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Abstract. Ischemic stroke is a leading cause of mortality and 
disability around the world. It is an important task to identify 
dysregulated pathways which infer molecular and functional 
insights existing in high‑throughput experimental data. Gene 
expression profile of E-GEOD-16561 was collected. Pathways 
were obtained from the database of Kyoto Encyclopedia of 
Genes and Genomes and Retrieval of Interacting Genes was 
used to download protein-protein interaction sets. Attractor 
and crosstalk approaches were applied to screen dysregu-
lated pathways. A total of 20 differentially expressed genes 
were identified in ischemic stroke. Thirty-nine significant 
differential pathways were identified according to P<0.01 and 
28 pathways were identified with RP<0.01 and 17 pathways 
were identified with impact factor >250. On the basis of the 
three criteria, 11  significant dysfunctional pathways were 
identified. Among them, Epstein-Barr virus infection was 
the most significant differential pathway. In conclusion, with 
the method based on attractor and crosstalk, significantly 
dysfunctional pathways were identified. These pathways are 
expected to provide molecular mechanism of ischemic stroke 
and represents a novel potential therapeutic target for ischemic 
stroke treatment.

Introduction

Ischemic stroke is one of the main causes of morbidity and 
mortality throughout the world (1-3). Generally considered as 
a heterogeneous and multifactorial disorder, ischemic stroke 
morbidity is high due to vast complications and lack of alterna-
tive treatments (4).

Identifying dysregulated pathways of ischemic stroke 
from large number of high-throughput experimental findings 
is a significant task to show molecular and functional targets 
existing (5). The differentially expressed genes (DEG) and 

pathways may be a promising candidate for the treatment of 
ischemic stroke. Recently, canonical studies demonstrated 
that biomarkers of ischemic stroke could be identified by gene 
expression patterns, which highlighted the dependency of the 
innate immune system through signaling pathways (4,6,7).

There are abundant pathways related to ischemic stroke 
in Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database, which provides useful pathway topology 
information. Kauffman' attractor theory offers a new formal 
method to find one or more well-defined ensembles from 
large datasets whose statistical features matched those of 
real organisms and cells (8). A previous study (9) provided 
strong evidence that attractor was a formal approach that 
could leverage both the DEGs between cell phenotypes 
and existing pathway databases. We employed it to screen 
attractors within pathways from vast data of KEGG pathway 
database, in order to narrow down the number of correlated 
dysregulated pathways.

Screening differentially expressed pathways may provide 
an important theoretical basis for further ischemic stroke 
research. However, they invariably pay attention to potential 
function of single pathway and neglect the inherent interde-
pendency inter-pathways. Pathway crosstalk is known as the 
phenomenon of cooperation or interaction among pathways. 
The construction of pathway crosstalk network (PCN) inter-
pathways is conductive to understand the comprehensive 
interactions when ischemic stroke occur (10). Then a scoring 
scheme was applied to comprehensively identify these path-
ways based on attractor levels both of crosstalk inter‑pathways 
and internal pathway effects.

In this study, we applied the method based on attractor 
and crosstalk to identify the dysregulated pathways which 
associated with ischemic stroke. Ultimately several signifi-
cant dysfunctional pathways with strong interactions were 
identified. The identified pathways are suggested to provide 
molecular mechanisms for the treatment of ischemic stroke.

Materials and methods

Gene expression dataset. The transcription profile 
E-GEOD‑16561  (4) was obtained through EMBI-EBI 
ArrayExpress database (11). The data included gene expres-
sion profiling of 39 ischemic stroke patients and 24 healthy 
controls. The platform was: A-MEXP-1172  -  Illumina 
HumanRef-8 v3.0 Expression BeadChip.
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Data of the gene chip was read as previously described (12). 
The gene expression data was preprocessed by Linear Models 
for Microarray Data (LIMMA). Robust multi-array average 
(RMA) was applied to adjust the background and normalize 
the quantile data (13). We used a median polish and robust 
procedure for protecting against outlier probes (14) and esti-
mating model parameters. The DEG were selected according 
to the threshold levels: P≤0.01, |log fold-change (FC)| ≥2.

