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Abstract. Diabetes mellitus (DM) is associated with an 
increased risk of colorectal cancer (CRC). Hyperglycemia, a 
chronic abnormality in diabetes, is an independent predictor 
of cancer‑associated mortality in CRC. However, the under-
lying biological mechanism of hyperglycemia in CRC cells 
is largely unknown. In the present study, HCT‑116 and HT‑29 
cell proliferation, apoptosis, migration and invasion were 
assessed. In addition, the expression of epithelial (E)‑cadherin, 
vimentin and high‑mobility group A protein 2 (HMGA2) were 
assessed using western blotting. The results demonstrated 
that high glucose (HG; 30 mmol/l) caused CRC cells to lose 
their epithelial morphology, with a decrease in E‑cadherin and 
an increase in vimentin, suggesting epithelial‑mesenchymal 
transition (EMT). Furthermore, HG significantly enhanced the 
cell migration and invasion of CRC cells and the expression of 
HMGA2. Transfection with HMGA2 small interfering RNA 
reversed the HG‑induced changes to CRC cells. In addition, 
HG promoted CRC cell proliferation and suppressed apoptosis. 
The results of the present study suggest that hyperglycemia 
promotes EMT, proliferation, migration and invasion in CRC 
cells and may provide novel insights into the link between HG 
and CRC.

Introduction

Colorectal cancer (CRC) is one of the most common malignant 
tumors and the leading cause of cancer‑associated mortality 
in humans (1). CRC is the third most commonly diagnosed 
cancer in males and the second in females, with an estimated 
1.4 million cases and 693,900 deaths occurring worldwide 
in 2012 (2). In the USA, CRC is the third leading cause of 
cancer‑associated mortality  (3), while tumor invasion and 
metastasis are the leading causes of patient mortality  (4). 
Many CRCs are metastatic at the time of diagnosis  (5). 
Diabetes mellitus (DM) is a metabolic disorder characterized 
by increased blood glucose levels (6) and is considered to be 
one of the most important health problems worldwide (7). It 
has been demonstrated that DM is associated with an elevated 
risk of CRC in both men and women (8). A meta‑analysis 
of 8 studies identified a positive correlation between type 2 
(T2)DM with a 1.21‑fold increased risk of CRC (9). Patients 
with colorectal cancer and DM have an increased risk of 
cancer‑specific mortality and have worse disease‑free survival 
than those who do not have DM (10,11). DM has also been 
reported to be a risk factor for CRC, although this remains 
controversial (11‑14).

Epithelial‑mesenchymal transition (EMT) is the morpho-
logical transformation of epithelial‑like cancer cells to an 
elongated mesenchymal phenotype (15). During EMT, cancer 
cells stop expressing adhesion proteins, including epithelial 
(E)‑cadherin and claudin‑1, and increase the expression of 
mesenchymal phenotype markers, including vimentin, neural 
(N)‑cadherin and Snail (16). EMT serves an important role in 
the invasion and metastasis of CRC (17) and is able to induce 
circulating tumor cell properties in transformed colorectal 
epithelial cells (18). Furthermore, EMT is highly prognostic 
for colon cancer recurrence (19). High glucose (HG) induces 
EMT in breast cancer cells (20) and human peritoneal meso-
thelial cells (21); however, this effect has not been studied in 
CRC.

The aim of the present study was to investigate the associa-
tion between HG and the migration, invasion and apoptosis 
of colorectal cancer cells. The expression of EMT‑associated 
proteins was detected and the underlying mechanisms were 
investigated.
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Materials and methods

Cell culture and transfection. The human CRC cell lines 
HCT‑116 and HT‑29 were obtained from American Type 
Culture Collection (Manassas, VA, USA). Both cell lines were 
cultured in Dulbecco's modified Eagle's medium (DMEM; 
Genom Biotech Pvt., Ltd., Bhandup, Mumbai) containing 10% 
fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, 
GA, USA), 100 unit/ml penicillin, 100 µg/ml streptomycin 
with normal glucose (NG; 5.5 mmol/l) or HG (30 mmol/l). 
Cultures were maintained at 37˚C in a humidified atmosphere 
containing 5% CO2.

