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Abstract. The aim of the present study was to explore 
changes in the urinary metabolic spectrum in rats with knee 
osteoarthritis, using gas chromatography‑time of flight/mass 
spectrometry (GC‑TOF/MS) to determine the metabonomic 
disease pathogenesis. Sprague‑Dawley rats were randomly 
divided into the control and model groups (n=8/group), and 
20  µl of 4% papain and 0.03 M L‑cysteine was injected 
into the right knee on days 1, 3 and 7 to establish the knee 
osteoarthritis model. Following 14 days, urine was collected 
over 12 h and cartilage ultrastructural damage was assessed 
by hematoxylin‑eosin staining. GC‑TOF/MS, combined 
with principal component analysis, partial least squares 
discriminant modeling and orthogonal partial least squares 
discriminant modeling, was used to analyze the changes in 
the metabolic spectrum trajectory and to identify potential 
biomarkers and their related metabolic pathways. Compared 

with the control group, the synovial cell lining of the knee 
joint exhibited proliferation, inflammatory cell infiltration and 
collagen fiber hyperplasia in the knee osteoarthritis group. 
A total of 23 potential biomarkers were identified, including 
alanine, α‑ketoglutarate, asparagine, maltose and glutamine. 
Furthermore, metabolomic pathogenesis of osteoarthritis 
may be related to disorders of amino acid metabolism, energy 
metabolism, fatty acid metabolism, vitamin B6 metabolism 
and nucleic acid metabolism.

Introduction

Osteoarthritis (OA) is a debilitating and multifactorial degen-
erative joint disease characterized by articular cartilage erosion 
and destruction, inflammation of the synovium, osteoprolif-
eration of the joint edges, synovial hyperplasia and osteophyte 
formation at the joint margins (1). OA is associated with a 
loss of function of multiple diarthrodial joints in the body. 
Additionally, the related articular cartilage fibrosis, chaps, 
anabrosis and joint dislocation are major factors contributing 
to disability in the older population (2,3). Although various 
studies have examined the molecular mechanisms of OA, 
alterations in the process of endogenous urinary metabolite 
formation during OA have not yet been published from the 
perspective of metabolomics (4,5).

The discipline of metabolomics comprehensively examines 
changes in an organism's response to external processes under 
physiological and pathological conditions. This is achieved by 
observing how metabolite trajectories change over time when 
the biological system is stimulated in order to analyze differ-
ences in the metabolic fingerprint in different states (6,7). 
Several different types of analytic platforms are able to 
achieve reasonable coverage of the metabolome, including 
nuclear magnetic resonance, Fourier transform infrared 
spectroscopy, high‑ performance liquid chromatography/mass 
spectrometry and gas chromatography‑time of flight/mass 
spectrometry (GC‑TOF/MS) (8). Among these, GC‑TOF/MS 
is one of the most powerful and simple analytical platforms 
for achieving a comprehensive metabonomic analysis, with 
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high sensitivity and reproducibility (9). Urine is commonly 
used as the analysis sample for metabolomics as GC‑TOF/MS 
detection of urinary metabolomics has many advantages, such 
as being non‑invasive, sensitive and rapid  (10). Moreover, 
urinary metabonomic analysis is effective for monitoring the 
dynamic changes that occur during the progression of OA. 
Therefore, metabolomic methods ‘import’ the information 
from OA pathogenesis research to assess potential biomarkers 
that show disease‑specific changes that may be related to the 
physiological state of biological systems, which can be applied 
widely (11).

The aim of the present study was to determine changes in 
the urinary metabolic profile in rats with knee osteoarthritis 
using GC‑TOF/MS techniques to assess the perturbed metabo-
lites to elucidate the potential metabonomic pathogenesis of 
OA.

Materials and methods

Ethics statement. A total of 16 male Sprague‑Dawley rats 
(200±20 g; 7 weeks old; specific pathogen‑free grade) were 
purchased from the Experimental Animal Center of Anhui 
Medical University (Anhui, China). The experimental protocol 
was approved by the Committee on the Ethics of Animal 
Experiments of Anhui University of Chinese Medicine (Anhui, 
China; permit number: 2012AH‑038‑01). All surgery proce-
dures were performed under sodium pentobarbital anesthesia 
(2 ml/kg) and all efforts were made to minimize suffering.

