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Abstract. Biotransformation is an enzyme‑catalyzed 
process in which the body converts endogenous compounds, 
xenobiotics and toxic substances into harmless or easily 
excreted metabolites. The biotransformation reactions are 
classified as phase I and II reactions. Uridine 5'‑diphospho 
(UDP)‑glucuronosyltransferases (UGTs) are a superfamily of 
phase II enzymes which have roles in the conjugation of xenobi-
otics or endogenous compounds, including drugs and bilirubin, 
with glucuronic acid to make them easier to excrete. The 
method the human body uses to achieve glucuronidation may 
be affected by a large interindividual variation due to changes 
in the sequences of the genes encoding these enzymes. In the 
last five years, the study of the genetic variants of the UGTs at 
a molecular level has become important due to its association 
with several diseases and the ability to predict adverse events 
due to drug metabolism. In the present review, the structure and 
the prominent genetic variants of the UGT1A subfamily and 
their metabolic and clinical implications are described.
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1. Introduction

Biotransformation refers to a number of different enzyme‑cata-
lyzed processes, in which the body converts endogenous 
compounds, xenobiotics and toxic substances into harmless or 
easily excreted metabolites. These compounds may become 
active metabolites, inactive metabolic products, or metabolites 
with higher or lower activity (1,2).

The reactions associated with biotransformation are tradi-
tionally classified into two main groups. Phase I (non‑synthetic) 
reactions are responsible for oxidation, reduction, hydrolysis 
and hydrogen removal reactions. These reactions typically 
occur in the liver. The oxidation reactions include cytochrome 
P450, nicotinamide adenine dinucleotide phosphate and 
oxygen. Phase II (conjugation) reactions are biosynthetic and 
require energy and certain cofactors. These reactions add a 
relatively large polar group (typically sulfate, amino acids, 
glutathione, methyl and glucuronic acid) to phase I reaction 
products (3). An alternative classification for biotransforma-
tion has been proposed according to the nature of the reaction 
as functionalization reactions and conjugation reactions. 
Whereas phase I reactions are associated with unmasking a 
polar functional group, phase II reactions link an endogenous 
polar group to a specific substrate (4).

In the majority of animal species, a set of enzymes 
catalyzes these conjugation reactions. The uridine 5'‑diphospho 
(UDP)‑glucuronosyltransferase (UGT) superfamily, which 
primarily catalyzes conjugation reactions, is one of these 
enzyme families. The UGT superfamily is located in the 
microsomal fraction of various tissues, including the liver, 
kidney, skin, intestine and brain and is quantitatively impor-
tant in the liver. The catalytic reaction of the UGT superfamily 
is the incorporation of a glycosyl group (glucuronic acid, 
glucose, xylose or galactose) to a range of acceptors. A number 
of frequently used drugs are conjugated with glucuronic acid, 
which is synthesized from glucose in the soluble fraction of 
the liver (5).

UDP‑glucuronic acid (UDPGA) serves as the glucuronic 
acid donor to various acceptors that consist of drugs and 
metabolites. Although glucuronidation frequently inacti-
vates xenobiotics, there are exceptions, including morphine 
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and 12‑retinoic acid, which become pharmacologically 
active. The conjugation with glucuronic acid is an important 
qualitative and quantitative reaction due to the number of 
substrates that can be modified and the wide availability of 
UDPGA (6,7).

2. UGTs

The human UGT superfamily is divided into four major 
families: UGT1, 2, 3 and 8, with the UGT1 and 2 families 
being most important for glucuronidation reactions. The 
UGT2 family is subdivided into two subfamilies (UGT2A 
and UGT2B). The function and catalytic activity of the 
UGT3 remains unknown and the UGT8 gene product is a 
UDP‑galactose ceramide galactosyltransferase (8).

