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Abstract. Breast cancer represents one of the most common 
forms of cancer in women worldwide, with an increase in 
the number of newly diagnosed patients in the last decade. 
The role of fatty acids, particularly of a diet rich in ω‑3 and 
ω‑6 polyunsaturated fatty acids (PUFAs), in breast cancer 
development is not fully understood and remains contro-
versial due to their complex mechanism of action. However, 
a large number of animal models and cell culture studies 
have demonstrated that high levels of ω‑3 PUFAs have 
an inhibitory role in the development and progression of 
breast cancer, compared to ω‑6 PUFAs. The present review 
focused on recent studies regarding the correlation between 
dietary PUFAs and breast cancer development, and aimed 
to emphasize the main molecular mechanisms involved in 
the modification of cell membrane structure and function, 
modulation of signal transduction pathways, gene expression 
regulation, and antiangiogenic and antimetastatic effects. 
Furthermore, the anticancer role of ω‑3 PUFAs through 
the modulation of microRNA expression levels was also 
reviewed.
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1. Introduction

Breast cancer is a highly prevalent cancer in women worldwide, 
with ~1.6 million new cases diagnosed in 2015 (1). Globally, 
the incidence of breast cancer appears higher in industrialized 
countries, with the majority of cases being observed in 
Western Europe, Australia and New Zeeland, and North 
America (2). According to the National Institute of Statistics, 
90% of women have their disease diagnosed in an advanced 
form, which dramatically decreases their chances of survival 
and their quality of life (3‑5).

Breast cancer incidence is further increased as a response 
to multiple toxic environmental exposures or the presence of 
certain environmental factors, including radiation, mutagens 
or carcinogens  (6,7). Meanwhile, epigenetic and genetic 
alterations may occur due to an unbalanced diet (1). Mammary 
cancer development and progression is directly affected by 
dietary habits and environmental exposure (1,6,8,9). Advances 
in new generation technologies, particularly in the fields of 
transcriptomics and metabolomics  (10,11), have markedly 
facilitated the pursuit to elucidate the influence of diet at 
the molecular level (12). This may eventually contribute to 
the health evaluation for particular nutritional components, 
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with the final purpose of developing novel functional food 
products (12,13).

Presently there are a broad range of ongoing nutrigenomics 
studies focusing on detecting the mechanisms on which nutrient 
and gene interactions are based. Such studies may lead to the 
identification of genetic variants used for the discovery and 
development of novel biomarkers for specific and personalized 
diet prescriptions for each patient (14,15). A classic example 
is related to the Mediterranean diet, which is associated 
with reduced mortality rates for a wide range of pathologies, 
such as cancer (8). According to this, the increased olive oil 
consumption in a Mediterranean diet is linked to a reduced 
risk of breast cancer (16‑18), due to the beneficial actions of 
polyunsaturated fatty acids (PUFAs). The main PUFAs are 
presented in Fig. 1. Therefore, the favorable effects of PUFAs 
have been demonstrated by epidemiological and experimental 
studies worldwide. The purpose of the present review was to 
summarize these findings.

2. ω‑3 and ω‑6 fatty acid balance in a healthy diet

It is well known that modern society diets are dominated by 
processed foods and vegetable oils with high levels of ω‑6 
and low levels of ω‑3 PUFAs (19). A proportion of 2:1 for 
the case of ω‑6:ω‑3 PUFAs is believed to have been present 
in our ancestors' diet, a ratio that today has been markedly 
altered to 10:1 because of unhealthy dietary habits  (14). 
Overconsumption of ω‑6 PUFAs, and an increased proportion 
of ω‑6:ω‑3 PUFA ratio observed in general in Western diets, 
leads to the activation of pathogenesis mechanisms for a wide 
range of pathologies (Fig. 2), including cardiovascular diseases, 
metabolic or immune pathologies, and cancer (14,20). Thus, 
the risk of cancer may be abridged by limiting the consump-
tion of foods containing ω‑3 fatty acids (21,22).

For elongation and desaturation reactions, there is a 
competition for the same enzymes between the two types of 
fatty acids. High levels of ω‑6 PUFAs result in an inhibition 
of the elongation and desaturation of ω‑3 PUFAs (20‑22). This 
competition between ω‑3 and ω‑6 PUFAs reveals the impor-
tance of low ratios of ω‑3:ω‑6, compared to the individual 
fatty acid concentrations in human organisms (21‑29).

