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Abstract. With the development of science and technology, 
and development of artery bypass, methods such as cardio-
pulmonary cerebral resuscitation have been practiced in 
recent years. Despite this, some methods fail to promote or 
recover the function of tissues and organs, and in some cases, 
may aggravate dysfunction and structural damage to tissues. 
The latter is typical of ischemia‑reperfusion (IR) injury. Lipid 
peroxidation mediated by free radicals is an important process 
of myocardial IR injury. Myocardial IR has been demonstrated 
to induce the formation of large numbers of free radicals in 
rats, which promotes the peroxidation of lipids within unsatu-
rated fatty acids in the myocardial cell membrane. Markers 
of lipid peroxidation include malondialdehyde, superoxide 
dismutase and lactic dehydrogenase. Recent studies have 
demonstrated that N‑acetylcysteine (NAC) is able to dilate 
blood vessels, prevent oxidative damage, improve immunity, 
inhibit apoptosis and the inflammatory response and promote 
glutathione synthesis in cells. NAC also improves the systolic 
function of myocardial cells and cardiac function, prevents 
myocardial apoptosis, protects ventricular remodeling and 
vascular remodeling, reduces opiomelanocortin levels in the 
serum and increases the content of nitric oxide in the serum, 
thus improving vascular endothelial function. Therefore, NAC 
has potent pharmacological activity; however, the relatively 
fast metabolism of NAC, along with its large clinical dose 
and low bioavailability, limit its applications. The present 
study combined NAC with medicinal activated carbons, and 
prepared N‑acetylcysteine activated carbon sustained‑release 

microcapsules (ACNACs) to overcome the limitations of 
NAC. It was demonstrated that ACNACs exerted greater 
effective protective effects than NAC alone on myocardial IR 
injury in rats.

Introduction

Cardiovascular disease, particularly ischemic heart disease, 
has become a worldwide health problem affecting all 
economic groups of society (1). In recent years, many organs 
and tissues may have undergone reperfusion following 
ischemia with the establishment and promotion of treatment 
methods, including coronary artery bypass grafting, throm-
bolytic therapy, cardiac surgery extracorporeal circulation, 
cardiopulmonary cerebral resuscitation and organ trans-
plantation (2‑4). In most cases, ischemia‑reperfusion (I/R) 
may help organs and tissues to repair themselves. However, 
sometimes I/R may also cause damage to them and became 
a serious threat to recovery. This phenomenon is called 
ischemia‑reperfusion injury (5).

The World Health Organization predicts that by 2030, 
ischemic heart disease will become the second largest disease 
threatening human health (6). Myocardial ischemia caused 
by coronary artery infarction is the most important cause of 
ischemic heart disease (7). With social‑economic development 
in China, changes to the living environment and lifestyle and 
the rise of the aging population, high incidence and mortality 
of chronic diseases, especially cardiovascular and cerebro-
vascular diseases, have been a heavy burden on society (8). 
Additionally, epidemiological studies showed that the age of 
onset tended to be younger in recent years (9).

Oxygen derived free radicals serve an important role 
in tissue injury during ischemia and reperfusion of the 
heart  (10,11). There is substantial evidence that reactive 
oxygen including superoxide anion, hydrogen peroxide and 
hydroxyl radicals are responsible for myocardial injury during 
ischemia‑reperfusion (12‑14). MDA is a product of lipid peroxi-
dation that indirectly reflects the generation of free radicals and 
injury degree of myocardial tissues (15); SOD is scavenging 
agent of superoxide radicals, which serves an important protec-
tive role in anti myocardial cell injury (16). At the same time, 
myocardial cell membrane lipid peroxidation increases cell 
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membrane permeability and a large amount of LDH in cells is 
leaked into the intercellular space and body fluid (17).

N‑acetylcysteine (NAC) is an acetyl compound of L‑cysteine 
with an active mercapto group (18). In the past it has been used 
clinically as a mucolytic in respiratory diseases (19,20). More 
recently, studies have demonstrated that NAC dilates blood 
vessels, prevents oxidative damage, improves immunity, inhibits 
apoptosis and the inflammatory response and promotes the 
synthesis of glutathione in cells (21‑25). With regard to the liver, 
NAC has been demonstrated to exert strong anti‑fibrotic effects 
and preventative effects against fatty liver disease (26‑28). With 
regard to the heart, NAC may improve the systolic function of 
myocardial cells and cardiac function, resist myocardial apop-
tosis, protect ventricular remodeling and vascular remodeling, 
reduce opiomelanocortin levels in the serum and improve the 
content of nitric oxide (NO) in the serum, and thus improve 
vascular endothelial function  (29‑33). Therefore, NAC has 
strong pharmacological effects (34,35), though its unfavorable 
effects include its relatively fast metabolism in the body, large 
clinical dose and low bioavailability, and side effects such as 
flush, nausea and vomiting (35-37). By contrast, medicinal 
activated carbons are sufficiently absorbed and biocompat-
ible (35), and slowly release drugs during the metabolism of 
absorbed drugs, which overcomes the limitations of acetylcys-
teine and improves drug action time and bioavailability (38). 
The present study prepared N‑acetylcysteine activated carbon 
sustained‑release microcapsules (ACNACs) (39) by effectively 
combining NAC with medicinal activated carbons through 
an orthogonal experiment. The curative effect of ACNAC in 
rat liver has previously been documented (26,27,40‑41). To 
determine the effect of ACNAC in the heart, the current study 
investigated the protective effect of ACNAC on myocardial 
ischemia‑reperfusion (IR) injury in rats.