Animal experimentation and sample collection. A total of 
16 rats were allowed free access to food and water and were 
housed individually in a facility at 18‑22˚C with 40‑60% 
humidity and a 12 h light/dark cycle. Following acclimatiza-
tion for one week, rats were randomly divided into the control 
(n=8) and knee osteoarthritis (KOA) model (n=8) groups. 
KOA group rats were injected with 20 µl of 4% papain and 
0.03 M L‑cysteine into the right knee on days 1, 3 and 7 to 
establish the rat models of KOA. Following 14 days, urine 
samples were collected over 12 h from all rats and stored at 
‑80˚C until analysis.

Drugs and reagents. Papain, L‑cysteine and urease from 
Canavalia  ensiformis (Jack bean) were purchased from 
Sigma‑Aldrich (Merck KGaA, Darmstadt, Germany). 
L‑2‑chlorobenzene alanine (103616‑89‑3) was purchased from 
Hemboug Biotechnology, Co., Ltd., (Shanghai, China) and 
N,O‑Bis(trimethylsilyl)trifluoroacetamide, including 1% v/v 
trimethylchlorosilane (TCMS) was purchased from REGIS 
Technologies, Inc., (Morton Grove, IL, USA).

Instruments for analysis. Gas chromatography chromatograph 
(Agilent 7890A; Agilent Technologies, Inc., Santa Clara, 
CA, USA); mass spectrometer (Leco Chroma TOF Pegasus 
4D; Leco, Co., St Joseph, MI, USA); and ‑80˚C Ultra‑Low 
Temperature Freezer (Thermo Fisher Scientific, Inc., Waltham, 
MA, USA).

Histopathology. Rats were anesthetized intraperitoneally with 
sodium pentobarbital (2  ml/kg; intraperitoneal perfusion, 
Sigma‑Aldrich; Merck KGaA). Blood was removed from the 

abdominal aorta to sacrifice the rats. Knee joints of each rat 
was fixed in 10% neutral formalin for 24 h at room tempera-
ture, then embedded in paraffin and cut into 4 µm sections. 
Paraffin‑embedded liver sections were deparaffinized with 
xylene and rehydrated using an ethanol gradient (100‑70% v/v). 
The sections were then stained with 0.5% (w/v) hematoxylin 
(5‑10  min) and eosin (1‑2  min) at room temperature for 
general observation. Cartilage specimens were fixed in 2.5% 
glutaraldehyde stationary liquid for 2 h at room temperature, 
dehydrated and embedded in an epoxy resin. Samples were 
then baked for 12 and 1 h in an oven at 45˚C and 65˚C, respec-
tively. Ultra‑thin (70 nm) sections were stained with toluidine 
blue for 30 min at room temperature. Finally, the sections 
were examined using a transmission electron microscope 
(JEM‑1200X; JEOL Ltd., Tokyo, Japan).

Sample preparation. A total of 100 µl from each sample was 
added to 1.5 ml Eppendorf tubes and combined with 10 µl 
of urease suspension (160 mg/ml in water). Samples were 
vortexed for 10 sec and subsequently incubated at 37˚C for 
1 h to decompose and remove excess urea, prior the addition 
of 0.35 ml of the extraction liquid (Vmethanol:Vchloroform, 3:1). 
L‑2‑chlorophenylalanine (50 µl) from 0.2 mg/ml stock in 
dH2O was added to act as an internal standard. All samples 
were vortexed for a further 10 sec. Samples were centrifuged 
for 10 min at 4,200 x g at 4˚C. Supernatant was transferred 
(~0.35 ml) into 2‑ml GC‑TOF/MS glass vials. Extracts were 
dried in a vacuum concentrator without heating and 80 µl 
methoxymethyl amine salt (dissolved in pyridine; final 
concentration, 20 mg/ml) was added into dried metabolites, 
prior to incubation at 37˚C for 2 h in an oven after mixing and 
sealing. Subsequently, 100 µl N,O‑Bis(trimethylsilyl)trifluo-
roacetamide (containing 1% TCMS; v/v) was added into each 
sample before sealing and incubation at 70˚C for 1 h. A total of 
10 µl standard mixture, composed of fatty acid methyl esters 
(C8‑C16, 1 mg/ml; C18‑C30, 0.5 mg/ml in chloroform) was 
combined with the sample and cooled to room temperature. 
Samples were thoroughly mixed prior to GC‑TOF/MS analysis.