3. Implication of ω‑3 and ω‑6 fatty acids in breast cancer

The role of a fatty acid‑rich diet in the development and 
progression of breast cancer is not well understood and 
remains challenging, particularly since the information from 
human studies is limited. In vitro cell culture investigations or 
in vivo animal models have demonstrated the tumor suppres-
sive role of eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA); however, the inhibitory role of ω‑3 PUFAs 
in cancer is yet to be fully elucidated and requires further 
investigation (3,23,24).

PUFAs are essential nutrients, and include ω‑6 fatty acids, 
such as linoleic and arachidonic acids (AA), as well as ω‑3 
fatty acids, including EPA and DHA acids. They have been 
demonstrated to have notable roles in modulating key cellular 
and molecular processes (Tables I and II) due to the fact that 
they are essential precursors of the cell membrane and interfere 
with other mediators of the inflammatory response (25,26). By 

adapting the fatty acid composition of the cells, a wide range of 
aspects related to cell metabolism may be controlled (24,25).

Despite their distinct physiologic and metabolic 
characteristics, ω‑6 and ω‑3 PUFAs cannot be endogenously 
produced by the human body, and thus must be obtained 
from the diet; however, these should preferably be obtained 
in the correct ratio (21). This has been supported by multiple 
epidemiological studies, where a reduced ratio of ω‑6:ω‑3 
PUFAs has been indicated to have beneficial effects (25‑27). 
Studies have also demonstrated that a modern diet is related 
to estrogen receptor (ER) negative breast cancer risk among 
taller women (≥160 cm tall) (28).

EPA and DHA are present in marine organisms, 
particularly in ocean fish. According to a 2011 United Nations 
report, global fish consumption increased with a yearly 
average of 17 kg/person (1,30‑32). In the nutritional etiology 
of breast cancer, ω‑3 fatty acids of fish origin have been 
demonstrated to have a significant role as protective factors, 
being associated with a 14% reduction in the risk of developing 
this malignancy (29‑31). When comparing tumor and normal 
breast tissue in terms of their fatty acid content, higher levels 
of ω‑6 PUFAs were observed in malignant tissues (33). The 
study conclusion was that an increased expression level of the 
enzyme Δ‑6 desaturase is desired, as well as an abundance of 
ω‑6 PUFA precursors (32).

Preclinical studies have offered a higher understanding 
of the effects of PUFAs, particularly in the etiology of breast 
cancer (Fig. 3). These studies have attempted to explain the 
cancer‑related preventive activity of ω‑3 PUFAs (Table I), and 
the association between ω‑6 PUFAs and procarcinogenic effects 
(Table II) in breast malignancies (18), leading to the alteration of 
gene expression patterns, as well as dysregulations of microRNA 
(miRNA) sequences. PUFAs were demonstrated to have 
effects on the composition of the plasma membrane (18,33,34), 
increased cellular oxidative stress  (14), gene expression 
modifications (35,36), alterations to intracellular signaling path-
ways (37,38), antiangiogenic and antimetastatic activity (39‑43).

4. Modifications of cell membrane structure and function

Cell membrane integrity and alterations in signal transduc-
tion are important cellular processes in which ω‑3 PUFAs 
are involved, and these cellular changes lead to reduced cell 
proliferation, the induction of apoptosis and an increased 
degree of unsaturation (38). Cell membrane structures, their 
fluidity and permeability, are affected in a notable manner by 
higher densities of ω‑6 fatty acids (44).

High concentrations of ω‑6 PUFAs have a potent effect 
on cell functions by damaging different ion transporters and 
channels, such as the ones for Ca2+ (38). Increased amounts of 
ω‑6 PUFAs reduce the number of Ca2+ channels (45), which 
damages the fluidity of membranes and affects the function of 
specific integral and membrane‑bound proteins (45‑47).

The incorporation of ω‑3 PUFAs, particularly EPA and 
DHA, is able to modify the degree of lipid peroxidation in 
cell membranes, altering the formation of lipid rafts and 
suppressing raft‑associated cell signal transduction (37). The 
susceptibility to peroxidation is determined by the degree of 
unsaturation of the membrane phospholipid fatty acids. High 
unsaturation causes increased cell oxidative stress and disrupts 
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physiological signaling pathways by leading to malignant 
transformation (48,49).