Materials and methods

Drugs and equipment. NAC was from Wuhan Grand Hoyo 
Co., Ltd. (Wuhan, China; batch number: 20110607); medicinal 
activated carbon was from Zhejiang Hangzhou Hangmu 
Timber Industry Co., Ltd. (Hangzhou, China; batch number: 
120907) metoprolol tartrate injection was from Shandong 
East San Lu Pharmaceutical Co., Ltd. (Jining, China); malo-
ndialdehyde (MDA) assay kit (cat no. A003‑1), superoxide 
dismutase (SOD) assay kit (cat no. A001‑3), lactic dehydro-
genase (LDH) assay kit (cat no. A020‑2), NO assay kit (cat 
no. A012‑1), NO synthase (NOS) assay kit (cat no. A014‑1‑1 
and Coomassie brilliant blue protein assay kit were purchased 
from Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China); a Sartorius BS124S precision balance and PowerLab 
biological signal acquisition and analysis system were from 
AD Instruments (ML880, Sydney, Australia); a HX‑300 small 
animal respiratory ventilator was from Chengdu Taimeng 
Technology Co., Ltd. (Chengdu, China); an Electrothermal 
Constant‑temperature Dry Box was from Tianjin City Taisite 
Instrument Co., Ltd. (Tianjin, China); and a rotary paraffin 
microtome was from Jinhua Yidi Medical Appliance Co. Ltd. 
(YD‑1508, Jinhua, China).

Preparation of animal model. A total of 64 male Sprague‑Dawley 
rats (weight, 226.835±21.646 g; 45 days old) were used. Animals 

were obtained from the Experimental Animal Center of the 
Zhejiang Academy of Medical Sciences (Hangzhou, China), and 
had access to a standard commercial diet and water ad libitum 
with the exception of preoperative fasting for 12 h. Rats were 
kept in rooms maintained at 22±1˚C under a 12‑h light/dark 
cycle throughout the experiments. All experiments were carried 
out in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals (42), and approved 
by the Animal Care Committee of Xixi Hospital of Hangzhou 
Affiliated to Zhejiang University of Traditional Chinese Medicine 
(Hangzhou, China). The rats were randomly divided into the 
following eight groups (n=8 per group): Normal, sham, IR, 
metoprolol (Meto) control, NAC control, ACNAC1 (low‑dose), 
ACNAC2 (moderate‑dose) and ACNAC3 (high‑dose).

The animals in groups ACNAC1, ACNAC2 and ACNAC3 
were administered with 20, 40, 80 mg/kg ACNACs, respectively, 
via gavage. The animals in the NAC and Meto control groups 
were administered with an equivalent concentration of 80 mg/kg 
NAC and 20 mg/kg metoprolol solvent, respectively, via gavage. 
Normal saline of equivalent volume was administered to 
animals in the IR and sham groups. IR models were prepared 
30 min after drug treatments, as described previously (43,44). 
All groups received ligature sutures, and the ligature in all 
groups excluding the normal and sham groups were tensioned 
after 5 min. The ligatures were loosened after 45 min, and limb 
lead electrocardiogram (ECG) and carotid blood pressure were 
observed for 2 h, after which a plastic tubing ball end a mosquito 
clamp was used to oppress and ligature the anterior descending 
left coronary artery. During the experiment, cyanosis in the 
left ventricular posterior wall and an increased ST section in 
a synchronous lead ECG were defined as signs of successful 
ligation, and a gradual change of cyanosis to red in the left 
ventricular posterior wall and 50% decrease in the ECG ST 
section were defined as signs of successful reperfusion. Rats 
were euthanized via exposure to gradually increasing concen-
trations of isoflurane and carbon dioxide gas (30% gradual‑fill 
chamber vol/min) (45,46). Blood and heart tissue samples were 
then immediately stored at ‑80˚C for later use. The number of 
animals used and their suffering was minimized. Following the 
procedure, animals were treated and specimens were prepared 
in strict accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals.

Determination of SOD, MDA and LDH indices. At 2 h after 
reperfusion, the heart was isolated and immediately washed 
with normal saline, and ~100 mg myocardial tissue from 
the ischemic area was cut and ground to obtain a 10% tissue 
homogenate. The mixture was homogenized 15 times at 4˚C 
prior to centrifugation at 1,0625 x g for 15 min at 4˚C. The 
supernatant was retained. SOD activity and MDA content 
were determined with SOD and MDA assay kits, respectively, 
and measured with a UV visible light photometer, according 
to the manufacturer's instructions. At 2 h after reperfusion, 
abdominal aorta blood was also collected and centrifuged at 
1,0625 x g for 15 min at 4˚C to obtain serum. LDH level was 
measured with a UV visible light photometer, according to the 
instructions of the LDH assay kit.

