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Abstract. Osteoporosis is a common skeletal disorder charac-
terized by a decrease in bone mass and density. The peak bone 
mass (PBM) is a significant determinant of osteoporosis. To 
gain insights into the indicating effect of PBM to osteoporosis, 
this study focused on characterizing the PBM networks and 
identifying key genes. One biological data set with 12 mono-
cyte low PBM samples and 11 high PBM samples was derived 
to construct protein-protein interaction networks  (PPINs). 
Based on clique-merging, module-identification algorithm was 
used to identify modules from PPINs. The systematic calcu-
lation and comparison were performed to test whether the 
network entropy can discriminate the low PBM network from 
high PBM network. We constructed 32 destination networks 
with 66 modules divided from monocyte low and high PBM 
networks. Among them, network 11 was the only significantly 
differential one (P<0.05) with 8 nodes and 28 edges. All genes 
belonged to precursors of osteoclasts, which were related to 
calcium transport as well as blood monocytes. In conclusion, 
based on the entropy in PBM PPINs, the differential network 
appears to be a novel therapeutic indicator for osteoporosis 
during the bone monocyte progression; these findings are 
helpful in disclosing the pathogenetic mechanisms of osteo-
porosis.

Introduction

Osteoporosis is a common skeletal disorder characterized 
by a decrease in bone mass and density, which results in an 
increased risk of fractures among the elderly  (1). Women, 
especially postmenopausal women, are more susceptible 
to osteoporosis comparad to other groups. Bone mass and 
strength achieved at the end of the growth period is defined 
as peak bone mass (PBM), which is a significant determinant 

of osteoporosis (2,3). It is regarded that an increase of PBM 
by one standard deviation would reduce the fracture risk by 
50% (4).

Peripheral blood monocytes can serve as early precursors of 
osteoclasts (5-7). A growing body of literature has explored that 
blood monocytes deliver many kinds of factors for bone metab-
olism, such as interleukin-1 and tumor necrosis factor-α (8). 
Osteoclasts in peripheral skeleton (9) and the central skeleton 
come from circulating monocytes (10). Substantial research  
has focused on the effect of circulating monocytes on patho-
genesis of osteoporosis in young and middle aged adults.

Research in systems biology has shown that variety in the 
activity of gene network and frame structure play an important 
role in the disease progression (11,12). Network-based systems 
biology approaches have emerged as powerful tools for analysis 
of molecular mechanisms of diseases (13-16). An integrated 
network method was applied to predict conserved regulators 
related to high and low viral pathogenicity, leading to thera-
peutic targets for intervention (17). In addition, recent study 
confirmed that signaling entropy computable from integrating 
a gene expression profile with a protein-protein interaction 
network (PPIN), correlate with phenotypic plasticity and is 
increased in disease compared to normal controls (18). Based 
on information theory, entropy opens new perspectives for gene 
inference methods and increases the accuracy of PPINs (19). 
Jin et al (20) compared the IAV-induced inflammatory regula-
tory networks and normal cellular networks by integrating the 
data from the highly pathogenic avian H5N1 and the pandemic 
H1N1 with PPINs, and these findings provide significant 
hypotheses for further exploring the molecular mechanisms of 
infectious diseases and developing control strategies.

To gain insights into the indicating effect of PBM to osteo-
porosis, this study focused on characterizing the PBM networks 
and identifying key genes by combining high-throughput data 
and computational techniques. In PPINs, we searched for genes 
functionally significant for PBM variation, which might were 
related to circulating monocytes in human premenopausal 
subjects. The findings are expected to provide effective insights 
for further exploring the pathology mechanisms of osteoporosis 
and obtaining better treatment strategies.

Materials and methods

Datasets and construction of PPINs. One biological data set 
E-GEOD-7158 of osteoporosis was derived from the Gene 
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Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) (3). There were 12 monocyte low PBM samples 
and 11 high PBM samples in the total 23 samples. The plat-
form is A-AFFY-44-Affymetrix GeneChip Human Genome 
U133 Plus 2.0 (HG-U133 Plus 2.0). The Linear Models for 
Microarray Data (LIMMA) was then used to preprocess 
data. After quantile data normalization performed by robust 
multi-array average (RMA) (21), 20,545 genes were obtained.