5. Modulation of signal transduction pathways

A clinical study revealed that ω‑3 and ω‑6 PUFAs have 
similar biochemical activity and require the same elongase, 
desaturase, cyclooxygenase and lipoxygenase enzymes (50). 
Enzymatic conversion into eicosanoids, compounds with 

notable roles in cell differentiation and growth, is among the 
most important cellular functions of PUFAs (50‑60). Studies 
have demonstrated that a diet rich in ω‑6 PUFAs has strong 
promoting effects on breast cancer development (50‑59). The 
carcinogenic effects of high levels of ω‑6 PUFAs were corre-
lated with increased ratios of eicosanoids (48). Studies have 
also indicated that eicosanoid compounds, including prosta-
glandins (PG), thromboxane (TX), leukotrienes (LT), hydroxyl 
fatty acids and lipoxins, are produced in higher quantities than 

Figure 1. Types of fatty acids with emphasis on the main class of PUFAs. The difference between fatty acids is determined by the presence of double bonds. 
Eicosapentaenoic acid and docosahexaenoic acid are characterized by the double bond in three positions, also known as ω‑3 PUFAs, while linoleic acid has 
the first double bond in position 6, also known as ω‑6 PUFAs. PUFA, polyunsaturated fatty acid.

Figure 2. Impact of dietary PUFAs in disease prevention or risk. The diagram emphasizes the importance of a balanced diet to maintain a healthy condition. 
The human body is unable to synthesize ω‑6 and ω‑3 PUFAs and they may only be obtained from a balanced diet. The amounts and balance of PUFAs in the 
diet are important for maintenance of and improving health due to their role in the body's functions, including immune and inflammatory responses, blood 
lipid levels, blood pressure and blood clotting. PUFA, polyunsaturated fatty acid.
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those of ω‑3 PUFAs, due to the high amounts of ω‑6 PUFAs 
present in Western diets (20,51,52).

Eicosanoids derived from ω‑6 PUFAs have been demon-
strated to have pro‑inflammatory and pro‑carcinogenic effects 
as compared to ω‑3 PUFA‑derived lipid mediators (48,53). In 
obese individuals, ω‑6 PUFA‑derived eicosanoid levels were 
observed to be increased, which stimulated breast cancer 
initiation, invasion and metastasis (54).

Cyclooxygenase (COX)‑2 is an enzyme that serves an 
active role in prostaglandin synthesis, and increased levels 
are associated with inflammation in all subtypes of breast 
cancer (55‑57). The COX and lipoxygenase (LOX) enzymes 
are key factors for the enzymatic production of PG and LT (58). 
ω‑3 fatty acids compete with ω‑6 fatty acids for COXs for the 
production of eicosanoids, and a suppressive effect on COX‑2 
expression has been observed (59‑62). COX enzymes produce 
two‑series prostanoids, including PG and TX, and four‑series 
LT, including LTC4, LTD4, LTE4 and LTF4, while LOX 
enzymes produce hydroxyeicosatetraenoic acids (48,63). In a 
transgenic mouse model expressing human epidermal growth 
factor receptor 2 (HER2)/neu, treatment with dietary ω‑3 
PUFAs inhibited breast tumor cell proliferation and upregu-
lated COX‑2 expression (64).

In breast tissue, the metabolites of the arachidonate 
5‑lipoxygenase pathway are able to induce tumorigenesis and 
sustain breast cancer progression (65‑68). A study on LOX 
genetic variants combined with ω‑6 PUFAs revealed a significant 
increase of breast cancer risk (14). According to a study on the 
breast cancer cell line MCF‑7, DHA upregulated syndecan‑1 
(a component of the extracellular matrix) expression and 

promoted apoptosis via downregulation of MEK/extracellular 
signal‑regulated kinases (Erk)/Bad signaling (69). Another 
study indicated that ω‑3 PUFA treatment reduced the effect of 
E2 on epidermal growth factor receptor (EGFR), Erk1/2 and 
AKT, and upregulated G protein‑coupled estrogen receptor 1 
(GPER1)‑cyclic adenosine 5'‑phosphate (cAMP)‑protein 
kinase A (PKA) signaling (70). In MDA‑MB‑231 breast cancer 
cells, linoleic acid (LA) induces focal adhesion kinase (FAK) 
activation and cell migration by modulating a FAK‑dependent 
pathway (33).