The role of the genetic variants of the UGT1 family, its 
associated syndromes and altered drug metabolism have been 
well documented. Changes in the nucleotide sequence may be 
located in the promoter, regulatory, intronic or coding regions. 
Specific genetic variants are associated with a number of 
pathologies are described in Table I (9‑31) and those associated 
with drug metabolism are described in Table II (10,32‑46).

UGT1A subfamily. The UGT1A subfamily is typically 
responsible for the conjugation of bilirubin, phenols, anthra-
quinones, flavones, estriol and estradiol  (47). The UGT1A 
locus is located at 2q37.1 and it contains four common exons 
2‑5 and 13 alternative exons (A1‑A13). All combinations of one 
alternative exon in addition to the four common exons have the 
potential to generate 13 transcription units (Fig. 1A). However, 
the UGT1A locus potentially encodes for only nine functional 
proteins: UGT1A1 and UGT1A3‑10 as 1A2P, 1A11P‑1A13P 
belong to pseudogenes that do not encode for proteins (9,48). 
For the mRNA 3' region, there are two alternative exons, 
termed 5a and 5b. Each of the nine potential coded protein 
RNA transcripts with A1‑A13 exons have the possibility to 
include the 5a, 5b or 5a plus 5b variant exons, resulting in 
three possible mRNAs and three putative transcripts  (49) 
(Fig. 1C). When only the 5a variant is incorporated at the 
mRNA 3' region; the mRNA is termed the V1 isoform and 
encodes for the catalytically active form. When the 5b or 5a 
plus 5b variants are incorporated, they form inactive isoforms 
termed v2 and v3, respectively (50). Thus, the 5b variant, alone 
or in combination with 5a, results in an enzymatically inactive 
protein, but it acts as a negative modulator of the 5a variant.

UGT1A1 isoforms. Variations in UGT1A1 have been studied 
and 136 allelic variants have been described. The variants 
were associated with diminished or absent enzyme activity, 
resulting in clinical implications. The ClinVar database 
contains a dataset with clinically significant variants (51).

Mutations in the UGT1A1 exons or promoter region 
produce structural or functional deficiencies in the enzyme, 
which may result in deterioration of the conjugation. 
A commonly described variant is the TA dinucleotide insertion 
in the TATA element of the gene promoter (Fig. 1B). The 7 
TA repeats instead of the 6 normal TA repeats (UGT1A1*1) is 
designated the UGT1A1*28 allele. This variant is associated 
with Gilbert's syndrome (GS), prenatal hyperbilirubinemia 
and adverse events due to the metabolism of certain drugs, 

including irinotecan, FOLFIRI, atazanavir, tamoxifen, belino-
stat and acetaminophen (Tables I and II).

Besides the seven TA repeats variant in the UGT1A1 gene, 
there are additional 5 (UGT1A1*36) and 8 (UGT1A1*37) TA 
repeats. It has been demonstrated that the greater the number 
of repetitions, the lower the enzyme activity. Therefore, the 
5, 7 and 8 repeat variants exhibit 130, 65 and 50% activity, 
respectively, compared with the normal 6 repeat version 
(Fig. 1B) (52). The 211G>A variant (Arg71Gly, UGT1A1*6 
allele) in exon 1 has also been described and exhibits 30% 
of the normal activity. This variant affects the metabolism of 
7‑ethyl‑10‑hydroxycamptothecin (SN‑38), an active metabolite 
of irinotecan, which is commonly employed in colon cancer 
treatment and associated with GS and neonatal hyperbilirubi-
nemia (36,53). Genotyping patients with UGT1A1 variants is 
important and alerts must be taken into account for screening 
in pharmacogenomics and prior to certain drugs treatments, 
including irinotecan and atazanavir (10).

The two main diseases associated with UGT1A1 variants 
are Crigler‑Najjar syndrome (CNS) type I (‑I) and type II (‑II) 
and GS. A previous review reported that these diseases were 
associated with 77 point missense mutations, 14 point nonsense 
mutations, 21 deletions, 10 insertions and 8 promoter/intronic 
mutations (polymorphisms) in the UGT1A1 gene (54).