The human PPIN was collected from the Retrieval of 
Interacting Genes (STRING; version 9.0) (22). Only edges 
whose correlations are greater than the threshold δ were 
chosen, and set at 0.8. A total of 8,590 nodes and 53,975 
protein-protein interaction  (PPI) sets remained. Then we 
constructed anosteoporosis PPI subnet after getting intersec-
tion with expression profiles and the PPIN, which contained 
7,953 genes and 48,778 PPI sets.

Identification of modules and paired comparison. Using the 
human subnet as a backbone, we infer a re-weighted PPIN with 
expression and mutation profiles of monocyte low PBM and 
high PBM in osteoporosis. Every side of the constructed PPIN 
was assigned with absolute value of Spearman correlation coef-
ficient of every interaction according to gene expression data.

Based on clique-merging, module-identification algorithm 
was used to identify modules from PPINs (23-25). We found 
all maximal cliques from low and high PBM PPIN, and the 
nodes <4 or >20 were filtered out. Then 8,002 maximal cliques 
in osteoporosis were obtained.

We identified the set C of all maximal cliques of size at 
least k in the two groups using a fast depth-first search with 
pruning-based algorithm (CLIQUES). Next, we calculated its 
weighted interaction density score (C) as (equation 1):

We ranked these cliques in descending order of their 
score (C) (23). A predefined overlap-threshold t0=0.5 was set to 
go through the list repeatedly. The modules were gathered by 
merging highly overlapping cliques. Accordingly, we captured 
the effect of differences in interaction weights between mono-
cyte low and high PBM group via the weighted density-based 
ranking of cliques.

The set of disrupted or altered module pairs were identified 
by modeling it as a maximum weight bipartite matching. The 
module correlation density was calculated between low and 
high PBM group as follows (equation 2):

Characterizing networks from network entropy. Destination 
networks were constructed with modules of common genes of 
monocyte low and high PBM groups.

Network entropy, one of metrics of the inflammatory 
network, was detected in osteoporosis (20). The local network 
entropy of a node i, denoted Si, is defined as (equation 3):

In which, kj is the degree of node j, N(i) is the set of 
neighbor nodes of node i and pij defines a stochastic prob-
ability matrix on the PBM network, which is defined by 
(equation 4):

cij is the PCC between protein i and j.

The global entropy of destination networks, denoted S, is 
defined as follows (equation 5):

n is the total number of nodes in the destination networks, 
and Ci is the degree centrality of node i, which is defined by 
(equation 6):

The differential network entropy, denoted ΔSi, is defined as 
follows (equation 7):

Si
I, SN

i  is the local network entropy of node i in low and high 
PBM networks.

Significance test. The non-parametric one-tailed Wilcoxon 
rank sum test was explored to judge whether the distributions 
of the global entropy of low and high PBM networks were 
significantly different (20). We first permutated sample labels 
and recalculated the global entropy of the low PBM network, 
which was repeated L times. The significance level (P-value) 
of the tests was calculated by {#l|SI

l ≤SN
o  bs for l =l,...,L}/L. SI

l 
and SN

o  bs are the global entropy of the low PBM network at the 
1st time-point and of the high PBM network before this test, 
respectively. A P-value <0.05 was used to define significantly 
differential network in this study.

Animals and modeling. A total of 60 female SD rats were 
purchased from Hebei Medical University Animal Center. All 
rats were housed at room temperature with 12 h light-dark cycle, 
and fed with normal chow diet and free access to water. The rat 
ovariectomy experiment was approved by the Ethics Committee 
of Hebei Cangzhou Central Hospital, (Cangzhou, China).

After a week of feeding, all rats were randomly and on 
average separated into 2 groups in which rats were ovariecto-
mized and sham operated at the age of 6 months. Three months 
after surgery, bone mineral density examination was used to 
verify if the model was successfully established. All rats in 
ovariectomized and sham groups were euthanized via exposure 
to gradually increasing concentrations of isoflurane and carbon 
dioxide gas (30% gradual-fill chamber vol/min),  blood was 
drawn from the abdominal aorta of rats in each group after 
the blood pressure and the right femur and then the right femur 
and third lumbar spine were quickly removed. The number 
of animals used and their suffering was minimized. Surface-
attached soft tissue were removed, eardrums, vertebral bows 
and other accessories were retained. The obtained bone tissue 
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was packaged by gauze soaked with saline, and kept at -80˚C 
in a refrigerator. Dual-energy X-ray absorptiometry (Lunar-
DPX-IQ; GE Medical Systems, Madison, WI, USA) was used 
to detect bone density of right femur and third lumbar vertebra.