GC‑TOF/MS analysis. An Agilent 7890 gas chromatograph 
system, coupled with a Pegasus high throughput time‑of‑flight 
mass spectrometer, was used for GC/TOF MS analysis. 
A DB‑5MS capillary column, coated with 5% diphenyl 
cross‑linked with 95% dimethyl polysiloxane (inner diameter, 
30 m x 250 µm; film thickness, 0.25 µm; J&W Scientific Inc., 
Folsom, CA, USA) was used. A 1‑µl aliquot of the analyte 
was injected in splitless mode. The carrier gas utilized was 
helium and the front inlet purge flow was 3 ml/min. There 
was agas flow rate of 20 ml/min through the column and the 
initial temperature was maintained at 50˚C for 1 min, which 
was raised to 330˚C at a rate of 10˚C/min‑1 and subsequently 
maintained at 330˚C for 5 min. The temperatures of injection, 
transfer line and ion source were 280, 280 and 220˚C, respec-
tively, and the electron impact mode consisted of ‑70 eV of 
energy. Full‑scan mode, with an m/z range of 85‑600, a rate of 
20 spectra per second and a solvent delay of 366 sec, allowed 
mass spectrometry data to be obtained.

Statistical analysis. Raw peaks extraction, data baseline 
filtering and calibration of the baseline, peak alignment, 
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deconvolution analysis, peak identification and integrated 
analysis were all performed using Chroma TOF4.3X soft-
ware and Fiehn Rtx‑5 database (both Laboratory Equipment 
Corp., Hayward, USA)  (12). Principal component analysis 
(PCA), partial least squares discriminant analysis (PLS‑DA) 
and orthogonal partial least‑squares discriminant analysis 
(OPLS‑DA) were utilized to analyze the resulting data, 
using demonstration Simca Software (V13.0, Umetrics; 
Satorius Stedim Biotech, Umea, Sweden). Statistical analysis 
was performed using one‑way analysis of variance and 
Student‑Newman‑Keul's testing, using SPSS 17.0 software 
(SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Histological changes. In the knee joints of the control 
group, H&E staining exhibited an orderly monolayer of 
synovial lining cells and cartilage, with an intact tidemark, 
normal cartilage cells, and no inflammatory cell infiltration 
or collagen fiber hyperplasia. In contrast, the joints in the 
KOA group indicated clear hyperplasia of the synovial lining 
cells, which was increased to three or four layers and gradual 
inflammatory cell infiltration and collagen fiber hyperplasia 
was observed.

Tissue ultrastructure in the control group showed that 
the cartilage cells were regularly arranged, with uniformly 

distributed central matrix fibers. Synovial cells exhibited a 
decreased number of rough endoplasmic reticulum and mito-
chondria in their cytoplasm, with microvilli protruding from 
the cell surface. In the KOA group, cartilage cells were irregu-
larly shaped with a sparse matrix of plain fibers and synovial 
cells contained an increased number of rough endoplasmic 
reticulum in their cytoplasm. Furthermore, synovial cells 
exhibited mitochondrial degeneration with the appearance of 
some cavitation, as well as fewer microvilli protruding from 
the cell surface (Fig. 1).

Metabolite assignments with GC‑TOF/MS spectroscopy. 
The total ion current (TIC) was expressed in response to all 
of the ions that contribute to the chromatogram, each peak of 
which represents a specific molecule (13). To investigate the 
differences between the metabolic spectra, the TIC of the 
metabolic spectra was analyzed. Chroma TOF4.3X software 
was used to correct the 1,144 data points by filling in blank 
entries, eliminating noise and subsequently centralizing to the 
interior labels. This resulted in the identification of 914 meta-
bolic compounds with several distinct differences between the 
control and KOA spectra (Fig. 2).