3. Clinical disorders or pathologies associated with 
mutations in UGT1A1

Neonatal hyperbilirubinemia. A range of diseases are asso-
ciated with bilirubin clearance, the majority of which are 
inherited (55); however, the elevation of serum bilirubin is a 
common finding during the first week of life. This phenom-
enon should be evaluated, as it may be a transitory condition 
that spontaneously resolves or a serious illness. Neonatal 
non‑conjugated hyperbilirubinemia is a common condition 
in pediatric medicine. Hemoglobin is metabolized to heme 
and globin groups; heme becomes biliverdin, which in turn 
becomes bilirubin (non‑conjugated). Bilirubin is conjugated 
with glucuronic acid in the liver, becoming conjugated 
bilirubin; the conjugated form returns to the water‑soluble 
bilirubin molecule that may be excreted in bile (47). Failure in 
bilirubin conjugation leads to an increased level of non‑conju-
gated bilirubin, which is less hydrosoluble and has the ability 
to cross the blood‑brain barrier. Although non‑conjugated 
hyperbilirubinemia usually is self‑limiting and benign, occa-
sionally the severe non‑conjugated hyperbilirubinemia leads 
to encephalopathy or kernicterus. The causes of the non‑conju-
gated hyperbilirubinemia may be excessive production of 
billirubin during a hemolytic process, inadequate clarification 
of bilirubin or a combination of the two (56).

In newborns, the UGT1A1*28 allele is associated with 
hyperbilirubinemia and jaundice. In Spain, a study of 136 
newborns, 21 of them with jaundice, demonstrated that 
newborns with jaundice had a tendency to have a higher 
prevalence of the UGT1A1*28, but this result was not statis-
tically significance  (57). A Chinese study concluded that 
different variants in the UGT1A1 gene, including UGT1A1*6, 
UGT1A1*28 and minor allele T of rs887829, are associated 
with bilirubin levels in the first days of life (11). Long‑term 
studies are necessary to identify any diseases associated with 
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bilirubin or drug metabolism that patients may develop in the 
future.

GS. GS is a benign hereditary condition, typically diagnosed 
in adolescence. This disease is characterized by moderated 
non‑conjugated or indirect hyperbilirubinemia, which is 
defined as a bilirubin concentration between 1 and 6 mg/dl. 
Bilirubin typically increases with fasting and in the presence 
of normal liver enzyme levels (47). It has been postulated that 
the homozygous UGT1A1*28 variant is necessary, but not 
sufficient, for the clinical expression of GS. In the general 
Caucasian population, ~15% are homozygous and 50% are 
heterozygous for the UGT1A1*28 polymorphism; however, 

only 10.3% are clinically diagnosed as patients with GS (9,58). 
This differential clinical manifestation may be associated 
with environmental factors and individual genetic variants 
that exert influence on global glucuronidation activity (41,59). 
GS has also been associated with defects in the conjugation of 
certain other compounds (60). Total bilirubin levels in patients 
with GS are also influenced by the ‑3279T>G variant (61).

CNS. Ciotti et al  (62) reported that a patient with CNS‑II 
exhibited a coding region alteration on each of the alleles of 
the UGT1A1 gene: M310V and I431T, designated UGT1A1*34 
and UGT1A*35, respectively. This disease is associated with 
the metabolism of bilirubin and is caused by a total (CNS‑I) or 

Table I. Pathologies associated with certain UGT1A variants.

UGT genetic variant	 Associated disease	 (Refs.)

