and protects solid organ grafts from 
rejection (10). In autoimmune disease treatment, engraftment 
of MSCs improves the levels of serological markers and stabi-
lizes renal function by preventing the appearance of serious 
adverse events (11). MSCs have also been widely used in many 
treatment trials, including stem cell‑based therapies for liver 
cirrhosis (12), cerebral palsy (13), type I diabetes (14), multiple 
sclerosis  (15) and graft‑vs.‑host disease (16). However, the 
effect of MSCs on lung cancer cells remains unclear. In the 
present study, UC‑derived MSCs (UCMSCs) were co‑cultured 
with H1299 lung cancer cells in order to evaluate how MSCs 
influence the biological functions of H1299 cells.

Materials and methods

Cells and co‑culture system. H1299 cells (State key Laboratory 
of Biological Treatment, Sichuan University; Chengdu, China) 
were maintained in RPMI‑1640 (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) with 10% fetal bovine 
serum (FBS; Invitrogen; Thermo Fisher Scientific, Inc.) 
and in a sterile humidified incubator with 5% CO2 at 37˚C. 
UCMSCs were obtained from the Sichuan Umbilical Cord 
Blood Stem Cell Bank (Chengdu, China). After dissociation 
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in a 37˚C water bath, UCMSCs were cultured in Dulbecco's 
modified Eagle's medium (DMEM; Invitrogen; Thermo Fisher 
Scientific, Inc.) with 10% FBS (Invitrogen; Thermo Fisher 
Scientific, Inc.) at 1x105 cells/well in 6‑well plates, and all cells 
were grown in a sterile humidified incubator with 5% CO2 at 
37˚C. The medium was changed every 2 days, and adherent 
cells were harvested after 2 weeks by 0.25% trypsin (Gibco; 
Thermo Fisher Scientific, Inc.) treatment. Only UCMSCs from 
passages 6 or lower were used for co‑culture. UCMSCs were 
co‑cultured with H1299 cells in DMEM with 10% FBS and in 
a sterile humidified incubator with 5% CO2 at 37˚C for 24, 48, 
72 and 96 h. The co‑culture ratio of UCMSCs to H1299 cells 
was 2:1. H1299 cells were considered the control group and 
underwent the same culturing time (24, 48, 72 and 96 h).

Transwell‑based invasion assay. An invasion assay was 
conducted using 24‑well (8‑µm pore size) Transwell plates 
(Corning, Inc., Corning, NY, USA). H1299 cells were plated 
in the upper chambers in DMEM at 3x104 cells/well, which 
were pre‑coated with 20% Matrigel (BD Biosciences, Franklin 
Lakes, NJ, USA), while UCMSCs were maintained in the 
bottom chamber in DMEM with 1% FBS. After 24 or 48 h, 
invading H1299 cells were detected by crystal violet staining 
at room temperature for 30 min (which was synchronous with 
the culturing time) and all the results were observed using 
light microscopy (magnification, x100).

Assays for proliferation, apoptosis and cell cycle analysis. 
CCK‑8 detection (Cell Counting Kit‑8; Dojindo Molecular 
Technologies, Inc., Kumamoto, Japan) was performed to assess 
H1299 cell proliferation at 24, 48 and 72 h in co‑culture. At 
24, 48 and 72 h in co‑culture, apoptosis was evaluated by 
staining of H1299 cell cultures with 3 µl Annexin V (fluorescein 
isothiocyanate) at room temperature for 20 min, followed by 
counterstaining with 5 µl propidium iodide at room temperature 
for 5 min and detection by flow cytometry. Cell cycle progres-
sion among H1299 cells was also investigated by flow cytometry.

Western blot analysis. Co‑cultured H1299 cells were 
collected by two washes with cold PBS, and proteins were 
extracted using radioimmunoprecipitation assay protein lysis 
reagent (Pierce; Thermo Fisher Scientific, Inc.) containing 
1X protease inhibitors (Roche Diagnostics, Indianapolis, IN, 
USA). The protein concentration was measured using a Micro 
BCA Protein Assay kit (Pierce; Thermo Fisher Scientific, 
Inc.). Sodium dodecyl sulfate‑polyacrylamide gel (12%) 
electrophoresis was used to separate proteins (30 µg per lane), 
which were then transferred onto nitrocellulose membranes 
(Invitrogen; Thermo Fisher Scientific, Inc.). After blocking 
with 5% fat‑free milk at room temperature for 1 h, membranes 
were incubated with primary antibodies at 4˚C overnight and 
then horseradish peroxidase‑conjugated secondary antibody 
at room temperature for 2 h (1:5,000; cat. no. ab6789&ab6721; 
Abcam, Cambridge, UK). Antigen‑antibody complexes were 
visualized using an enhanced chemiluminescence reagent 
(GE Healthcare, Chicago, IL, USA). Primary antibodies were 
as follows: AKT (1:800; cat. no. AF6261), p‑AKT (1:800; 
cat. no. AF0016), phosphoinositide 3‑kinase (PI3K; 1:800; 
cat. no. AF6242), p‑PI3K (1:800; cat. no. AF3241), signal 
transducer and activator of transcription 3 (STAT3; 1:1,000; 