Human samples. A total of 6 CRCs with or without T2DM 
in this study were histologically and clinically diagnosed 
at Ningbo Urology and Nephrology Hospital between 
October 2015 to March 2016 and the tissues were collected 
immediately following surgical resection for diagnosis. The 
inclusion criteria was as follows: i) Patients had to be diag-
nosed with CRC by preoperative pathological biopsy using 
a colonoscope; ii) aged between 18 and 75 years; iii) exhibit 
no distant metastasis; and iv) with or without diabetes. 
Patients were excluded if they: i) Received radiotherapy and 
chemotherapy prior to surgery; ii) exhibited acute infection; 
or iii) had a history of abdominal surgery or other malignant 
tumors. The specimens were then stored at ‑80˚C. The present 
study was approved by Ningbo Yinzhou Ethics Committee 
and signed informed consent was obtained from the patients 
or their family. Patient data is summarized in Table I.

Immunofluorescence. CRC tissues were fixed in 4% formalde-
hyde solution for 2 h at 25˚C and then sectioned into 5‑µM‑thick 
frozen sections. The sections were washed in cold PBS 3 times 
and subsequently blocked with 2% bovine serum albumin V at 
25˚C (BSA‑V; Beijing Solarbio Science & Technology Co., Ltd., 
Beijing, China) for 1 h. Samples were incubated with primary 
antibodies against E‑cadherin (1:20; sc‑8426; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA) diluted with 1% BSA‑V 
overnight at 4˚C. Following 3 washes with PBS, the sections 
were incubated with tetramethylrhodamine conjugated goat 
anti‑rabbit secondary antibody (1:1,000; sc‑362281; Santa Cruz 
Biotechnology, Inc.) diluted with 1% BSA‑V in the dark for 1 h 
at 25˚C and washed in PBS again for 3 times. DAPI diluted with 
PBS was used to stain the nuclei at 25˚C. Images at a magni-
fication of x40 were captured using an inverted fluorescence 
microscope (Nikon Corp., Tokyo, Japan).

Western blotting. Tissues and cells were homogenized in a 
radioimmunoprecipitation assay lysis buffer (Beijing Solarbio 
Science & Technology Co., Ltd.). A BCA protein assay kit 
(Cwbiotech, Beijing, China) was used to determine protein 
concentrations. Proteins (20  µg) were separated by 10% 
SDS‑PAGE and electrotransferred to polyvinylidene fluoride 
membranes, which were blocked in 5% nonfat milk for 1 h at 
25˚C and probed with primary antibodies against E‑cadherin 
(1:400; #AF0131; Affinity Biosciences, Jiangsu, China), 
vimentin (1:600; #AF0292; Affinity Biosciences), GAPDH 
(1:10,000; #T0004; Affinity Biosciences) and high‑mobility 
group A protein 2 (HMGA2; 1:500; 5269s; Cell Signaling 
Technology, Inc., Danvers, MA, USA) overnight at 4˚C. The 

membranes were subsequently incubated with goat anti‑rabbit 
antibody diluted with 0.3‰ TBST (1:1,000; #SC2004; Santa 
Cruz Biotechnology, Inc.) or goat anti‑mouse antibody diluted 
with 0.3‰ TBST (1:1,000; #SC2005; Santa Cruz Biotechnology, 
Inc.) for 1  h at room temperature. The membranes were scanned 
with the Tanon 5200 automated image analysis system (Tanon, 
Shanghai, China) and the ImageJ software (version 1.48U; 
National Institutes of Health, Bethesda, MD, USA) was used to 
evaluate the band intensity.

Scratch assay. HCT‑116 and HT‑29 cells (3‑5x105 cells/well) 
were seeded in 6‑well plates and cultured in DMEM containing 
NG or HG for 4 days at 37˚C. Confluent cultures were scratched 
with sterile 200 µl pipette tips and washed gently with PBS to 
remove floating cells. Then the cells were cultured in DMEM 
containing NG or HG and 5% FBS. Cells were viewed under 
an inverted fluorescence microscope (magnification, x40) and 
images were captured after 0, 24, 48 and 72 h.

Transwell assays. HCT‑116 and HT‑29 cells were cultured 
in DMEM containing NG or HG for 4  days and then 
serum‑starved for 12  h. The cells (1x105  cells/well) were 
seeded into Boyden chambers (EMD Millipore, Billerica, MA, 
USA) with 8‑µm pore size filter membranes. The inserts were 
coated with Matrigel (BD Biosciences, Franklin Lakes, NJ, 
USA) for invasion assays or not coated for migration assays. 
The chambers were then placed in 24‑well plates containing 
DMEM and 10% FBS at 37˚C. After 72  h, the non‑invaded 
cells on the upper side of the filter were removed with a cotton 
swab and cells attached to the underside of the membrane were 
fixed in ethanol, stained with crystal violet and images were 
counted using a microscope (CKX41; Olympus Corporation, 
Tokyo, Japan; magnification, x40).