Pathway data. Biological human pathways were downloaded 
from KEGG database (15) which provides copious pathway 
information (16,17). Pathways with the gene set size of >100 
or <5 were filtered. The correct size cut off pathways were 
set up, 294 pathways were selected for downstream analysis.

Protein interaction data. The Retrieval of Interacting Genes 
(STRING; v9.0) were applied for screening the PPI (18). A 
total of 787,896 PPI sets were selected after removing self 
interactions.

Differential pathway analysis. Based on the attractor 
theory (8), this was applied for screening differential pathways 
which related to ischemic stroke from 294 KEGG pathways.

To identify these 294 pathways, GSEA-ANOVA approach 
was employed as a gene set enrichment algorithm (9). The 
294  KEGG pathways with FDR <0.05 were identified as 
attractors. We computed the F-statistic for gene i:

where MSSi reflects the mean treatment sum of squares and used 
to captures the variation amount due to group-specific effects:

and RSSi represents the residual sum of squares:

where N is the samples number, and the overall mean is shown 

by:

Large values of the F-statistic mean a significant interactions 
with ischemic stroke-specific expression changes.

For pathway P comprise gp genes, the T-statistic shows as 
the following form:

where G reflects the total number of genes within a pathway 
annotation, the sample variances sp

2  and s2
G  are defined as 

follows:

The resulting P-values of each pathway were adjusted using 
the Benjamini-Hochberg false discovery rate (FDR)-based 
approach of Benjamini-Hochberg. Differential pathways were 
selected with the criteria (P<0.05).

Crosstalk analysis. To analyze interactions between pathways, 
crosstalk analysis was applied to construct pathway crosstalk 
network (PCN) according to Li et al (10).

Background analysis. The PCN of control group was constru
cted. The weight of the background PCN represented the 
number of PPI sets. i) We used Fisher's exact test to evaluate 
the gene overlap between any pairs among 294 pathways (19). 
FDR were performed to adjust raw P-values (20). ii) We then 
counted all interactions of each pathway pair after removing 
genes which shared both pathways. iii) Background distribu-
tion of PPI established according to each pathway pair was 
estimated 1,000 times. iv) The one-sided Fisher's exact test 
was performed using the 2x2 contingency table on all pathway 
pairs. FDR BH procedures were performed to adjust P-values 
of Fishers exact test (20) and empirical P-value was calculated. 
v) All pathway pairs were chosen to construct the PCN with 
P<0.05.

Network of ischemic stroke. The network of ischemic stroke 
was constructed based on the crosstalk method.

One gene in the pathway has interactions with another 
pathway when it satisfies one of the two conditions: i) The 
Spearman correlation coefficients of each PPI set were calcu-
lated. The edge remained when the absolute value of different 
coefficients between them was >0.7. The value of weight 
between two pathways was defined by geometric mean of the 
absolute value. ii) The DEGs were selected according to the 
threshold levels: P≤0.01 |log fold-change (FC)| ≥1.

Important crosstalk pathways. The PCN was implemented by 
using topology analysis. The scores of pathways were defined 
as: Score = degree of ischemic stroke/degree of background (9).

Comprehensive analysis. Pathway analysis has become 
important in capturing clinical information. To explore the 
interactive relationship between two pathways, impact factor 
(IF) was calculated as: IF = outer x (1 - p) (10). Where outer is 
the degree of interactions between two pathways and p is the 
P-value of the attractor.

RP-value reflects the comprehensive identification ability 
within pathways or between pathways (3). RP-value = (rank 
inter/total) x (rank outer/total) (11).

Rank inter is the ranking of the attractor P-value and 
then rank outer reflects the ranking of interactions between 
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different pathways. Total here reflects the sum of the attractor 
P-value of inter and outer pathways.

Results

DEG in the ischemic stroke. According to the criteria (|log 
FC| ≥1; P≤0.01), a total of 20 DEGs were identified in ischemic 
stroke, of which 19 were upregulated and one was downregu
lated (Table I). These DEG might identify molecular alterations 
and provide diagnostic biomarkers for ischemic stroke.