Reverse transcription-quantitative PCR (RT-qPCR). Venous 
blood sample of models were collected and total RNA was 
extract by TRIzol RNA kit (Invitrogen; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) according to the 
manufacturer's instructions. The concentration and purity of 
total RNA were measured by ultraviolet spectrophotometer. 
Reverse transcription into cDNA was then conducted by a 
reverse cDNA transcription kit (Takara Bio, Inc., Otsu, Japan). 
SYBR Ex Script RT-PCR kit (Takara Bio, Inc.) was used to 
detect the expression of target genes and the primers used in 
this study is shown in Table I.

Statistical analysis. GraphPad Prism version 5 software 
(GraphPad Software, Inc., La Jolla, CA, USA) was used for 
statistical analyses. All data were shown as mean ± standard 
deviation (SD). For experiments with two groups, t-test was 
performed. P<0.05 was considered to indicate a statistically 
significant difference. Experiments were repeated with a 
minimum of 3 times for each condition.

Results

Identification of modules. We used the expression profile 
data to construct PPINs for the low and high PBM group, 
respectively. Based on merging highly overlapping cliques, 
we captured the effect of differences in interaction weights 
between monocyte low and high PBM group via the weighted 
density-based ranking of cliques. After the simplification of the 
modules, 19 modules in low PBM network and 38 in high PBM 
network were obtained. Then module correlation density was 
calculated to identify sets of disrupting or altering module pairs 
between the two networks. A total of 66 modules were identi-
fied by modeling it as a maximum weight bipartite matching.

Characterizing differential networks from network entropy. 
We constructed 32 destination networks with modules divided 

from monocyte low and high PBM networks. The charac-
teristics of 32 networks are shown in Table Ⅱ. The network 
entropy was ranged from -3.09 to 0.87 and the max value 
of network entropy of PBM was 0.87 in network 11. Among 
them, network 11 was the only significantly differential one 
with P-value of 0.047 (P<0.05). Fig. 1 shows the differential 
PBM network with 8 nodes and 28 edges. All genes belonged 
to precursors of osteoclasts, which were related to calcium 
transport as well as blood monocytes. It indicated that the 
network was a novel therapeutic indicator for osteoporosis 
during the bone monocyte processes.

Bone density of osteoporosis models. As shown in Fig. 2, 
3 months after operation, bone density of right femur and third 
lumbar vertebra in the osteoporosis group was significant 

Figure 1. The significantly differential network divided from PBM PPI. The 
differential PBM network with 8 nodes and 28 edges, a total of 8 genes, 
PSMA2, PSMB1, PSMC1, PSMC4, PSMD5, PSMD7, PSMD8 and PSMD11, 
were identified in both monocyte low and high PBM networks. They belonged 
to precursors of macropain, which were related to calcium transport as well 
as blood monocytes. PBM, peak bone mass; PPI, protein-protein interaction.

Table IΙ. The characteristics of 32 destination networks.

	 Network			   Network
No.	 entropy	 P-value	 No.	 entropy	 P-value

  1	 0.321978764	 0.284	 17	 0.084248171	 0.143
  2	 -3.08756042	 0.802	 18	 -0.054693437	 0.838
  3	 -1.891414263	 0.873	 19	 -0.275293865	 0.783
  4	 -0.137286478	 0.538	 20	 0.010982264	 0.054
  5	 -0.031619061	 0.713	 21	 -0.054693437	 0.838
  6	 -0.117506467	 0.950	 22	 -0.054693437	 0.838
  7	 -0.315852579	 0.621	 23	 0.010982264	 0.054
  8	 -0.712615159	 0.874	 24	 -0.036448373	 0.578
  9	 -0.002127065	 0.529	 25	 -1.187984011	 0.590
10	 -0.628285421	 0.749	 26	 -0.005631988	 0.564
11	 0.87169601	 0.047	 27	 -0.002146052	 0.601
12	 0.039361424	 0.342	 28	 0.058539161	 0.104
13	 0.049041668	 0.440	 29	 0.010982264	 0.054
14	 -0.034142173	 0.594	 30	 -1.195662489	 0.753
15	 -0.034142173	 0.594	 31	 -1.195662489	 0.753
16	 -0.054693437	 0.838	 32	 0.058539161	 0.104

Table Ι. The primer sequences for the amplification of target 
genes.