Determination of NO content and NOS activity. The reserved 
serum samples (stored at ‑80˚C) were thawed at room 
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temperature and NO content was) was measured according to 
the kit instructions, based on measurements of optical density 
(OD) obtained using a 721 Spectrophotometer (Shanghai 
Optical Instrument Factory, Co., Ltd., Shanghai, China) at a 
wavelength of 550 nm. The following formula was used: NO 
content in serum (µmol/l)=(OD value of sample tube‑OD 
value of blank tube)/(OD value of standard tube‑OD value of 
blank tube)x standard tube concentration (20 µmol/l)x sample 
dilution.

The reserved heart samples were thawed at room tempera-
ture and myocardial tissue homogenate was prepared. The 
mixture was homogenized 15 times at 4˚C prior to centrifu-
gation at 10,625 x g for 15 min at 4˚C. The supernatant was 
retained and the OD values of total NOS (TNOS) in the sample 
tube, inducible NOS (iNOS) in the sample tube and constitu-
tive NOS (cNOS) in the sample tube were determined with 
a 721 Spectrophotometer at a wavelength of 530 nm. Protein 
content (in mg prot/l) in the sample tubes was also measured 
with the Coomassie brilliant blue kit. Measurements were 
obtained with a 721 Spectrophotometer at wavelength 595 nm. 
The following formula was used:

Recording of reperfusion arrhythmia duration. The judg-
ment of arrhythmia on Lambeth, Conventions standards, 
and arrhythmia reperfusion scores were assigned according 
to the scoring system by Walker et al (47). The system is as 
follows: 0, No arrhythmia; 1, Accidental ventricular premature 
contraction, VPC; 2, Frequent VPC; 3, Accidental ventricular 
tachycardia, VT; 4, Frequent VT or Accidental Ventricular 
fibrillation (VF); and 5, Frequent VF or death.

Hematoxylin and eosin staining of myocardial tissues to 
detect pathological changes. Left ventricular anterior wall 
tissue from each group was treated in 4% paraformaldehyde 
for 24  h at room temperature, dehydrated with alcohol 
prepared according to a set gradient (75, 85, 90, 95 and 100%) 
and then embedded in paraffin blocks. Sections 4 µm thick 
were deparaffinated in dimethylbenzene, embedded in xylene 
I for 20 min, xylene II for 20 min, absolute ethyl alcohol I for 
10 min, absolute ethyl alcohol II for 10 min, 95% alcohol for 
5 min, 90% alcohol for 5 min, 80% alcohol for 5 min and 
70% alcohol for 5 min successively prior to washing with 
water. Cell nuclei were stained with hematoxylin, and the 
cell cytoplasm was stained with eosin. Sections were then 
dehydrated and sealed with neutral resin. A light microscope 
(magnification, x200; Nikon Corporation; Tokyo, Japan) was 

used to observe the structures of myocardial tissues from 
each group.

Statistical analysis. Measurement data were presented as 
the mean ± standard deviation, and statistical analysis was 
performed with SPSS 16.0 software (SPSS, Inc., Chicago, IL, 
USA). One‑way analysis of variance was used for comparison 
of multiple groups, and the LSD method was used as a post 
hoc test. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Determination of SOD, MDA and LDH indices. The SOD 
activation and MDA and LDH levels are presented in Fig. 1. 
Compared with the normal group, the IR group exhibited signif-
icantly reduced SOD (76.41±3.19 vs. 55.66±7.11 U/mg prot; 
P<0.05) activation and significantly increased MDA (1.36±0.02 
vs. 2.54±0.34 nmol/mg prot; P<0.05) content and serum LDH 
(484±16 vs. 1,915±262 U/l; P<0.05) levels; the difference in 
SOD (76.41±3.19 vs. 75.97±4.06 U/mg prot; P>0.05) activa-
tion, MDA (1.36±0.02 vs. 1.27±0.03 nmol/mg prot; P>0.05) 
and serum LDH levels (484±16 vs. 491±16 U/l; P>0.05) in 
the Sham group was not significant; the NAC group exhibited 
significantly reduced SOD (76.41±3.19 vs. 67.07±7.60 U/mg 
prot; P<0.05) activation and significantly increased MDA 
(1.36±0.02 vs. 1.73±0.23 nmol/mg prot; P<0.05) content and 
serum LDH (484±16 vs. 917±61 U/l; P<0.05) levels; the Meto 
group exhibited significantly reduced SOD (76.41±3.19 vs. 
67.82±7.21 U/mg prot; P<0.05) activation and significantly 
increased MDA (1.36±0.02 vs. 1.76±0.20 nmol/mg prot; P<0.05) 
content and serum LDH (484±16 vs. 917±62 U/l; P<0.05) levels; 
the ACNAC1 group exhibited significantly reduced SOD 
(76.41±3.19 vs. 60.43±5.89 U/mg prot; P<0.05) activation and 
significantly increased MDA (1.36±0.02 vs. 1.84±0.17 nmol/mg 
prot; P<0.05) content and serum LDH (484±16 vs. 1,128±177 U/l; 
P<0.05) levels; the ACNAC2 group exhibited significantly 
reduced SOD (76.41±3.19 vs. 66.82±7.14 U/mg prot; P<0.05) 
activation and significantly increased MDA (1.36±0.02 
vs. 1.741±0.232 nmol/mg prot; P<0.05) content and serum 
LDH (484±16 vs. 918±46 U/l; P<0.05) levels; the difference 
in SOD (76.41±3.19 vs. 69.33±6.09 U/mg prot; P>0.05) and 
MDA (1.36±0.02 vs. 1.57±0.13 nmol/mg prot; P>0.05) content 
in the ACNAC3 group was not significant, while the serum 
LDH (484±16 vs. 818±49  U/l; P<0.05) was significantly 
increased.