6. Regulation of gene expression

Evidence‑based preclinical studies and epidemiologic data 
consistently support the anticancer effect of ω‑3 PUFAs 
based on their capacity to target key genes altered in breast 
cancer (71‑78). EGFR and HER2 are cell surface receptor 
tyrosine kinases, representing key therapeutic targets in breast 
cancer management  (39,79,80). ω‑3 PUFAs may represent 
a dietary approach for controlling growth factor‑mediated 
carcinogenesis, by activating tyrosine kinase transduction 
pathways, p38 mitogen‑activated protein kinase activation 
and apoptosis induction (71). Restoring EGFR signaling was 
observed in many breast cancer cases as being correlated 
with dietary habits (72), while an apoptotic effect of DHA 
from marine sources was found by targeting EGFR pathways 
in malignant breast tissue (38). In MCF‑7 and T47D cells, 
ω‑3 PUFA treatment may initiate pro‑apoptotic signaling 
of estrogen by increasing the GPER1‑cAMP‑PKA signaling 
response, and inhibiting EGFR, Erk1/2 and AKT activity (70).

Table I. Principle mechanisms of ω‑3 polyunsaturated fatty acids in breast cancer.

Mechanism	 Key target/gene	 (Refs.)

Changes of cell membrane properties	 Bcl‑2; procaspase‑8	 (18,37)
Modulation of intracellular signaling pathways	 FAK, NF‑κB, MAPK, COX‑2	 (33,82)
Regulation of gene expression	 EGFR, Her‑2, Erk 1/2, AKT PTEN, Bcl‑2, PDCD4, NF‑κB	 (70,110‑112)
Antimetastatic and antiangiogenic activity	 EZH2, VEGF, E‑cadherin	 (36,103)
Regulation of miR expression	 miR‑21, miR‑26a/b, miR19b, miR146b, miR183	 (34,42,110)

Bcl‑2, B‑cell lymphoma 2; FAK, focal adhesion kinase; NF‑κB, nuclear factor κB; MAPK, mitogen‑activated protein kinase; COX‑2, cyclo-
oxygenase 2; EGFR, epidermal growth factor receptor; Erk, extracellular signal‑regulated kinase; PTEN, phosphatase and tensin homolog; 
PDCD4, programmed cell death 4; EZH2, enhancer of zeste 2; VEGF, vascular epithelial growth factor; miR, microRNA.

Table II. Principle mechanisms related to pro‑carcinogenic effects of ω‑6 polyunsaturated fatty acids in breast cancer.

Mechanism	 Key/target gene	 (Refs.)

Lipid peroxidation, DNA adducts	 Redox‑cycling of 4‑hydroxyestradiol	 (21,26,37)
Regulation of gene expression	 p21WAF1/CIP1, MAPK, TGF‑β, TLR	 (21,42)
Antimetastatic and antiangiogenic activity	 VEGF, FGF, HIF‑α, E‑cadherin	 (21,41,122)
Regulation of miR expression	 MiR19b, miR146b, miR1835p, let‑7a,	 (42,109)
	 miR‑23b, miR‑27a/b, miR‑21, let‑7

MAPK, mitogen‑activated protein kinase; TGF‑β, transforming growth factor‑β; TLR, toll‑like receptor; VEGF, vascular epithelial growth 
factor; FGF, fibroblast growth factor; HIF‑α, hypoxia‑inducible factor‑α; miR, microRNA.
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Overexpression of the tyrosine kinase receptor, 
ErbB2/HER2/neu, occurs in 25‑30% of invasive breast cancer 
cases with poor prognosis (73). HER2/neu is an oncogene that 
is overexpressed in many types of cancer, with an important 
role in development, progression and chemosensitivity of 
tumors; studies have demonstrated that it is downregulated by 
ω‑3 PUFAs (73,74).