Genes	 Sequences

PSMD7	 5'-ATGGCACCGGCTCCGGACAG-3'
	 5'-ATGACCAGCACTGGAGACAC-3'
PSMC1	 5'-TGCTGGTCCCAGAGTCCTTGT-3'
	 5'-GGGCTAGAGAACTGCTCCGAT-3'
PSMA2	 5'-GTCGGATCCACCGTCAGCATGTCTG-3'
	 5'-GTCCTCGAGTCACTGGATTGCAGC-3'
PSMB1	 5'-TTGCTGCAATGCTGTCTACC-3'
	 5'-CTCTTTGGTCACGATGCAGA-3'
GAPDH	 5'-CAAGTTCTCCGCCGATGTGA-3'
	 5'-GAACACGCCTGTGCCCTCAA-3'
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lower than that in the sham operated group (P<0.05). The 
result showed that the model was successfully established.

Expression of target genes in osteoporosis models. The results 
of RT-qPCR showed that compared with sham controls, the 
expression of target genes in osteoporosis was obviously 
increased (Fig. 3). The results indicated that these precursors 
of osteoclasts, such as PSMD7, PSMC1, PSMA2 and PSMB1, 
are novel therapeutic indicators for osteoporosis during the 
bone monocyte progression.

Discussion

Recently genome-wide gene expression profiles and PPIs hold 
the major promise to uncover the biological progression, which 
are subsequently pivotal in getting across molecular mecha-
nisms of diseases  (26). Based on the landscape, functional 
network entropy can be readily detected to facilitate the valu-
able application of PPIs on disease research. Previous studies 
have revealed that increased entropy appears to be a hallmark of 
cancer systems (27,28). Thus we utilized the previous hypothesis 
that the network entropy could discriminate the inflammatory 
network from the normal network (20). The systematic calcula-
tion and comparison were performed to test whether the network 
entropy can also discriminate the low PBM network from high 
PBM network. By applying a significance test for the difference 

in global network entropy of low and high PBM networks, we 
found the global network entropy of PBM networks is signifi-
cantly differential (P<0.05). The result claimed that the network 
entropy provided good discrimination between low and high 
PBM networks. Moreover, this method can serve as a significant 
foundation for further exploring the molecular mechanisms of 
other diseases and developing control strategies.

One unique advantage of the present method compared 
with custom networks identifying analysis is that the entropy 
performs better than other topological metrics of the network in 
characterizing the inflammatory disease, which was detected 
by the Network Analyzer plug-in in Cytoscape  (20,29). 
Thereby, the significantly different network we captured was 
more valuable and promising in understanding molecular 
mechanisms of diseases and reliable in therapeutic options.

Identifying key genes and modules from PPINs is of 
great help for uncovering the biological functions of genes 
in networks (30,31). In the present study, a total of 8 genes, 
PSMA2, PSMB1, PSMC1, PSMC4, PSMD5, PSMD7, PSMD8 
and PSMD11, were identified in both monocyte low and high 
PBM networks. They belonged to precursors of macropain, 
which were related to calcium transport as well as blood 
monocytes. In a previous study, the surplus/PSMD5 was 
found to inhibit the assembly and activity of 26S proteasome 
in human disease  (32). Importantly, neuronal activity and 
calcium/calmodulin-dependent protein kinase II could regu-
late the expression of proteasome (33). Intracellular calcium 
mobilization regulates the activity of 26S proteasome during 
the metaphase-anaphase transition in meiotic cell cycle (34). 
At the same time, proteasome inhibitor lactacystin hinders the 
calcium homeostasis of dopamine neurons (35). Similar results 
were also obtained in this study, the results of RT-qPCR in this 
study showed that compared with sham controls, the expres-
sion of target genes in osteoporosis were obviously increased. 
In other words, the method of network entropy could be used 
to detect differential networks as indicator of disease. These 
8 genes may play important roles in controlling inflammation 
of the osteoporosis. It suggested that the network is a novel 
therapeutic indicator for osteoporosis during the bone mono-
cyte progression. These findings are helpful in disclosing the 
pathogenetic mechanisms of osteoporosis.
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