In the Sham group, SOD (75.97±4.06 vs. 55.67±4.29 U/mg 
prot; P<0.05) activation was significantly increased and MDA 
(1.27±0.03 vs. 2.54±0.41 nmol/mg prot; P<0.05) content and 
serum LDH (491±16 vs. 1915±262 U/l; P<0.05) levels were 
significantly reduced when compared with the IR group. In 
the NAC group, SOD (67.07±7.60 vs. 55.67±4.29 U/mg prot; 
P<0.05) activation was significantly increased and MDA 
(1.73±0.23 vs. 2.54±0.41 nmol/mg prot; P<0.05) content and 
serum LDH (917±61 vs. 1,915±262 U/l; P<0.05) levels were 
significantly reduced when compared with the IR group. In 
the Meto group, SOD (67.82±7.21 vs. 55.67±4.29 U/mg prot; 
P<0.05) activation was significantly increased and MDA 
(1.76±0.20 vs. 2.54±0.41 nmol/mg prot; P<0.05) content and 
serum LDH (917±62 vs. 1915±262 U/l; P<0.05) levels were 
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significantly reduced when compared with the IR group. In 
the ACNAC1 group, SOD (60.43±5.89 vs. 55.67±4.29 U/mg 
prot; P<0.05) activation was significantly increased and MDA 
(1.84±0.17 vs.  2.54±0.41  nmol/mg prot; P<0.05) content 
and serum LDH (1,128±177 vs. 1,915±262  U/l; P<0.05) 
levels were significantly reduced when compared with 
the IR group. In the ACNAC2 group, SOD (66.82±7.14 
vs. 55.67±4.29 U/mg prot; P<0.05) activation was significantly 
increased and MDA (1.74±0.23 vs. 2.54±0.41 nmol/mg prot; 
P<0.05) content and serum LDH (918±46 vs. 1,915±262 U/l; 
P<0.05) levels were significantly reduced when compared 
with the IR group. In the ACNAC3 group, SOD (70.49±6.22 
vs. 55.67±4.29 U/mg prot; P<0.05) activation was significantly 
increased and MDA (1.57±0.15 vs. 2.54±0.41 nmol/mg prot; 
P<0.05) content and serum LDH (818±49 vs. 1,915±262 U/l; 
P<0.05) levels were significantly reduced when compared with 
the IR group. The difference between the SOD (67.82±7.21 
vs. 67.07±7.60 U/mg prot; P>0.05) activation, MDA (1.76±0.20 
vs.  1.73±0.23  nmol/mg prot; P>0.05) content and serum 
LDH (917±62 vs. 917±61 U/l; P>0.05) in the Meto and NAC 
groups, was not significant. The difference between the SOD 
(67.82±7.21 vs. 66.82±7.14 U/mg prot; P>0.05) activation, 
MDA (1.76±0.20 vs. 1.74±0.23 nmol/mg prot; P>0.05) content 
and serum LDH (917±62 vs. 918±46 U/l; P>0.05) in the Meto 
and ACNAC2 groups was not significant.

Determination of NO content and NOS activity. The NO content 
and NOS activity are presented in Fig. 2. Compared with the 

normal group, the NO content of the IR group was significantly 
reduced (64.667±3.31 vs. 17.41±3.06  µmol/l; P<0.05); the 
NO content of the Sham group was not significantly reduced 
(64.67±3.31 vs. 64.60±4.70 µmol/l; P>0.05); the NO content 
of the NAC group was significantly reduced (64.67±3.31 
vs. 42.63±3.78 µmol/l; P<0.05); the NO content of the Meto group 
was significantly reduced (64.67±3.31 vs. 43.44±3.22 µmol/l; 
P<0.05); the NO content of the ACNAC1 group was signifi-
cantly reduced (64.67±3.31 vs. 32.94±5.01 µmol/l; P<0.05); the 
NO content of the ACNAC2 group was significantly reduced 
(64.67±3.31 vs. 43.13±3.66 µmol/l; P<0.05); the NO content 
of the ACNAC3 group was significantly reduced (64.67±3.31 
vs. 47.08±2.83 µmol/l; P<0.05).