cat. no. AF6294), p‑STAT3 (1:1,000; cat. no. AF3294), extra-
cellular signal‑regulated kinase 1/2 (ERK1/2; 1:1,000; cat. 
no. AF0155), p‑ERK1/2 (1:1,000; cat. no. AF1015), mecha-
nistic target of rapamycin (mTOR; 1:800; cat. no. AF6308), 
p‑mTOR (1:800; cat. no. AF3310) (all Affinity Biosciences, 
Zhenjiang, China) and GAPDH (1:2,000; cat. no. 200608; Zen 
BioScience Co., Ltd., Chengdu, China).

Data analysis. Image Lab software 5.1 (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA) and ModFit LT version 4.1 (Verity 
Software House, Topsham, ME, USA) were used for analysis of 
western blotting and cell cycle data, respectively. All analyzed 
data are expressed as the mean ± standard error, as calculated 
using SPSS 19.0 (IBM Corp, Armonk, NY, USA). T‑tests were 
performed to evaluate inter‑group differences. P<0.05 was 
considered to indicate a statistically significant difference. All 
figures were generated using GraphPad Prism 5 (GraphPad 
Software, Inc., La Jolla, CA, USA).

Results

UCMSCs significantly suppressed invasion of H1299 cells. 
The invasion ability of H1299 cells in the presence of UCMSCs 
was detected in Transwell chambers coated with Matrigel. 
As shown in Fig. 1, the number of invading H1299 cells was 
significantly reduced in the co‑culture group compared with 
the control (H1299 cells only) group following 24 and 48 h in 
culture (P<0.001). This indicated that UCMSCs could inhibit 
the invasion of H1299 cells.

UCMSCs induced apoptosis of H1299 cells. Flow cytometry 
was conducted to identify changes in the apoptosis rate of 
H1299 cells in co‑culture with UCMSCs according to Annexin 
V staining. The results indicated that the apoptosis rates of 
H1299 cells did not differ markedly between the control and 
co‑culture groups at either 48 h (3.0 vs. 2.7%) or 72 h (3.1 
vs. 6.8%; Fig. 2). However, after 96 h in co‑culture, the apop-
tosis rate of H1299 cells in the co‑culture group (57.4%) was 
greater than that among H1299 cells cultured alone (2.4%).

UCMSCs inhibited H1299 cell proliferation but exhibited no 
effect on cell cycle progression. The cell cycle distribution of 
H1299 cells was detected by flow cytometry. The results indi-
cated no differences between H1299 cells cultured alone and 
with UCMSCs for either 48 h (control cells: G0/G1 62.42%, 
G2/M 10.32%, S 27.26%; co‑cultured cells: G0/G1 63.95%, 
G2/M 7.92%, S 28.13%) or 72 h (control cells: G0/G1 61.05%, 
G2/M 15.62%, S 23.33%; co‑cultured cells: G0/G1 61.42%, 
G2/M 9.13%, S 29.45%; Fig. 3A and B). The proliferation of 
H1299 cells was then evaluated by CCK8 assay after 24, 48 
or 72 h in co‑culture with UCMSCs. The results indicated that 
H1299 cell proliferation was not significantly influenced by 
UCMSCs in co‑culture, although a slight increase after 24, 
48 h and a slight decrease after 72 h were observed.

UCMSCs inhibited PI3K/AKT kinase expression in 
H1299 cells. Previous research has demonstrated that the 
PI3K/AKT/STAT3 pathway serves a key function in mediating 
the occurrence of tumor metastasis (17). In the present study, 
the expression of these kinases was detected by western blotting 
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in order to explore the mechanisms by which UCMSCs inhibit 
the invasive ability of H1299 cells (Fig. 4). Expression of AKT 
in H1299 cells exhibited no change after 48 h in co‑culture 
with UCMSCs compared with the control cells. However, the 
expression of AKT was significantly inhibited at 72 h (P<0.05). 
p‑AKT expression was significantly inhibited in co‑cultured 
H1299 cells compared with control cells at 48 (P<0.05) and 
72 h (P<0.01). PI3K and p‑PI3K expression levels were also 
significantly reduced after 48 (PI3K, P<0.001; p‑PI3K, P<0.05) 

and 72 h (P<0.001) in co‑culture compared with control cells. 
Co‑culture with UCMSCs resulted in inhibited expression of 
STAT3 (P<0.001) and p‑STAT3 (P<0.05) in H1299 cells only 
after 72 h in co‑culture. ERK1/2 expression was significantly 
decreased after 72 h (P<0.001). p‑ERK expression was signifi-
cantly increased after 48 h (P<0.001) and then significantly 
inhibited after 72 h (P<0.01) in co‑culture compared with 
control cells. Finally, after 48 and 72 h in co‑culture with 
UCMSCs, expression of mTOR (P<0.01) and p‑mTOR (48 h, 

Figure 1. Invasion of H1coo299 cells co‑cultured with UCMSCs. (A) Micrographs of H1299 cells that migrated through Transwell membranes coated with 
Matrigel. (B) Quantitative analysis of H1299 cell invasion. Scale bar=100 µm. ***P<0.001 vs. control cells. UCMSC, umbilical cord‑derived mesenchymal stem 
cell; (‑), control cells; (+), co‑cultured cells.