UGT1A1*28 extra TA repeat	 Gilbert's syndrome, neonatal hyperbilirubinemia, colorectal 	 (9‑17)
[A(TA)7A], rs8175347	 and breast cancer risk, protection from cardiovascular disease, 	
	 increased need of oxygen supplementation and risk of	
	 bronchopulmonary dysplasia in very preterm newborns	
UGT1A1*6, GLY71ARG (G71R), rs4148323	 Neonatal hyperbilirubinemia, breast milk jaundice, Gilbert's 	 (10,27‑31) 
	 syndrome, increased risk for colorectal and laryngeal cancer	
R336W	 Crigler‑Najjar Syndrome (Type I)	 (18,19)
UGT1A1 deletion of 4591 bp (2335 bp in	 Crigler‑Najjar Syndrome (Type I) is due to complete and 	 (20)
5'‑UTR, exon 1 and 1377 bp in the intron 1‑2)	 non‑inductile deficiency of UGT1A1	
UGT1A1 Y486D, p.G71R	 Crigler‑Najjar Syndrome (Type II) milder phenotype.	 (21)
UGT1A7*3	 Hepatocelular carcinoma, orolaryngeal, proximal digestive	 (22‑26)
	 tract and colorectal cancer.	

UGT, uridine 5'‑diphospho‑glucuronosyltransferase; rs, reference single nucleotide polymorphism identification number; UTR, untranslated 
region; bp, base pairs.

Table II. UGT variants associated with known or potential drug toxicity.

Drug	 UGT variants	 Effect and references

Irinotecan/SN‑38	 UGT1A1*28, UGT1A7*3, UGT1A7*12, 	 UGT low‑function, neutropenia, severe diarrhea, 
	 UGT1A1‑3156G>A G71R, P229Q, 	 dosage, efficacy and prognosis (10,32‑39)
	 Y486D UGT1A7*4, UGT1A6*5, 	
	 UGT1A9‑688A/C
FOLFIRI (fluorouracil, 	 UGT1A7*3 UGT1A7*4 (rs11692021) 	 Hematologic toxicity/neutropenia (10)
leucovorin and irinotecan)	 and UGT1A6*5 (rs2070959)	
Atazanavir	 UGT1A1*28, UGT1A7‑57G, 	 Increased risk for jaundice and hyperbiliru
	 UGT1A7N129K/R131K UGT1A7*2, 	 binemia (10,40,41)
	 UGT1A3‑66C
Tamoxifen	 UGT1A4‑48Val, UGT2B7‑268Tyr, 	 Effective plasma active tamoxifen metabolite
	 UGT2B1‑5523Lys	 levels (42,43)
Belinostat	 UGT1A1*28, UGT1A1*60	 Increased plasma concentrations, increased
		  incidence of thrombocytopenia and
		  neutropenia (44,45)
Acetaminophen	 UGT1A 3´‑UTR variant (rs8330)	 Liver injury (46)

UGT, uridine 5'‑diphospho‑glucuronosyltransferase; rs, reference single nucleotide polymorphism identification number; UTR, untranslated 
region.
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partial (CNS‑II) deficiency of UGT1A1. In CNS‑I and CNS‑II, 
total serum bilirubin is between 30 and 50 mg/dl and between 
6 and 20 mg/dl, respectively  (63). Phenobarbital treatment 
reduces serum bilirubin levels by >30% and glucuronide bili-
rubin is present in the bile of patients with CNS‑II. UGT1A1 
is absent from patients with CNS‑I. Genetic defects in patients 
with CNS‑I are consistent with deletions, mutations or inser-
tions of nucleotides of the UGT1A1 gene that result in premature 
stop codons or amino acid substitutions, which prevent mRNA 
transcription and lead to the autosomal recessive disease. In 
CNS‑II the alteration is an amino acid substitution that results 
in reduced catalytic activity of UGT1A1 (18,64‑66). A study 
conducted in unrelated Italian patients detected 22 mutations 
distributed along the gene  (67). Large deletions are rarely 
reported in UGT genes, but they are reported in associated 
diseases. A large deletion encompassing the promoter region 
and exon 1 of the UGT1A1 gene was previously reported in a 
patient with CNS‑I and the parents of the patient; the deletion 
covered 2,335 bp in the 5'‑UTR, exon 1 and 1,377 bp in the 1‑2 
introns (20).