As described in previous studies, ω‑3 PUFA effects are 
also observed at the translational and post‑translational level. 
In mammary cancer cell lines (MCF10A, MCF7, T47D and 
MDA‑MB‑231), ω‑3 PUFAs may modulate the protein expres-
sion of the transcription regulator enhancer of zeste 2 polycomb 
repressive complex 2 subunit  (36), while the activation of 
peroxisome proliferator‑activated receptors (PPAR) was 
induced in the same type of cancer cells (75). PPARs (PPARα, 
PPARγ and PPARβ/δ) are ligand‑activated transcription factors 
of the nuclear hormone receptor superfamily involved in 
glucose and fatty acid metabolism (76). This PUFA‑mediated 
PPAR activation exerts an effect on several molecular mecha-
nisms, including apoptosis and autophagy (36,81‑84). PPARβ 
expression was reduced by a ω‑3 PUFA‑rich diet in mammary 
tumors, while in other circumstances, the expression of other 
PPAR mRNA was modulated, leading to the inhibition of 
breast cancer cell growth (35). In MCF‑7 breast cancer cells, 
ω‑3 PUFA ethanolamides, docosahexaenoyl ethanolamine 
(DHEA) and eicosapentaenoyl ethanolamine (EPEA), 
augmented the expression of PPARγ, inducing autophagy (77). 
At the same time, in MCF‑7 and MDA‑MB‑231 cells, AA 
decreased the Erk1/2 phosphorylation level, and positively 
modulated PPARγ and PPARα expression  (78). In MCF‑7 
cells, DHEA and EPEA stimulated the expression of PPARγ 
as well as PPAR response element‑dependent transcription 
by upregulating phosphatase and tensin homolog (PTEN) 
expression, while inhibiting the AKT‑mechanistic target of the 
syntetic agent rapamycin via mTOR pathway (77). In another 
study, MCF‑7 cells treated with DHA from a cultured micro-
alga demonstrated increased apoptosis via the upregulation 
of the B‑cell lymphoma 2 (Bcl‑2)‑associated X protein/Bcl‑2 
ratio, and inhibition of cell growth (79). In a rat model of breast 
cancer, dietary ω‑3 PUFAs increased the apoptotic index in 
tumor cells (80,81).

AA induces nuclear factor (NF)κB‑DNA binding activity 
through a phosphoinositide 3‑kinase‑ and AKT‑dependent 
pathway (82). ω‑3 PUFAs were demonstrated to modulate total 
AKT expression (83). In contrast with ω‑6 PUFAs, ω‑3 PUFAs 
reduced COX‑2 and NFκB expression, decreasing the level of 
cell invasiveness (84). LA induces FAK and NFκB activation, 
migration and invasion in MCF10A human mammary epithe-
lial cells (85).

Another fundamental process related to carcinogenesis 
is cell proliferation. Ki‑67 is a nuclear protein used as 
a prognostic or predictive marker in breast cancer  (86). 
Treatment with α‑linolenic acid (ALA)‑rich flaxseed oil 
in rats induced a decrease in tumor size, together with 
decreased Ki‑67 levels  (87,88). Proliferating cell nuclear 
antigen (PCNA) is also considered by researchers to be a 
potential prognostic marker in breast cancer  (89). It has 
been demonstrated that diets rich in ω‑3 PUFAs reduce the 
percentage of proliferating tumor cells by decreasing the 
expression levels of PCNA (90).

Studies have indicated that PUFAs have an effect on lipid 
metabolism in mammary tumors by modifying the expression 
levels of fatty acid binding protein 5, cluster of differen-
tiation 36, FAS and ER genes (91). The alterations of gene 
expression levels were demonstrated to be time‑dependent in 
MDA‑MB‑231 cells following ALA treatment, accompanied 
by low levels of ID1, and increased JUN, NME1 and throm-
bospondin 1 expression (92). A significant increase of Erk1/2 
and AKT phosphorylation levels was observed in MCF‑7 
cells treated with a combination of tamoxifen and ω‑3 PUFA, 
compared to ω‑3 PUFA alone (93). Additionally, mammary 
tumor growth and Py230 cancer cell proliferation was inhibited 
by ω‑3 PUFAs, independent of GPR120 signaling, suggesting 
that ω‑3 PUFAs act in a Toll‑like receptor 4‑mediated fashion, 
or via peroxisome proliferator‑activated receptors or other 
G protein‑coupled receptors (94).