PCA. PCA is a method to reduce the dimensionality of 
a dataset. Multiple variation variables are reduced into a 
few principal components that describe the structure of the 
original dataset, where the principal components of each 

Figure 1. Histological examination of knee cartilage on knee osteoarthritis rats using H&E staining (magnification, x400) and electron microscopy (magnification, 
x20,000). (A and B) H&E staining. (C and D) Electron microscope. A and C: control group; B and D: model group. H&E, hematoxylin and eosin.
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sample represent the variations that best explain the entire 
sample dataset, which may be used to visually describe the 
changes in the metabolic patterns of the biological system in 
different physiological and pathological states (14,15). In the 
present study, SIMCA‑P+ software was used to recognize and 
analyze the multivariate patterns in the centralized data. PCA 
was used for mean‑centered scaling to visualize the data and 
present the distribution of samples. Control and KOA groups 
were not completely separated due to disturbances by various 
factors; therefore, large differences were detected between the 
groups (Fig. 3).

PLS‑DA. To further separate the groups, PLS‑DA was used. 
PLS‑DA provides a deeper analysis of the main metabolic 
characteristics of biological samples in different states and 
in the present study, it identified the main variables that 
distinguish the sample principal component space, presenting 
the potential biomarkers that are characteristic of the 
different biological states (16). A PLS‑DA text model, using 
leave‑one‑out cross validation with R2 and Q2 that represent 
the predictable variables and predictability of the model, were 
used to judge the validity of the model. The data indicated 
that the control and KOA groups were entirely separate after 
applying the PLS‑DA (R2=0.999; Q2=0.875), which revealed 
the stability, fit and predictivity of the mathematical model. 
Subsequently, the texting validity was assessed again by 
rearranging the experiment randomly through changing the 
sort order of the classification variable, Y, and randomly 
assigning Q2 up to 200 times. Values of R2=0.696 and 
Q2=‑0.293 were obtained, which indicated that the model was 
reliable and not over‑fit. The results of this analysis are shown 
in Fig. 4.

OPLS‑DA. To further identify differences between the 
control and KOA groups, an orthogonal model was used 
and the first and second principal components based on 
OPLS‑DA were analyzed (17). The two groups were sepa-
rated completely after OPLS‑DA (Fig. 5), which suggested 
that several potential biomarkers in the urine were clearly 

altered in the KOA group when compared with the control 
group. Loading plots revealed the distribution of variables 
and identified differences in the compound present in the 
samples or groups based on those variables (18). Each dot in 
the loading plot represented a metabolite and the dots near 
the center indicated smaller differences between the groups 
than those shown by dots far away from the center. The red 
dots indicated the 23 potential biomarkers identified in the 
present experiment.

Identification of endogenous metabolites. Significant differ-
ences between variables associated with their specificity as 
potential biomarkers were revealed, using variable importance 
projections of >1 with Student's t‑tests (P<0.05; Table  I). 
The retention time was used to determine the mass spectro-
gram for each metabolite and the Fiehn Rtx‑5 database was 
used to authenticate the general structure of the identified 
potential biomarkers (19). Based on that analysis, multiple 
components were revealed as potential biomarkers, including, 
alanine, α‑ketoglutarate, asparagine, maltose and glutamine, 
all of which were identified to be significantly altered in the 
KOA group when compared to the control group (P<0.05; 
Table I).

Network analysis. To investigate potential biomarkers that 
may be involved in metabolic pathways related to OA and 
to visualize the connections between the various pathways, 
physiological, biochemical and pathophysiological data were 
combined with the Human Metabolome Database (http://www.
hmdb.ca/about) and observed. Together, these relevant litera-
tures, which were domestically and internationally resourced, 
provided quantitative and metabolic information on the 
organism metabolites. The identified potential biomarkers 
for KOA were revealed to predominantly be connected with 
amino acid metabolism, energy metabolism, nucleic acid 
metabolism, fatty acid metabolism and vitamin B6 metabolism 
(Fig. 6).

Figure 2. Gas chromatography‑time of flight/mass spectrometry total ion 
current chromatograms (1144 peaks) of rat urine samples obtained from the 
control group and model groups. Each peak represents a specific molecule. 
NC, control group; OA, osteoarthritis group.