Compared with the IR group, the NO content of the 
Sham group was significantly increased (17.41±3.06 vs. 
64.60±4.70 µmol/l; P<0.05); the NO content of the NAC group 
was significantly increased (17.41±3.06 vs. 42.63±3.78 µmol/l; 
P<0.05); the NO content of the Meto group was significantly 
increased (17.41±3.06 vs. 43.44±3.22 µmol/l; P<0.05); the NO 
content of the ACNAC1 group was significantly increased 
(17.41±3.06 vs. 32.94±5.01 µmol/l; P<0.05); the NO content 
of the ACNAC2 group was significantly increased (17.41±3.06 
vs. 43.13±3.66 µmol/l; P<0.05); and the NO content of the 
ACNAC3 group was significantly increased (17.41±3.06 
vs. 47.08±2.83 µmol/l; P<0.05).

Regarding NOS activity, the activity of TNOS (0.205±0.008 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.193±0.014 
vs. 0.677±0.006 U/mg prot; P<0.05) was significantly reduced 

Figure 1. Effect of ACNAC on the activation of SOD, MDA and LDH in the myocardium of IR rats. (A) MDA content, (B) SOD activity and (C) LDH levels 
were determined following exposure of the rat groups to IR. Data are presented as the mean ± standard deviation. *P<0.05 vs. IR group, #P<0.05 vs. normal 
group. SOD, superoxide dismutase; MDA, malondialdehyde; LDH, lactate dehydrogenase; IR, ischemia‑reperfusion; Meto, metoprolol; NAC, N‑acetylcysteine; 
ACNAC, N‑acetylcysteine activated carbon release microcapsule; ACNAC1/2/3, ACNAC low/moderate/high‑dose groups.
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in the IR group when compared with the normal group, while 
iNOS activity did not differ significantly between the two 
groups (0.026±0.002 vs. 0.025±0.001 U/mg prot; P>0.05). 
Regarding NOS activity, the activity of TNOS (0.703±0.005 
vs.  0.706±0.006  U/mg prot; P>0.05), cNOS (0.676±0.012 
vs. 0.677±0.006 U/mg prot; P>0.05 ) and iNOS (0.024±0.001 
vs. 0.025±0.001 U/mg prot; P>0.05) activity did not different 
significantly between the Sham group and the normal group. 
Regarding NOS activity, the activity of TNOS (0.455±0.017 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.434±0.015 
vs. 0.677±0.006 U/mg prot; P<0.05 ) was significantly reduced 
in the NAC group when compared with the normal group, 
while iNOS (0.023±0.003 vs. 0.025±0.001 U/mg prot; P>0.05) 
activity did not different significantly between the two groups. 
Regarding NOS activity, the activity of TNOS (0.447±0.008 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.429±0.015 
vs. 0.677±0.006 U/mg prot; P<0.05) was significantly reduced 
in the Meto group when compared with the normal group, 
while iNOS (0.024±0.002 vs. 0.025±0.001 U/mg prot; P>0.05) 
activity did not different significantly between the two groups. 
Regarding NOS activity, the activity of TNOS (0.324±0.015 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.369±0.015 
vs. 0.677±0.006 U/mg prot; P<0.05) was significantly reduced 
in the ACNAC1 group when compared with the normal group, 
while iNOS (0.026±0.002 vs. 0.025±0.001 U/mg prot; P>0.05) 
activity did not differ significantly between the two groups. 
Regarding NOS activity, the activity of TNOS (0.464±0.011 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.439±0.017 
vs. 0.677±0.006 U/mg prot; P<0.05 ) was significantly reduced 
in the ACNAC2 group when compared with the normal group, 
while iNOS (0.025±0.002 vs. 0.025±0.001 U/mg prot; P>0.05) 
activity did not differ significantly between the two groups. 
Regarding NOS activity, the activity of TNOS (0.515±0.011 
vs. 0.706±0.006 U/mg prot; P<0.05) and cNOS (0.488±0.014 
vs. 0.677±0.006 U/mg prot, P<0.05 ) was significantly reduced 
in the ACNAC3 group when compared with the normal group, 
while iNOS (0.027±0.002 vs. 0.025±0.001 U/mg prot; P>0.05) 
activity did not different significantly between the two groups.

Compared with the IR group, the activity of TNOS 
(0.205±0.008 vs. 0.703±0.005 U/mg prot, P<0.05) and cNOS 
(0.193±0.014 vs. 0.676±0.012 U/mg prot; P<0.05) in the Sham 

group was significantly increased, while iNOS (0.026±0.002 
vs. 0.024±0.001 U/mg prot; P>0.05) activity did not differ 
significantly between the two groups. Compared with the IR 
group, the activity of TNOS (0.205±0.008 vs. 0.455±0.017 U/mg 
prot; P<0.05) and cNOS (0.193±0.014 vs. 0.434±0.015 U/mg 
prot; P<0.05) in the NAC group was significantly increased, 
while iNOS (0.026±0.002 vs. 0.023±0.003 U/mg prot; P<0.05) 
was significantly decreased. Compared with the IR group, 
the activity of TNOS (0.205±0.008 vs. 0.447±0.008 U/mg 
prot; P<0.05) and cNOS (0.193±0.014 vs. 0.429±0.015 U/mg 
prot; P<0.05) in the Meto group was significantly increased, 
while iNOS (0.026±0.002 vs. 0.024±0.002  U/mg prot; 
P>0.05) activity did not differ significantly between the two 
groups. Compared with the IR group, the activity of TNOS 
(0.205±0.008 vs. 0.324±0.015 U/mg prot; P<0.05) and cNOS 
(0.193±0.014 vs. 0.369±0.015  U/mg prot; P<0.05) in the 
ACNAC1 group was significantly increased, while iNOS 
(0.026±0.002 vs. 0.026±0.002 U/mg prot; P>0.05) activity 
did not differ significantly between the two groups. Compared 
with the IR group, the activity of TNOS (0.205±0.008 
vs. 0.464±0.011 U/mg prot; P<0.05) and cNOS (0.193±0.014 
vs. 0.439±0.017 U/mg prot; P<0.05) in the ACNAC2 group 
was significantly increased, while iNOS (0.026±0.002 
vs. 0.025±0.002 U/mg prot; P>0.05) activity did not differ 
significantly between the two groups.