Pathway crosstalk analysis. The PCNs of ischemic stroke and 
background were adjusted using gene expression profile of 
24 controls and 39 ischemic stroke patients, respectively. Fig. 1 
shows the crosstalk difference between control and ischemic 
stroke groups. In control group, the majority degrees of these 
294 pathways were between 255 and 300. The ischemic stroke 
group showed significant difference with the background group. 
We obtained a unique degree from each significant pathway, 
which provides significant evidence to show the interactions 
between these pathways with ischemic stroke.

In this study, the degree reflects the strength of associa-
tion of two pathways. That is, a large degree was indicative 
of strong interactions between pathways, while small degree 
indicates minimal interactions between pathways. The top 
three important pathways were pyrimidine metabolism 
(KEGG ID: 00240), HTLV-I infection (KEGG ID: 05166) and 
Epstein-Barr virus infection (KEGG ID: 05169).

Differential pathway analysis. A total of 68 differential path-
ways with P<0.05, and 39 were identified with P<0.01 (Fig. 2), 
indicating that these 68 pathways were significantly different 
in the ischemic stroke compared with normal network. Thus, 
some molecular alterations existed in the pathways among the 
development of ischemic stroke.

Comprehensive analysis of pathways. Pathway analysis has 
become important in capturing clinical information. Impact 
factor was calculated to explore the interactive relationship 
between two pathways. There were different impact factors 
from 0 to 272 as shown in Fig. 3 and these results indicated that 
there were differences between degrees of interactions in the 
inter-pathways. There were 17 pathways with IF-value >250, 
which were considered as important pathways in disease.

As mentioned above, RP-value was calculated to compre-
hensively explore these 294 pathways between pathways or 
within pathways. A total of 64 significantly enriched pathways 
existed with a threshold RP<0.05, and 28 pathways with a 
threshold RP<0.01 (Fig. 2).

At the criteria of IF-value >250, RP<0.01 and P<0.01, 
11 significant pathways were identified as shown in Table II. 
Due to their dysfunctional expression and strong interactions, 
these pathways were considered to play core roles in the devel-
opment of ischemic stroke. Among them, Epstein-Barr virus 
infection was the most significantly different pathway.

Table I. Twenty DEGs identified in the ischemic stroke.

DEG	 logFC	 P-value

Upregulated
  RGS2	 1.0106	 3.24E-14
  PDK4	 1.0079	 7.54E-11
  ARG1	 1.6940	 1.70E-09
  IQGAP1	 1.0330	 9.65E-09
  CRISPLD2	 1.0690	 5.39E-08
  PADI4	 1.0232	 6.95E-08
  MMP9	 1.4304	 1.36E-07
  CSPG2	 1.0757	 4.93E-07
  CA4	 1.0994	 3.35E-06
  S100A12	 1.2762	 5.03E-06
  ACSL1	 1.0946	 8.29E-06
  FOLR3	 1.0949	 1.87E-05
  AKAP7	 1.1421	 2.27E-05
  LY96	 1.1194	 2.86E-05
  ORM1	 1.1837	 0.00014
  FCGR3B	 1.1743	 0.00066
  APOBEC3A	 1.1644	 0.00092
  OLFM4	 1.0004	 0.00124
  FTHL3	 1.0737	 0.00463
Downregulated		
  CCR7	 -1.0838	 5.70E-07

DEG, differentially expressed genes.

Figure 1. The crosstalk difference of background and ischemic stroke.



DIAO  and  LIU:  CORE PATHWAYS IN ISCHEMIC STROKE 1523

Discussion

Identification of dysregulated pathways with a novel approach. 
Attractor theory is famous as a knowledge-driven analytical 
way that is not considered as a traditional KEGG method (8). 
Attract, an approach that can expand on the context to evaluate 
the genome-wide expression data in embryonic stem cells (9). 
Because of narrowing down the number of correlated dysregu-

lated pathways, attract method with pathways will be more 
complete than traditional KEGG analysis.