Figure 3. Principal component analysis score plot of rat urine samples 
obtained from the control and model groups. Control and knee osteoarthritis 
groups are not completely separated due to disturbances by various factors, 
thus large differences are indicated between the groups. NC, control group; 
OA, osteoarthritis group.
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Discussion

OA is a chronic and progressive joint disease that causes 
pathological characteristics, including articular cartilage 
erosion and destruction and synovial hyperplasia, particularly 
in the knee joint, which eventually results in the complete 
loss of joint function (20). Prior studies have indicated that 
injecting papain into the joint cavity is useful in constructing 
a KOA model, which identifies similar pathological alterations 
that are observed with OA in humans (21,22). In addition, the 
KOA model may be established quickly, has a high success 
rate and is simple to perform, which explains why it is one 
of the classical models for investigating the pathogenesis 
of OA and drug screening  (23,24). The present study 
revealed that the synovial lining of the knee joint contained 
distinct collagen fiber hyperplasia, along with substantial 

inflammatory cell infiltration, which indicated the successful 
induction of KOA.

Genomics, proteomics and metabonomics together 
constitute ‘systems biology’, which is a discipline used to 
qualitatively and quantitatively analyze the small molecule 
metabolites of cells at specific times and under certain 
conditions, in order to describe the changes in the endog-
enous biological metabolites as a whole and their response 
to internal and external stimuli (25,26). In the present study, 
GC‑TOF/MS was used from the perspective of metabo-
nomics to explore the pathogenesis of OA. A total of 23 
potential biomarkers were identified, including alanine, 
α‑ketoglutarate, asparagine, maltose and glutamine, all of 
which may be correlated to amino acid metabolism, energy 
metabolism, fatty acid metabolism, vitamin B6 metabolism 
or nucleic acid metabolism (27‑29).

Figure 4. (A) Score plot of PLS‑DA model was obtained from the control group and KOA model group and (B) two hundred permutations were performed, 
which were plotted according to the resulting R2 and Q2 values: R2=0.696 and Q2=‑0.293. KOA, knee osteoarthritis; PLS‑DA, partial least squares discriminant 
analysis; NC, control group; OA, osteoarthritis group.

Figure 5. (A) Orthogonal projections to latent structures‑discriminant analysis score plot of rat urine samples obtained from the control and knee osteoarthritis 
model groups. (B) Each dot in the loading plot represents a metabolic substance of the most influential variables, according to their respective contributions 
to the discrimination. Red dots indicated the potential biomarkers. OPLS‑DA, orthogonal partial least‑squares discriminant analysis; NC, control group; OA, 
osteoarthritis group.
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Glutamine is a non‑essential amino acid that is found in 
abundance throughout the body and is involved in multiple 
metabolic processes. It is synthesized from glutamic acid 
and ammonia (30). N‑carbamylglutamate is an azyl product 
of glutamate through carbamylation. Urocanic acid is 
a deamination (breakdown) product of histidine that is 
related to oxidative damage as a direct scavenger of reactive 
oxygen species (ROS) (31). 5‑aminovaleric acid is a type of 
ornithine that participates in the urea cycle through amino 
acid catabiosis and by offering an amidogen to the urea 
cycle (32). Asparagine is generated from oxaloacetic acid by 
deamination, which then enters the tricarboxylic acid (TCA) 
cycle  (33). Previous studies have revealed that hydroxyl 
radicals, ·OH, are important ROS in OA, which possess 
the fastest reactive chemical properties (34‑35). Hydroxyl 
radicals may react with all types of amino acids, disrupting 
the ordered structure that produces amino acid chains of 
proteins and inducing collagen degradation and destruction 
of articular joint function in OA (36). In the present study, 
the contents of glutamine, N‑carbamylglutamate, urocanic 
acid, 5‑aminovaleric acid and asparagine were clearly 
decreased in the urine samples from the KOA group of 
rats, compared with that of the control group, which may be 
related to the generation of ·OH as this disrupts the structure 
of amino acids.

Alanine is one of the 20 different types of amino acids 
that constitute the proteins of the human body. Through 
the alanine‑glucose cycle, alanine participates in the lactic 
acid‑glucose cycle and subsequently enters the TCA cycle 
to regulate energy metabolism  (37). In cases of chronic 
inflammation, such as joint inflammation in OA, lactic 
acid is a characteristic substance for detection that is also a 
pathogenic factor in the transformation of cells and develop-
ment of autoantigenicity. When the lactic acid concentration 
becomes elevated an organism enters acidosis, thus further 
inducing the development of inflammation  (38). In the 
present study, increased alanine content in the KOA group 
suggested an abnormal amino acid metabolism occurring in 
those animals.