Figure 2. Flow cytometric detection of apoptotic H1299 cells in co‑culture with umbilical cord‑derived mesenchymal stem cells. PI, propidium iodide; FITC, 
fluorescein isothiocyanate.
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Figure 3. Cell cycle distribution and proliferation of H1299 cells in co‑culture with UCMSCs. (A) Flow cytometric detection of H1299 cells in each phase of 
the cell cycle. (B) Quantitative analysis of cell cycle distribution. (C) Proliferation of H1299 cells as detected by CCK8 assay. UCMSC, umbilical cord‑derived 
mesenchymal stem cell; OD, optical density; (‑), control cells; (+), co‑cultured cells.

Figure 4. Kinase expression in H1299 cells co‑cultured with umbilical cord‑derived mesenchymal stem cells. (A) Western blot analysis results. (B) Quantitative 
analysis of kinase expression. *P<0.05, **P<0.01, ***P<0.001 vs. control cells. PI3K, phosphoinositide 3‑kinase; STAT3, signal transducer and activator of 
transcription 3; ERK1/2, extracellular signal‑regulated kinase 1/2; mTOR, mechanistic target of rapamycin; (‑), control cells; (+), co‑cultured cells.
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P<0.01; 72 h, P<0.05) was significantly inhibited. These obser-
vations indicated that the AKT/PI3K/STAT3/mTOR pathways 
are involved in the effects of USMSCs on the biological func-
tions of H1299 cells.

Discussion

To the best of our knowledge, the effect of UCMSCs on the 
biological functions of lung cancer cells has not previously been 
reported. In the present study, H1299 cells were co‑cultured 
with UCMSCs in order to investigate how UCMSCs influ-
enced the biological functions of H1299 cells. This was 
analyzed using numerous detection methods, including CCK8 
assay (proliferation), flow cytometry (apoptosis and cell cycle), 
Transwell Matrigel assay (invasion) and western blot analysis 
(expression of kinases). The results indicated that UCMSCs 
inhibited invasion and induced apoptosis of H1299 cells, but 
exerted little influence on H1299 cell cycle distribution or 
proliferation. Further analyses suggested that expression of 
multiple kinases, including AKT, PI3K, ERK, STAT3 and 
mTOR, in either phosphorylated or non‑phosphorylated states, 
was significantly suppressed in H1299 cells co‑cultured with 
UCMSCs. Thus, the present study indicated that UCMSCs 
could inhibit the biological functions of H1299 cells by 
suppressing activation of AKT/PI3K/STAT3/mTOR signaling.

Experimental evidence on the effects of MSCs on tumor 
cells remains contradictory. Consistent with the present results, 
Wu et al (18) demonstrated that microvesicles from human 
UCMSCs could inhibit the functions of T24 bladder cancer 
cells. The study also demonstrated that this proliferation 
suppression was mediated by cell cycle arrest and the induc-
tion of apoptosis was mediated by increased expression of 
caspase 3. In a study of the effects of MSCs on cholangiocarci-
noma, Liu et al (19) established xenograft models by injection 
of HCCC‑9810 cells and identified that conditioned medium 
from UCMSCs inhibited proliferation and induced apoptosis 
in a dose‑ and time‑dependent manner. In another study, 
α‑smooth muscle actin‑positive MSCs were co‑engrafted with 
pancreatic cancer cells in severe combined immunodeficiency 
mice and the results confirmed that MSCs could promote 
epithelial‑mesenchymal transition (20). Mechanistic analysis 
indicated that the ‘stemness’ of pancreatic cells was enhanced 
by Notch‑associated signaling regulated by MSCs  (20). 
Zhang et al (21) co‑cultured breast cancer and prostate cancer 
cells with bone marrow‑derived MSCs and identified that 
treatment with MSCs significantly enhanced angiogenesis 
within the tumor in nude mice. Considering all these findings 
together, the effects of MSCs on the biological functions of 
cancer cells remain controversial. Possible explanations for 
this include heterogeneity of MSCs or variations in microen-
vironments.

To the best of our knowledge, the present study was the first 
to demonstrate that UCMSCs could suppress lung cancer cell 
functions by inhibiting invasion and inducing apoptosis. In the 
present mechanistic analysis, it was identified that expression 
of multiple key kinases (AKT, PI3K, STAT3 and mTOR) by 
H1299 cells was inhibited in the presence of UCMSCs. This 
may indicate that AKT/PI3K/STAT3 signaling is important 
in the UCMSC‑mediated regulation of H1299 cell functions. 
Further studies are required to confirm this hypothesis.
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