Cancer. UGT1A variants have been associated with an 
increased risk of developing colorectal, breast, laryngeal, 
orolaryngeal and proximal digestive tract cancer and 
hepatocellular carcinoma (Table  I). The role of different 
types of UGT1A proteins in the metabolism of carcinogenic 
compounds is indirectly associated with the risk of cancer 
development. The UGT1A subfamily is responsible for the 
glucuronidation of carcinogenic tobacco compounds, such 
as benzo(α)pyrene (BaP). The BaP‑trans‑7R,8R‑dihydrodiol 
[BPD(‑)], the precursor of the mutagenic compound 
anti‑(+)‑BaP‑7R,8S‑dihydrodiol‑9S,10R‑epoxide, is 
primarily metabolized by UGT1A1 and UGT1A9 gene prod-
ucts; and both are expressed in the liver (10,68). Experiments 
conducted in normal liver microsomes isolated from indi-
viduals with *1/*1, 1*/28 and *28/28 genotypes revealed 
that bilirubin glucuronidation activity and BPD(‑) glucuro-
nide levels decreased, which suggests that the decreased 
activity of UDP glucoronosyltransferases serves a role in the 
detoxification of BaP and therefore, the risk of developing 
cancer (68).

Figure 1. Graphical representation of the UGT1 locus. (A) The locus contains A1‑A13 exons that are alternately spliced at the 5'‑end of the mRNA and 2‑5 
common exons. Gradient‑filled grey boxes correspond to pseudogenes, which do not encode for proteins. (B) UGT1A1 variants generated by the TA dinucleo-
tide insertion/deletion in the TATA element at the A1 promoter and their effect on the enzymatic activity. (C) Alternative exon 5 (5a, 5b, or 5b plus 5a) at 3'‑end 
of the mRNA, generating v1, v2 or v3 variants; v2 and v3 are inactive. Modified from Tourancheau et al (49). Solid black boxes correspond to genes. Black 
bordered boxes correspond to genes with a TA variant. Chr, chromosome; UGT, uridine 5''‑diphospho‑glucuronosyltransferases.
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UGT1A1*28 and UGT1A7 polymorphisms have been 
associated with the risk of colorectal cancer. The frequency of 
genotypes containing the UGT1A1*28 allele in the homozygous 
or heterozygous state was reported to be significantly higher in 
patients with colorectal cancer compared with controls (12). 
UGT1A7 is expressed in gastrointestinal and lung tissues. The 
UGT1A7 gene product is associated with the metabolism of 
carcinogens found in diets, including polycyclic or hetero-
cyclic aromatic hydrocarbons and heterocyclic amines. A 
previous study demonstrated that UGT1A7*2 (Lys129, Lys131 
and Trp208) and *3 (Lys129, Lys131 and Arg208) alleles are 
significantly associated with the risk of colorectal cancer and 
this is affected by alcohol intake and cigarette smoking (22).

Estrogen‑sensitive cancers have been associated with 
the production of hydroxylated estrogen metabolites, termed 
catechol estrogens. Estradiol (E2) derived metabolites exhibit 
different biological properties. In breast cancer (BC), E2 and 
its oxidized and methoxylated metabolites are conjugated 
with glucuronic acid via the UGT1A1, 3 and 8‑10 and 2B7 
enzymes and these glucuronides are devoid of biologic activi-
ties. The genetic variants of these UGT genes may influence 
estrogen metabolism and the risk of BC (69,70). Also, a 150 
kb deletion polymorphism in UGT2B17, which is considered 
a null genotype, inhibited the expression of the gene product 
and thus there was no enzyme activity. It has been reported 
that this null genotype is associated with BC; it has also been 
suggested that the UGT2B17 enzyme serves a role in cancer 
drug metabolism (71). Finally, a study reported that smoking 
or alcohol consumption combined with the G allele of the 
UGT1A1*6 gene (rs4148323 A/G) increased the risk of laryn-
geal cancer (27). Further examples of the association between 
cancer and UGT variants are cited in Table I.