Inflammatory factors in OA inhibit activation of insulin 
signaling, glycolysis and the pentose phosphate pathway, thereby 
increasing blood glucose levels  (39). Phosphoenolpyruvate 
in the glycolysis pathway and erythrose 4‑phosphate in the 
pentose phosphate pathway are synthesis products of shikimic 
acid that may be broken down into chorismic acid to generate 
1,4‑dihydroxy‑naphthoic acid (40). N‑acetyl‑D‑galactosamine, 
trehalose, gentiobiose and xylose provide energy for the 
organism through the pentose phosphate and glycolysis 
pathways (41,42). Maltose is a primary disaccharide in the 
human diet, formed from two units of glucose joined with 

Table I. Biomarkers and change trends of KOA rats in each group.

No.	 VarID	 Possible compounds	 RT	 VIP	 P‑valuea

  1	 83	 Alanine	   7.9005	 3.1979	 0.0099
  2	 317	 Tartronic acid	 11.8798	 2.8602	 0.0061
  3	 383	 Aminomalonic acid	 12.9363	 1.3812	 0.0435
  4	 439	 Cytosin	 13.7735	 3.2025	 0.0078
  5	 467	 α ‑ketoglutaric acid	 14.2475	 1.2320	 0.0256
  6	 504	 Asparagine	 14.7184	 1.1209	 0.0340
  7	 516	 5‑aminovaleric acid	 14.8493	 1.0065	 0.0218
  8	 535	 Xylose	 15.1326	 3.3137	 0.0007
  9	 581	 Glutamine	 15.8341	 1.2421	 0.0094
10	 609	 Diglycerol	 16.3407	 2.1399	 0.0181
11	 614	 D‑(glycerol 1‑phosphate)	 16.3322	 3.0259	 0.0054
12	 639	 Shikimic acid	 16.7887	 1.4643	 0.0383
13	 657	 Homogentisic acid	 17.1321	 3.1284	 0.0038
14	 659	 N‑carbamylglutamate	 17.1346	 2.6190	 0.0063
15	 668	 2,8‑dihydroxyquinoline	 17.2756	 1.5259	 0.0256
16	 734	 4‑pyridoxic acid	 18.1958	 2.3907	 0.0072
17	 744	 D‑galacturonic acid	 18.4139	 3.3468	 0.0001
18	 776	 Urocanic acid	 18.9242	 3.2128	 0.0027
19	 806	 N‑acetyl‑D‑galactosamine	 19.3819	 2.6484	 0.0021
20	 865	 1,4‑dihydroxy‑2‑naphthoic acid	 20.4740	 1.9413	 0.0111
21	 1063	 Trehalose	 24.8046	 1.8507	 0.0059
22	 1076	 Maltose	 25.0642	 2.6504	 0.0002
23	 1091	 Gentiobiose	 25.4649	 1.0073	 0.0052

Screening of 1,166 peaks corresponding to the number of substances in the serum after VarID was used to import the software. aModel group 
vs. control group. RT, retention time of the substance; KOA, knee osteoarthritis; VIP, variable importance projection.
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an alpha linkage. It is the second member of an important 
biochemical series of glucose chains (43). In the present study, 
the contents of shikimic acid, 1,4‑dihydroxy‑naphthoic acid, 
N‑acetyl‑D‑galactosamine, trehalose, gentiobiose and xylose 
were decreased, while the maltose content was increased in 
the KOA group when compared with the control group, which 
may be related to the inhibition of the glycolysis and pentose 
phosphate pathways and increased blood glucose levels.

Tartronic acid and aminomalonic acid are two products 
of malonic acid, the structure of which is similar to succinic 
acid (44). Malonic acid is the archetypal example of a competi-
tive inhibitor, which acts against succinate dehydrogenase 
(complex II) in the respiratory electron transport chain, thus 
mediating the TCA cycle (45). Oxidase activity was decreased 
in the present study during inflammatory damage caused by 
inflammatory factors and such incomplete oxidation may lead 
to lactic acid, pyruvic acid and α‑ketoglutaric acid accumula-
tion in the inflammation center. Furthermore, α‑ketoglutaric 
acid may also be modified to succinyl‑coenzyme A (succinyl 
CoA) through oxidation and decarboxylation. Succinyl‑CoA 
produces further succinic acid and participates in the TCA 
cycle. Homogentisic acid is an intermediate of the metabolic 
breakdown of tyrosine and phenylalanine, which is found in 
the urine in cases of alkaptonuria (46). Mitochondrial dysfunc-
tion has been demonstrated in OA and the vast majority of 
enzymes that participate in TCA are located in the mito-
chondria of the cartilage cells, which may result in metabolic 
disturbance and abnormal metabolic intermediates from 