Figure 3. Potential mechanisms of action of ω‑3 and ω‑6 PUFAs in tumori-
genesis, related to the activation of inflammation and production of ROS, 
which finally leads to the activation of cell proliferation, a predisposition for 
carcinogenesis and distant metastasis in breast cancer. PUFAs may stimulate 
(+) or suppress (‑) pathways. Dietary ω‑3 PUFAs suppress the inflammatory 
process, stimulate apoptosis, inhibit metastasis and tumor proliferation, and 
also upregulate the gene expression of antioxidant enzymes. In tumor cells, 
phospolipase A2, cyclooxygenase 2 and lipoxygenases are overexpressed 
and induce the overproduction of AA (20:4n‑6)‑derived eicosanoids, which 
lead to inflammatory processes. The production of nitric oxide is elevated in 
inflammation and is involved in the initiation and the progression of carci-
nogenesis. Nitric oxide may be responsible for tumor growth and metastasis 
due to its ability to stimulate tumor cell angiogenesis. ω‑3 PUFAs reduce the 
desaturation and elongation of linoleic acid (18:2n‑6) to AA. ROS, reactive 
oxygen species; PUFA, polyunsaturated fatty acid; AA, arachidonic acid; 
EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; RNS, reactive 
nitrogen species.
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7. Antimetastatic and antiangiogenic activity

Different fatty acid compositions affect the affect the breast 
cancer carcinogenic mechanisms, in particular those associated 
with tumor growth, proangiogenic and metastatic capacities in 
breast cancer cells (95,96). In HT115 and MDA‑MB‑231, ω‑6 
PUFAs enhanced the expression of a metastasis‑suppressor 
gene, nm‑23 (97). Studies conducted on various animal models 
have demonstrated the effect of PUFAs in regards to cellular 
growth. A reduction in tumor growth and proliferative abilities 
caused by PUFAs was observed in an immunocompromised 
nude murine model of transplanted human breast cancer 
cells (98). A fish oil diet rich in EPA and DHA in a murine 
model of MDA‑MB‑231 human breast cancer cells led to the 
prevention of bone metastases (99).

The molecular mechanism by which the administration 
of PUFAs, alone or alongside other compounds, may affect 
the metastatic potential of tumors remains to be deciphered. 
The anti‑proliferative and anti‑invasion activity of DHA may 
be connected to alterations in the composition of fatty acids, 
which leads to damage to the membranes of tumor cells, and 
consequently reduction in metastatic potential (96,100,101).

A diet rich in fatty acids (DHA and EPA) of marine origin 
in patients with breast cancer was correlated with reduced 
mortality (102). ω‑3 PUFAs lead to E‑cadherin expression 
upregulation, while inhibiting the invasion mechanisms in 
mammary malignant cells (36), since the appropriate expres-
sion of E‑cadherin is important in maintaining the integrity of 
intracellular adhesions (103).

In human breast tumor tissues, AA and cytosolic phos-
pholipase A2 were demonstrated to be associated with the 
signaling activity of mTOR complex (C)1 and mTORC2, and 
with expression levels of vascular epithelial growth factor (68).

8. Regulation of miRNA expression

The mechanisms by which dietary factors modulate the 
expression of miRNA in breast cancer cells have not been 
completely elucidated (104‑106). Experimental studies have 
suggested that some nutrients, including ω‑3 PUFAs (107‑109), 
have anticancer effects through the modulation of miRNA 
expression levels (110‑113). Previous studies have demonstrated 
extensive interactions between ω‑3 PUFAs and miRNA in 
cancer, lipid metabolism and inflammation  (105). Recent 
findings indicated that DHA, which has anti‑inflammatory 
and anticancer effects, is able to downregulate miRNA‑21, 
causing an increase in tumor necrosis factor  α mRNA 
expression levels and, subsequently, triggering apoptosis in 
human cancer cells (106,107). High expression of miRNA‑21 
is strongly correlated with poor prognosis in breast cancer, 
demonstrating a negative impact on overall survival and 
disease/recurrence‑free survival (104,106,108). As part of its 
mechanism of action, DHA treatment promotes inhibition 
of receptor‑interacting protein 1 kinase and AMP‑activated 
protein kinase‑α, resulting in nuclear accumulation of 
Foxo3a, which, in turn, binds to the miRNA‑21 promoter 
causing its transcriptional repression  (107). Other studies 
have demonstrated that expression levels of certain miRNA, 
including let‑7a, miRNA‑23b, miRNA‑27a/b, miRNA‑21, let‑7 
and miRNA‑320b, in breast cancer cell exosomes have been 

increased by DHA treatment (47‑109). An in vitro study on 
mammary cancer cell models indicated that DHA treatment 
inhibited the expression of colony stimulating factor 1 and 
miRNA‑21, supporting the evidence found by an in  vivo 
study (110). In MCF‑7 and MDA‑MB‑231 breast cancer cell 
lines, the promoter of miRNA‑21 contains a NFκB binding 
element, which, in association with the DHA treatment, leads 
to decreased miRNA‑21 expression levels by inhibiting NFκB 
activity (105,110). Although the mechanisms by which ω‑3 
PUFAs contribute to the altered expression of these miRNA 
remain unclear, some authors suggest that its direct targets are 
involved, together with other associated proteins, including 
PTEN, Bcl‑2, programmed cell death 4 and NFκB (110‑112).