4. The protective effect of bilirubin as antioxidant

The aforementioned genetic variants in the UGT families are 
associated with increased levels of plasma non‑conjugated 
bilirubin. McCarty  (72) previously suggested that bilirubin 
served a role as a potent antioxidant that scavenges superoxide, 
peroxyl radicals, hydroxyl radicals, hypochlorous acid, singlet 
oxygen and the reactive nitrogen species nitroxyl and peroxyni-
trite. Initially considered as a toxic compound, information 
has emerged regarding the protective role of moderately high 
levels of bilirubin, as observed in patients with GS and chronic 
diseases. Examples of the aforementioned protective role 
include an altered lipid profile and a reduced pro‑inflammatory 
status  (73), an inverse correlation between serum bilirubin 
concentrations and the risk of certain types of cancer (74) and 
a reduced risk of ischemic heart disease and hypertension (72).

5. Examples of UGT1A involvement in pharmacogenomics

Irinotecan metabolism. Irinotecan, an inhibitor of DNA 
topoisomerase I, is used to treat patients with metastatic 
colorectal cancer, which is a commonly diagnosed malignancy 
and one of the leading causes of mortality associated with 
cancer worldwide (75). Irinotecan has also been employed 
in ovarian (76), non‑small lung cell (77) and pancreatic and 
biliary tract cancers (78). Irinotecan is prescribed alone, or 
combined with: i) 5‑fluorouracil and Leucovorin (FOLFIRI), 

ii)  FOLFIRI plus oxaliplatin, iii)  Cetuximab, a chimeric 
immunoglobulin G1 anti‑epidermal growth factor receptor 
monoclonal antibody (37,79), or iv) capecitabine  (80). The 
combined effects of the genetic variants in these drug‑metab-
olizing enzymes need to be considered to reduce undesirable 
effects and to increase the effectiveness of the drugs. Irinotecan 
is a prodrug that requires metabolism to the active form, 
SN‑38, which has 100‑fold higher antitumor activity, through 
carboxyesterases (10). SN‑38 may subsequently be inactivated 
by UGT via glucuronidation (Fig. 2) (81,82). Severe toxicity 
has been reported in <36% of patients treated with irinotecan 
and the UGT1A1*28 allele is associated with toxicity in a 
dose‑dependent manner. However, other UGTA1 variants may 
be associated with this toxicity (83).

Patients homozygous for UGT1A1*28 or UGT1A1*6 allele 
may receive irinotecan at an initial dose of 150 mg/m2, but a 
reduction in the dose of subsequent cycles or a delay in the treat-
ment is required (84). The aforementioned alleles have been 
associated with irinotecan‑induced neutropenia in patients 
with colon cancer (85). ����������������������������������Routine genotyping prior to chemo-
therapy has been used to prevent febrile neutropenia in patients 
with metastatic colorectal cancer at a reasonable cost (85). 
Furthermore, the administration of granulocyte‑colony 
stimulating factor to patients with homozygous UGT1A1*28 
may prevent the development of neutropenia (86). Finally, the 
UGT1A7 gene product, which is expressed in extrahepatic 
tissues, including the esophagus, stomach and lung, has been 
demonstrated to be associated with the metabolism of irino-
tecan to its non‑toxic metabolite, SN‑38 (87).