Compared with the IR group, the activity of TNOS 
(0.205±0.008 vs. 0.515±0.011 U/mg prot; P<0.05) and cNOS 
(0.193±0.014 vs. 0.488±0.014  U/mg prot; P<0.05) in the 
ACNAC3 group was significantly increased, activity did not 
differ significantly between the two groups.

Effect of ACNACs on the duration and score of reperfusion 
arrhythmia. The reperfusion arrhythmia scores are presented 
in Fig. 3. The reperfusion arrhythmia score of the IR group 
was significantly increased when compared with the normal 
group (4.16±0.57 vs. 0 min; P<0.05). The difference in reperfu-
sion arrhythmia score of the Sham group when compared with 
the normal group was not significant (0.34±0.05 vs. 0 min; 
P>0.05). The reperfusion arrhythmia score of the NAC 
group was significantly increased when compared with the 
normal group (2.25±0.60 vs. 0 min; P<0.05). The reperfusion 

Figure 2. Effect of ACNAC on NO content and NOS activity in the myocardium of IR rats. (A) NO content; (B) TNOS, iNOS and cNOS activity. Data 
are presented as the mean ± standard deviation.*P<0.05 vs. IR group, #P<0.05 vs. normal group. NO, nitric oxide; NOS, nitric oxide synthase; T/i/cNOS, 
total/inducible/constitutive NOS; IR, ischemia‑reperfusion; Meto, metoprolol; NAC, N‑acetylcysteine; ACNAC, N‑acetylcysteine activated carbon release 
microcapsule; ACNAC1/2/3, ACNAC low/moderate/high‑dose groups.
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arrhythmia score of the Meto group was significantly increased 
when compared with the normal group (2.22±0.40 vs. 0 min; 
P<0.05). The reperfusion arrhythmia score of the ACNAC1 
group was significantly increased when compared with the 
normal group (3.57±0.63 vs. 0 min; P<0.05). The reperfusion 
arrhythmia score of the ACNAC2 group was significantly 
increased when compared with the normal group (2.50±0.43 
vs. 0 min; P<0.05). The reperfusion arrhythmia score of the 
ACNAC3 group was significantly increased when compared 
with the normal group (1.78±0.36 vs. 0 min; P<0.05).

The reperfusion arrhythmia score of the Sham group 
was significantly decreased when compared with the IR 
group (0.34±0.05 vs. 4.16±0.57 min; P<0.05). The reperfu-
sion arrhythmia score of the NAC group was significantly 
decreased when compared with the IR group (2.25±0.60 vs. 
4.16±0.57 min; P<0.05). The reperfusion arrhythmia score of 
the Meto group was significantly decreased when compared 
with the IR group (2.25±0.60 vs. 4.16±0.57 min; P<0.05). 
The reperfusion arrhythmia score of the ACNAC1 group 
was significantly decreased when compared with the IR 
group (3.57±0.63 vs. 4.16±0.57 min; P<0.05). The reperfusion 
arrhythmia score of the ACNAC2 group was significantly 
decreased when compared with the IR group (2.50±0.43 
vs. 4.16±0.57 min; P<0.05). The reperfusion arrhythmia score 
of the ACNAC3 group was significantly decreased when 
compared with the IR group (1.78±0.36 vs. 4.16±0.57 min; 
P<0.05).

In addition, compared with the normal group, the duration 
of reperfusion arrhythmia in the IR group was significantly 
increased (0 vs. 446.56±21.81 sec; P<0.05). Compared with 
the normal group, the difference in duration of reperfu-
sion arrhythmia in the Sham group was not significant (0 
vs.  4.94±0.49  sec; P<0.05). Compared with the normal 
group, the duration of reperfusion arrhythmia in the NAC 
group was significantly increased (0 vs. 88.64±9.85  sec; 
P<0.05). Compared with the normal group, the duration of 
reperfusion arrhythmia in the Meto group was significantly 
increased (0  vs.  89.71±5.87  sec; P<0.05). Compared with 
the normal group, the duration of reperfusion arrhythmia 
in the ACNAC1 group was significantly increased (0 vs. 
198.85±17.92 sec; P<0.05). Compared with the normal group, 
the duration of reperfusion arrhythmia in the ACNA2 group 
was significantly increased (0 vs. 89.15±14.89 sec; P<0.05). 

Compared with the normal group, the duration of reperfusion 
arrhythmia in the ACNAC3 group was significantly increased 
(0 vs. 84.71±12.92 sec; P<0.05).