HMGA2 knockdown. The RNA interference technique 
was used to downregulate HMGA2 in HCT‑116 and HT‑29 
cells  (22). HMGA2 small interfering 400  ng (si)RNAs 
(siHMGA2‑1, 5'‑GAA​AGC​AGA​GAC​CAU​UGG​ATT‑3'; 
siHMGA2‑2, 5'‑GAA​AGC​AGA​GAC​CAU​UGG​ATT‑3'; 
Shanghai Genechem Co., Ltd., Shanghai, China) were synthe-
sized and transfected into cells using RNAiMAX (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) according 
to the manufacturer's protocol. Following 48 h transfection, 
HMGA2 expression was confirmed by western blotting. 
Western blotting was then performed as aforementioned.

MTT assay. HCT‑116 and HT‑29 proliferation was measured 
using an MTT assay. Cells were incubated with 0.35 mg/ml 
MTT solution at 37 ̊ C for 4  h. The medium was removed, 
100  µl dimethylsulfoxide (DMSO) was added and the mixture 
was vortexed at 112 x g for 10  min at 25˚C. The optical density 
was read at 490  nm and all experiments were performed 
3 times.

Ki‑67 expression and apoptosis analysis. Cells were seeded 
in 6‑well plates and treated with NG or HG, respectively, 
for 4 days. Cells were digested using 1 ml trypsin (#C0201; 
Beyotime Institute of Biotechnology, Beijing, China), washed 
twice with PBS and incubated in 100  µl fixation buffer 
(Biolegend, Inc., San Diego, CA, USA) at room temperature 
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for 15 min. Cells were then washed with 100 µl permeabi-
lisation buffer (Biolegend, Inc.). Following centrifugation 
at 1,500 x g for 3 min at 25˚C, the cells were resuspended 
in 100  µl permeabilisation wash buffer containing Alexa 
Fluor 647 mouse anti‑Ki‑67 antibody (1:100; 561126; BD 
Biosciences) and incubated at room temperature in the dark 
for 30 min. A total of 400 µl permeabilisation wash buffer was 
added to resuspend the cells for flow cytometric analysis using 
a FACS flow cytometer (BD Biosciences).

Cell apoptosis was assayed using the Annexin  V- 
phycoerythr in (PE) Apoptosis Detection k it (BD 
Biosciences). Cells were washed twice with cold PBS and 
resuspended in Annexin V Binding buffer at a concentra-
tion of 1.0x106 cells/ml. Specifically, this suspension (100 µl) 
comprised 1 µl Annexin V‑PE, 1 µl 7‑aminoactinomycin D 
and 98 µl Binding buffer. The cells were vortexed gently and 
incubated for 15 min at room temperature in the dark. To each 
tube, 400 µl of Binding buffer added and cells were analyzed 
using a FACS flow cytometer (BD Biosciences) and FlowJo 7.6 
software (FlowJo LLC, Ashland, OR, USA).

Statistical analysis. Data are expressed as the mean ± standard 
deviation. One‑way analysis of variance was used to test the 
Homogeneity of variance, then a Mann‑Whitney U was used 
to compare differences between groups. All statistical anal-
yses were performed using GraphPad Prism 6.0 (GraphPad 
Software, Inc., La Jolla, CA, USA) and SPSS 18.0 software 
(SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

HG induces EMT in CRC tissues and cells. E‑cadherin protein 
expression was measured in tumor tissues from 3 patients 
with CRC and DM and 3 patients with CRC without DM 
using immunofluorescence and western blotting. The area of 
tumor cells with positive E‑cadherin staining was increased in 
patients without DM compared with those with DM (Fig. 1A). 
Furthermore, the results of western blotting confirmed that the 
expression of E‑cadherin protein was lower in patients with 
DM compared with patients without DM (Fig. 1B); however, 
the expression of vimentin protein was significantly higher in 
patients with DM compared with those without DM (Fig. 1B). 
HCT‑116 and HT‑29 cells were exposed to HG for 4 days 
and it was demonstrated that HG reduced the expression 
of E‑cadherin protein, whereas the expression of vimentin 
protein was increased (Fig. 1C). These results suggest that HG 
serves an important role in the EMT of CRC cells.