Pegvisomant (PEG‑V) metabolism. PEG‑V is a pegylated 
recombinant analog of human growth hormone (hGH), with 
covalently bonded polyethylene glycol polymer chains that 
reduce immunogenicity and the rate of clearance from the 
body, prolonging half‑life (88). PEG‑V is a modified version 
of hGH designed to bind to and inhibit the hGH receptor. In 
patients with acromegalia, PEG‑V alone or in combination 
with a somatostatin analog has an efficacy of >90% for the 
control insulin‑like growth factor (89,90). Liver injury has 
been reported with PEG‑V in patients with Gilberts´Syndrome 
or the UGT1A1*28 genotype (91‑94).

Atazanavir metabolism. The UGT1A1*28 allele is associated 
with atazanavir metabolism. The UGT1A1*28 allele, a low 
CD4 cell count and the presence of the G2677T/A variant of 
the multi‑drug resistance gene (MDR)1, were independent 
risk factors for severe hyperbilirubinemia in Korean patients 
infected with human immunodeficiency virus, while the 
normal (MDR)1 and UGT1A1 alleles did not exhibit this condi-
tion (95). The UGT1A1*28 allele, a low CD4 cell count and 
the presence of the variant MDR1 G2677T/A in a 30 months 
follow‑up study suggested that hyperbilirubinemia associated 
with atazanavir was common, but transient in Korean popula-
tion that exhibit a low frequency of the UGT1A1*28 allele (96).

6. Conclusions

Studies continue to provide information regarding the associa-
tion between the family of UGT enzymes, which are associated 
with the metabolism of drugs, xenobiotics and endogenous 
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compounds and the effects of DNA variants on enzyme activity. 
In the current review, the importance of the UGT complex, 
which is associated with drug and xenobiotic metabolism and 
diseases associated with anomalies in the conjugation of bili-
rubin, was described. Also, the frequencies of genetic variants 
in population studies suggest that clinical significance depends 
on ethnicity. The diversity in the frequency of certain genetic 
variants by ethnicity may lead to a greater understanding of 
the role of patients' genetic backgrounds, the development of 
therapies according to pharmacogenomics profiles of patients 
and improved adverse event prediction due to drug metabolism. 
The pharmacogenomics profiles of UGT1A1 may improve the 

quality of life of patients, prevent adverse effects and reduce 
the cost of treating patients with associated diseases. The 
design of nanoparticles for the treatment of diseases, such 
as cancer, according to the pharmacogenomics profile and 
ethnicity of a patient is a notable opportunity for advancement 
in treatment options (97). In certain cases, the Food and Drug 
Administration has made changes to the labels of specific 
prescription drugs, such as irinotecan, warning that there may 
be a need for genotyping variants of UGT1A1 enzymes prior 
to the administration of the chemotherapeutic agent. In the 
future, the recommendation for individual genotyping prior to 
drug administration may often be prescribed.

Figure 2. Irinotecan metabolism. Certain members of the UGT1A family are associated with the processing of SN‑38. Reproduced with permission 
from the Pharmacogenomics Knowledge Base (PharmGKB) and Stanford University, a fully interactive version is available at: https://www.pharmgkb.
org/pathway/PA2001 (81,82). CYP3A5, Cytochrome P450, family 3, subfamily A, polypeptide 5; ABCG2, ATP‑binding cassette, sub‑family G (WHITE), 
member 2; SLCO1B1, Solute carrier organic anion transporter family, member 1B1; BCHE, Butyrylcholinesterase; ABCB1, ATP‑binding cassette, 
sub‑family B (MDR/TAP), member 1; UGT1A1, UDP glucuronosyltransferase 1 family, polypeptide A1; CES2, Carboxylesterase 2; CYP3A4, Cytochrome 
P450, family 3, subfamily A, polypeptide 4; UGT1A10, UDP glucuronosyltransferase 1 family, polypeptide A10; UGT1A9, UDP glucuronosyltransferase 1 
family, polypeptide A9; CES1, Carboxylesterase 1; ABCC2, ATP‑binding cassette, sub‑family C (CFTR/MRP), member 2; ABCC1, ATP‑binding cassette, 
sub‑family C (CFTR/MRP), member 1. 
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