In the Sham group, the duration of reperfusion arrhythmia 
was significantly reduced when compared with the IR group 
(4.94±0.49 vs. 446.56±21.81; P<0.05). In the NAC group, 
the duration of reperfusion arrhythmia was significantly 
reduced when compared with the IR group (88.64±9.85 
vs. 446.56±21.81; P<0.05). In the Meto group, the duration 
of reperfusion arrhythmia was significantly reduced when 
compared with the IR group (89.71±5.87 vs. 446.56±21.81; 
P<0.05). In the ACNAC1 group, the duration of reperfusion 
arrhythmia was significantly reduced when compared with 
the IR group (198.85±17.92 vs. 446.56±21.81; P<0.05). In 
the ACNAC2 group, the duration of reperfusion arrhythmia 
was significantly reduced when compared with the IR group 
(89.15±14.89 vs. 446.56±21.81; P<0.05). In the ACNAC3 
group, the duration of reperfusion arrhythmia was signifi-
cantly reduced when compared with the IR group (84.71±12.92 
vs. 446.56±21.81; P<0.05).

Pathological changes in the myocardial tissues. HE staining 
was used to identify pathological changes in the myocardium 
following ACNAC treatment and IR injury (Fig. 4). Cardiac 
muscle fibers in the normal and sham‑operated groups (Fig. 4A 
and B) were complete and exhibited a regular arrangement, 
clear structure and uniform coloring. The morphology of the 
nucleus appeared normal, the cell membrane was complete, 
and no degeneration or necrosis of cells was observed. In the 
IR group (Fig. 4C), the cardiac muscle fibers exhibited uneven 
coloring and a disordered arrangement, and some cells were 
broken and necrotic. Rupture, dispersal and disappearance 
of the nucleus were also observed, and there was edema of 
the intercellular space and a high level of inflammatory cell 
infiltration. Compared with the IR group, the cardiac muscle 
fibers in the Meto and ACNAC3 groups (Fig. 4D and H) were 
relatively complete. Fiber arrangement was relatively ordered 
with uniform coloring, however, a few inflammatory cells had 
infiltrated and the intercellular space exhibited mild edema. 
Compared with the IR group, there was an improvement in 
non‑uniform staining and disorganization of myocardial fibers 
and some of the damaged cells were reduced in the NAC, 
ACNAC1 and ACNAC2 group (Fig. 4E‑G).

Figure 3. Effect of ACNAC on the duration and score of reperfusion arrhythmia. (A) Duration of reperfusion arrhythmia; (B) score of reperfusion arrhythmia. 
Data are presented as the mean ± standard deviation. *P<0.05 vs. IR group, #P<0.05 vs. normal group. IR, ischemia‑reperfusion; Meto, metoprolol; NAC, 
N‑acetylcysteine; ACNAC, N‑acetylcysteine activated carbon release microcapsule; ACNAC1/2/3, ACNAC low/moderate/high‑dose groups; S, score.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  15:  1809-1818,  2018 1815

Discussion

The majority of coronary heart diseases involving myocardial 
damage are caused by a reduction in the volume of coronary 
blood flow and imbalances in myocardial oxygen demand due 
to coronary artery lesion (48,49). Coronary heart disease is 
among the main diseases that threaten human health world-
wide (50). At present, thrombolytic therapy, coronary artery 
intervention therapy and coronary artery bypass grafting are 
the more effective therapeutic strategies for acute myocardial 
infarction, and generally these technologies are capable of 
saving dying ischemic myocardial cells, decreasing infarct 
size and improving heart function (51). Treatment of myocar-
dial reperfusion injury using the above methods is a current 
focus of research in the medical community (52,53). Lipid 
peroxidation mediated by free radicals is an important step 
during myocardial IR injury. It has been observed in rats 
that myocardial IR leads to the formation of a large number 
of free radicals (54‑58). This promotes lipid peroxidation in 
unsaturated fatty acids of the myocardial cell membrane, and 
produces lipid peroxides that react with intracellular struc-
tures, including nucleic acid and proteins, which ultimately 
changes cell structure and function and leads to myocardial 
cell damage (59,60). The content of MDA is also increased, 
which interferes with the cell membrane and leads to greater 
damage to cell membrane structure and function (61). This 
typically manifests as a change in cell membrane fluidity 
and permeability, leakage of myocardial enzymes, reduction 
of cell membrane ATP activity, disorders of ion transporta-
tion and abnormal ion distribution  (62). In turn, aberrant 
ion distribution due to intracellular calcium overload may 
stimulate after depolarizations and trigger activity, inducing 
arrhythmia and cardiac dysfunction (63). In addition, impair-
ment of energy metabolism caused by ischemic myocardial 
necrosis and mitochondrial dysfunction may lead to a decrease 
in cardiac function (64). Therefore, the content of MDA may 
indirectly reflect the generation of oxygen free radicals and 
degree of tissue damage (65,66). LDH, as a specific enzyme 

of the myocardial cytoplasm, is an additional marker of 
myocardial damage, as the leakage of LDH typically occurs 
only when the cell membrane is damaged. Thus the degree of 
LDH leakage may indirectly reflect the degree of myocardial 
damage (67,68). Furthermore, SOD is an intracellular antioxi-
dant, which removes superoxide anions and protects the body 
against oxidative damage by free radicals, and thus the level 
of SOD may indirectly reflect the body's ability to scavenge 
oxygen free radicals and prevent lipid peroxidation (69,70).