HG promotes the migration and invasion of CRC cells. EMT 
is characterized by a loss of cell‑to‑cell adhesion and increased 

cell migration and invasion (23). As such, the effect of HG on 
the metastatic capability of CRC cells was investigated. Scratch 
assays revealed that wound healing was faster in HCT‑116 and 
HT‑29 cells grown in HG conditions compared with those 
grown in NG (Fig. 2A and B). Furthermore, HG accelerated the 
cells ability to invade and migrate compared with NG (Fig. 2C 
and D). These results suggest that HG is able to promote the 
invasion and migration of CRC cells.

HG promotes EMT by increasing the level of HMGA2 protein. 
HMGA2 is known to control the expression of a diverse set 
of transcription factors associated with the regulation of 
E‑cadherin transcription (24,25). HMGA2 has been reported 
to regulate EMT in gastric cancer (26,27), tongue squamous 
cell carcinoma (28) and prostate cancer cells (29). As such, 
it was hypothesized that HMGA2 may regulate HG‑induced 
EMT and the expression of HMGA2 in CRC cells exposed 
to HG or NG for 4 days was assessed. HMGA2 was signifi-
cantly upregulated in HG‑stimulated cells compared with 
those treated with NG (Fig. 3A and B). HMGA2 expression 
was knocked down in HCT‑116 and HT‑29 cells and confirmed 
used western blotting (Fig. 3C and D). The results revealed 
that HMGA2 knockdown significantly increased E‑cadherin 
protein expression and decreased vimentin protein expression 
in HG‑stimulated cell compared with those treated with NG 
(Fig. 3E and F).

HG enhances cell viability and suppresses apoptosis in CRC 
cells. To characterize the functional roles of HG in cell prolif-
eration, MTT assays were performed and Ki‑67 was measured. 
The results revealed that HG enhances the viability of HCT‑116 
and HT‑29 cells in a time‑dependent manner (Fig. 4A and B). 
Ki‑67 is a nuclear antigen present only in proliferating cells and 
is one of the most widely used proliferation‑associated markers 
in cancer cells  (30). Ki‑67 staining demonstrated that HG 
enhances the expression of Ki‑67 and therefore the prolifera-
tion of HCT‑116 and HT‑29 cells compared with NG (Fig. 4C 
and D). The role of HG on apoptosis in HCT‑116 and HT‑29 
cells was also assessed and it was revealed that HG significantly 
decreased apoptosis compared with HG (Fig. 4E and F).

Discussion

Impaired metabolism and unlimited growth are two hall-
marks of cancer and serve an important role in cancer 
progression (31) and DM promotes the growth and metastasis 
of tumor cells (32). The results of the present study demon-
strate that HG increases HMGA2 expression and induces 
EMT in CRC cells.

The invasive and migratory capabilities of CRC cells 
were significantly enhanced by HG, while transfection with 

Table I. Patient data.

Patients	 Number of patients	 Age	 Sex ratio (F:M)	 Comorbidities

With diabetes	 3	 56‑64	 2:1	 No comorbidities
Without diabetes	 3	 60‑65	 2:1	 One with hypertension
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HMGA2 siRNA suppressed HG‑induced EMT in HCT‑116 
and HT‑29 cells. In addition, HG enhanced the proliferation 
and reduced the apoptosis of CRC cells. These results suggest 
that DM causes EMT and promotes metastasis in CRC cells. 
As such, DM may induce CRC tumor growth.

DM has been reported to have pro‑migratory and pro‑
invasive effects in both normal (33) and cancer cells (34‑38). 
Epidemiological studies have previously established an asso-
ciation between inflammation and DM (39‑41). The chronic 

inflammatory response may contribute to DM development 
by causing insulin resistance, which in turn intensifies hyper-
glycemia to promote long‑term complications of diabetes (42). 
Furthermore, inflammation induces EMT in CRC (43,44). 
Previous research has verified that HG induces EMT in 
pancreatic and breast cancers (45). Similarly, the results of 
the present study demonstrate that DM is associated with the 
downregulation of E‑cadherin and upregulation of vimentin 
in patients with CRC. Meanwhile, HG induces EMT in CRC 