A PUFA‑enriched diet correlates with changes in circu-
lating miRNA (upregulated miRNA include miRNA‑18a, 
‑19b, ‑106a, ‑130b, ‑192, ‑486‑5p and ‑769‑5p; downregulated 
miRNA include miRNA‑125a‑5p, ‑221, ‑328 and ‑330‑3p) that 
may serve an important role in the PUFA dietary systemic 
effect (113). In a rat model of inflammation, dietary ω‑3 and 
ω‑6 PUFAs may alter the miRNA expression profile  (42). 
Functional analyses of these changes in miRNA expression 
profiles have indicated that dietary PUFAs are implicated in 
the maintenance of immune homeostasis via the expression 
of miRNA (43). In same study by Zheng et al  (42), it was 
demonstrated that ω‑3 PUFAs suppress inflammation in vivo 
by inhibiting the expression levels of miR‑18‑5p, ‑19b‑3p and 
‑146b‑5p.

In addition to inflammation homeostasis, ω‑3 PUFAs 
have also been implicated in the downregulation of 
miRNA‑26a/b expression, promoting the upregulation of 
15‑hydroxyprostaglandin dehydrogenase, which catalyzes the 
oxidation of the pro‑inflammatory lipid mediator, prostaglandin 
E2, leading to a decrease in cell proliferation (34). DHA may 
positively modulate expression levels of miRNA related 
to lipid metabolism, including miRNA‑30c and ‑192, in 
cancer and obesity (114‑117). Studies in breast cancer have 
demonstrated that miRNA‑30c negatively regulates NFκB 
signaling and cell cycle progression (118), while miRNA‑192 
inhibits cell proliferation  (119). Knockdown of DICER in 
enterocyte Caco‑2 cells exposed to DHA lipid micelles 
revealed multiple genes regulating lipid metabolism that are 
modulated by miRNA‑30c and miR‑192 (117). miR‑33a and 
miR‑122 expression levels in the liver are upregulated in rats 
with cafeteria‑diet induced dyslipidemia; however, these levels 
are counteracted by the presence of ω‑3 PUFAs in vivo (120).

The beneficial effects of ω‑3 PUFAs extend to its 
related metabolites, such as Resolvin D1 (RvD1), which is a 
well‑known anti‑inflammatory agent that induces upregula-
tion of miRNA‑208a and miR‑219 in in vivo transgenic mice 
overexpressing N‑formyl peptide receptor 2 (121). A study by 
Krishnamoorthy et al (121) indicated that this RvD1‑induced 
upregulation of miRNA‑208a promotes increased secretion 
levels of the anti‑inflammatory cytokine, interleukin‑10, in 
human macrophages.

9. Conclusion

Dietary factors, such as fatty acids, have been recognized as 
influential factors in the activation of carcinogenic events or 
disease progression, and have been associated with a direct 
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connection to breast cancer prevention. PUFAs differentially 
inhibit mammary tumor development by inflicting modifica-
tions to the morphology of cell membranes, and influencing 
signaling pathways, gene expression and apoptosis. Observing 
the molecular mechanisms involved in the activity of dietary 
PUFAs on breast cancer development and progression suggests 
that dietary supplements, in combination with anticancer drugs, 
should be provided under medical supervision. The majority 
of studies recommend that patients consume a diet rich in ω‑3 
PUFAs, while reducing the intake of ω‑6 PUFAs, particularly 
in the case of chemoprevention purposes. Therefore, modifica-
tion of dietary habits, particularly regarding the choice and 
amounts of fats consumed, may be used as a strategy for breast 
cancer prevention. For better results in this field, additional 
clinical trials are required to evaluate the specific effects of 
PUFAs on breast cancer outcomes.
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