In this study, 68 differential pathways (P<0.05) with statis-
tically significant alteration were identified from 294 KEGG 
pathways in response to molecular mechanism and pathology 
process of ischemic stroke. We found that most of them were 
related to diseases, such as tuberculosis, Alzheimer's disease, 
measles and Huntington's disease. However, the studies on 

Figure 3. Interactions of inter-pathways were assessed by an impact factor.

Table II. Significant pathways identified by Kauffman attractor, impact factor and RP-value.

KEGG ID	 KEGG pathway	 Attractor P-value	 Impact factor	 RP-value

05169	 Epstein-Barr virus infection	 1.12E-11	 272	 2.31E-05
05152	 Tuberculosis	 2.83E-06	 257.9992701	 0.000659447
05203	 Viral carcinogenesis	 5.18E-05	 262.9863678	 0.001353603
00230	 Purine metabolism	 0.004527077	 267.7822164	 0.00138831
05164	 Influenza A	 0.000100413	 258.9739931	 0.002221297
05016	 Huntington's disease	 0.000282903	 263.9253137	 0.002290712
05168	 Herpes simplex infection	 0.000412243	 260.8924045	 0.003077421
05161	 Hepatitis B	 0.006210218	 262.3605025	 0.003644315
04380	 Osteoclast differentiation	 0.000282903	 253.9281427	 0.004720255
04932	 NAFLD	 0.003514779	 254.1037314	 0.006363089
05010	 Alzheimer's disease 	 0.0000356	 252.9909911	 0.002591513

NAFLD, non-alcoholic fatty liver disease; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 2. The 294 KEGG pathways were evaluated by Kauffman attractor and RP-value. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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integral influence on the system were absent. Fig. 2 shows that 
the variation trend of pathways were not consistent with that 
of RP-value. Therefore, crosstalk approach was employed to 
adjust the interactions between pathways. Pathways with large 
impact factor were taken into account having strong connection 
with other pathways. Interestingly, most of the 68 differential 
pathways had large IF-values, but 14 pathways did not (IF 
<190). Moreover, the RP-values of most of the 14 pathways 
were >0.05. The result indicate that the pathways which were 
screened by attractor were not exactly dysregulated and influ-
ential and the pathways with smaller values of impact factor 
and attractor level P<0.05 may have smaller effect and should 
be filtered.

The results indicated that attractor method may fail to 
identify potential functional interpretations between pathways 
due to its incomplete information on inherent interdependency 
inter pathway. Other pathway-identification methods that 
apply topological pathway information have also faced similar 
challenge (17). After calculating the interactions among inter-
pathways by crosstalk, the novel method enhanced attractor 
to distinguish dysregulated pathways. Previous studies have 
reported there is more focus on the comprehensive identifi-
cation of dysregulated pathways (5). Since ischemic stroke 
genetics field has made significant progress in identifying 
common genes that are confidently associated with ischemic 
stroke diagnosis, gene-based pathway aberrance analysis which 
combined attractor and crosstalk will be help in detecting 
pathways relating to ischemic stroke.

Evaluating the effect of dysregulated pathways. The RP-value 
was applied to evaluate the identified capacity of both inter-
pathways and within pathways. The influential dysregulated 
pathways required are with attractor P<0.01, IF-value >250 and 
RP-value <0.01. In total, 11 important pathways were identified 
in ischemic stroke. We found that most of them were pathways 
related to diseases, such as influenza A, Huntington's disease, 
hepatitis B and non-alcoholic fatty liver disease (NAFLD). 
The pathway Epstein-Barr virus infection possessed minimum 
RP-value and maximal impact factor. Moreover, it was one of 
the most important crosstalk pathways. It is well-known that 
distinct forms of Epstein-Barr virus can contribute to the 
different infectious diseases and tumors (21). Therefore, the 
pathway Epstein-Barr virus infection was considered to be 
significantly important in representing novel potential thera-
peutic targets for ischemic stroke treatment.
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