the TCA (47). The present study revealed that the content of 
α‑ketoglutaric acid and homogentisic acid were increased and 
tartronic acid and aminomalonic acid were decreased in the 
KOA group, suggesting a possible association with abnormal 
energy metabolism.

2,8‑hydroxyquinoline is a product of pyruvate metabolism 
that is further broken down into quinolinic acid. Quinolinic 
acid is an anti‑inflammatory factor that exhibits catabolic, 
anti‑microbial, anti‑tumor, anti‑fungal and anti‑cancer 
effects (48). Oxygen depletion is one of the major features of 
OA, which prevents 2,8‑hydroxyquinoline from generating 
quinolinic acid, thus aggravating OA‑related inflammation. 
This interpretation is consistent with the present results, where 
the content of 2,8‑hydroxyquinoline was decreased in the 
KOA group when compared with the control group.

Glycerol is an important component of triglycerides 
(fats and oils) and phospholipids, which are generated by 
D‑(glycerol‑1‑phosphate). The glycerol component may be 
converted into glucose by the liver to provide energy for 
cellular metabolism. D‑(glycerol‑1‑phosphate) is one of the 
phosphoric acid derivatives of glycerol and is generated from 
dihydroxyacetone phosphate by glycerophosphate dehydro-
genase during glycolysis. Inflammatory factors inhibit the 
activation of insulin signaling and the glycolysis pathway 
in OA, resulting in decreases of D‑(glycerol‑1‑phosphate) 
(49,50). However, fat mobilization is accelerated, leading to 
the induction and activation of phospholipase C during OA, 
which functions as a secondary messenger. Glycerol formed 

Figure 6. Pathway network analysis. Metabolites in the red frame depict those that are increased in the KOA model group when compared to the control group; 
metabolites in the green frame depict those that are decreased in the KOA model group when compared to the control group. Both denote the endogenous 
metabolites identified which are associated with various possible metabolic pathways. KOA, knee osteoarthritis; TCA, triglycerides; UTP, uridine‑triphosphate; 
ATP, adenosine triphosphate; CTP, cytidine triphosphate; OAA, oxaloacetate; E4P, erythrose 4‑phosphate; DMAP, N,N‑Dimethylpyridin‑4‑amine; succinyl 
CoA, Succinyl‑Coenzyme A; *P<0.05 vs. control, **P<0.01 vs. control.
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from diglyceride also acts as a secondary messenger and 
levels of glycerol are increased during OA, further inducing 
the production of inflammatory factors (51). In the present 
study, the contents of diglycerol and D‑(glycerol‑1‑phosphate) 
were increased in the KOA group when compared with the 
control, which may be associated with disorders of fatty acid 
metabolism.

4‑pyridoxic acid is the catabolic product of vitamin B6. 
Together with vitamin B6, glycogen phosphorylase accelerates 
the transformation of glycogen into glucose (52). Inflammatory 
factors during OA inhibit the activation of insulin signaling, 
increasing blood glucose levels. In the present study, 4‑pyridoxic 
acid content was increased in the KOA group when compared 
with the control group. Increases in 4‑pyridoxic acid content 
may be related to disorders in vitamin B6 metabolism.

Inflammation during OA and ROS can lead to degraded 
bases resulting from nucleic acids attacked by the free radicals 
that induce collagen degradation, which may subsequently 
destroy joint function (53). Cytosine is a pyrimidine base that 
is a fundamental unit of nucleic acids and is involved in the 
synthesis and metabolism of nucleic acids. Compared with 
the control group, the cytosine content was decreased in the 
KOA group, which may be related to disorders of nucleic acid 
metabolism.

In conclusion, the metabonomic pathogenesis of OA may 
be related to disorders of amino acid metabolism, energy 
metabolism, fatty acid metabolism, vitamin B6 metabolism 
and nucleic acid metabolism.
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