Figure 1. HG promotes epithelial‑mesenchymal transition in patients with CRC and CRC cells. (A) Immunofluorescence for E‑cad in tumors from patients with 
CRC with or without DM (magnification, x40). Western blot analyses of E‑cad and VIM in (B) CRC tissues and (C) HCT‑116 and HT‑29 cells. **P<0.01 vs. Ctrl. 
HG, high glucose (30 mmol/l); CRC, colorectal cancer; E‑cad, epithelial cadherin; DM, diabetes mellitus; VIM, vimentin; Ctrl, control. 
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cells in vitro. Downregulated E‑cadherin expression is associ-
ated with lymph node metastases, poor tumor differentiation 
and worse prognosis in patients with CRC (46,47). Conversely, 
increased vimentin expression is significantly associated with 
lymph node metastasis and poor prognosis in CRC (48). The 
results of the present study demonstrated that the invasion 
and migration capabilities of CRC cells were enhanced by 
the occurrence of EMT. HMGA2 is a chromatin remodeling 
factor that is able to alter chromatin architecture to activate 
transcriptional enhancers (49). High expression of HMGA2 
is associated with cell proliferation and increased metas-
tasis in a number of cancers (50). The results of the present 
study are consistent with a number of previous studies in 
which it was reported that HMGA2 activates EMT in cancer 
cells (51,52). At least 11 EMT‑associated molecular pathways 
have been reported in the literature about CRC cells, including 
β‑catenin‑associated EMT, transforming growth factor‑β 
and Wnt pathway‑associated EMT and aberrant NOTCH‑1 
signaling associated EMT (53) Future studies should aim to 
elucidate whether there any other signaling pathways are asso-
ciated with HG‑induced EMT.

HG in patients with DM may alter the expression of genes 
that promote cell proliferation in the colon (32‑37,54). The rate 
of proliferating cell nuclear antigen‑positive cells is higher 
in patients with CRC and DM compared with patients with 
CRC alone  (55). HG conditions enhance cell proliferation 
via decreasing the population of cells arrested in the G0/G1 
phase (56). In accordance with the results of the present study, 
HG has previously been reported to increase the proliferation 
of CRC cells (57).

The present study is not without limitations. The effect of 
HG, which is the main feature of DM, was studied in isolation. 
T2DM is typically accompanied by other metabolic abnormal-
ities, including hyperlipidemia and hyperinsulinemia (58,59). 
These abnormalities should be considered in future studies.

In summary, the results of the present study indicate that 
hyperglycemia is associated with a reduction in epithelial 
markers and an increase mesothelial markers in CRC. The 
HG‑induced enhanced migratory and invasive abilities of 
CRC cells may be attributed to EMT via the upregulation of 
HMGA2. The results of the present study may provide novel 
insights into the association between DM and CRC.

Figure 2. HG promotes the migration and invasion of HCT‑116 and HT‑29 cells. The migratory abilities of (A) HCT‑116 and (B) HT‑29 cells were determined 
using a scratch assay following HG stimulation (magnification, x40). A Transwell assay was also performed to assess the migration and invasion abilities of 
(C) HCT‑116 and (D) HT‑29 cells (magnification, x40). HG, high glucose; Ctrl, control.
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Figure 3. HG promotes EMT by increasing the level of HMGA2 protein. Western blotting was performed to assess the expression of HMGA2 protein in 
(A) HCT‑116 and (B) HT‑29 cells. HMGA2 knockdown in (C) HCT‑116 and (D) HT‑29 cells was confirmed using western blotting. Western blotting analysis 
revealed that HMGA2 knockdown reversed EMT in (E) HCT‑116 and (F) HT‑29 cells. *P<0.05 and **P<0.01 vs. Ctrl. HG, high glucose; EMT, epithelial‑mesen-
chymal transition; HMGA2, high‑mobility group A protein 2; Ctrl, control; siRNA, small interfering RNA. 
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Figure 4. HG promotes cell viability and suppresses apoptosis in colorectal cancer cells. Cell viability was assessed in (A) HCT‑116 and (B) HT‑29 cells using 
an MTT assay. Cell viability was also assessed in (C) HCT‑116 and (D) HT‑29 using flow cytometry. An Annexin V‑PE/7AAD assay was performed to measure 
the number of (E) HCT‑116 and (F) HT‑29 cells in early apoptosis (lower‑right quadrant) and late apoptosis/necrosis (upper‑right quadrant) cells. **P<0.01 vs. 
Ctrl. HG, high glucose; PE, phycoerythrin; 7AAD, 7 aminoactinomycin D; Ctrl, control.
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