Results of the present study indicated that compared with 
the IR group, SOD activation was significantly increased in 
rats of the ACNAC3 group, while MDA content and serum 
LDH were significantly decreased. SOD activation, MDA 
content and serum LDH levels did not differ significantly 
among the Meto, NAC and three ACNAC groups. These 
results suggest that ACNAC may inhibit peroxidation by free 
radicals and stimulate oxidase activation in myocardial tissue. 
This is a preliminary indication that lipid peroxidation medi-
ated by free radicals is an important underlying mechanism of 
ACNAC regarding its alleviative role in myocardial ischemia 
injury.

NO, which is synthesized by a family of NOS 
enzymes, including neuronal, inducible, and endothe-
lial NOS (n/i/eNOS), serves a key role in cardiovascular 
physiology and pathology  (71). eNOS has been reported 
to inhibit the progression of myocardial infarction  (72), 
ameliorate myocardial I/R injury  (73) and left ventricular 
hypertrophy (74,75), and prevent the onset of heart failure (76). 
However, it remains controversial whether NO exerts a 
protective or cytotoxic effect in myocardial IR injury (77,78). 
Though as an important signal molecule in the body, a specific 
concentration range of NO is required to protect and maintain 
cardiac muscle cells and cardiac function (79‑81).

L‑arginine is the substrate of NOS, and the reaction gener-
ates citruline and NO. In signaling pathways involving NO, 
NOS is a key rate‑limiting enzyme. Due to its differential 
expression pattern in different tissues, NOS is as cNOS and 
iNOS, of which cNOS is also divided into nNOS and eNOS. 

Figure 4. Hematoxylin and eosin staining of the myocardium from different rat groups (magnification, x200). (A) Normal group; (B) Sham group; (C) IR 
group; (D) Meto group; (E) NAC group; (F) ACNAC1 group; (G) ACNAC2 group; (H) ACNAC3 group. IR, ischemia‑reperfusion; Meto, metoprolol; NAC, 
N‑acetylcysteine; ACNAC, N‑acetylcysteine activated carbon release microcapsule; ACNAC1/2/3, ACNAC low/moderate/high‑dose groups.
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eNOS primarily serves roles in the regulation of arterial blood 
pressure and blood flow (82). eNOS is mainly expressed in 
myocardial cells, vascular endothelial cells, the endocar-
dium and platelets, and it maintains physiological function 
through continuous synthesis of basic NO (82‑84). iNOS is 
mainly expressed in endothelial and vascular smooth muscle 
cells (85,86). Previous studies have indicated that ischemia and 
reperfusion may induce endothelial cell damage and dysfunc-
tion and activate endogenous NOS inhibitors, thus reducing 
the total activity of NOS (82) and eNOS (87‑90). When the 
activity of iNOS is increased, it may produce high levels of 
NO; however, the activation process of iNOS is relatively slow 
and requires 4‑6 h to be expressed abundantly, reaching a peak 
some 48 (91‑93).

It has been previously observed that in addition to the 
direct effect of NO on myocardial systolic function (94‑96), 
NO influences myocardial cell oxygen metabolism (97), regen-
eration (98), hypertrophy (99) and apoptosis (100). It may also 
enhance the mechanical efficiency of the myocardium (101) 
and reduce myocardial oxygen consumption  (102). In the 
process of IR, NO maybe a protective agent in the heart, and 
may prevent IR‑related tissue damage (103).

NAC is a molecule containing a sulfhydryl group, and it 
may interact with the electrophilic group of reactive oxygen 
species, which generates a sulfhydryl intermediate. In this way, 
NAC serves a direct role as an antioxidant, alleviates oxidative 
stress‑related injury to tissues and enhances the biological 
function of NO by preventing reactions between NO and free 
radicals (104,105).

Spectrophotometry data in the present study demonstrated 
that compared with the IR group, the NO content, TNOS 
and cNOS activity of the ACNAC3 group were significantly 
increased, while iNOS activity did not differ significantly. Due 
to the relatively long activation process of iNOS, the unaltered 
expression of iNOS may have been due to the short reperfusion 
period of 2 h used in the current study. These data suggest 
that ACNAC may alleviate myocardial ischemia injury by 
increasing the NO content of myocardial tissue, which may 
be initially increased by the promotion of TNOS activity in 
the myocardial tissue. ACNAC also reduced arrhythmia score 
and shortened reperfusion arrhythmia duration, which may be 
beneficial to the recovery of heart function and indicates the 
protective effects of ACNAC against arrhythmia.

The present study preliminarily concluded that the under-
lying mechanism of ACNAC regarding its alleviative role in 
myocardial reperfusion injury may be related to its effects on 
lipid peroxidation mediated free radicals, and the NO pathway. 
However, whether ACNAC is related to other mechanisms 
requires further comprehensive studies.
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