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Abstract. Metabolites in atrial fibrillation (AF) were 
characterized to further explore the molecular mechanisms 
of AF by integrating metabolic, phenomic and genomic 
data. Gene expression data on AF (E-GEOD-79768) were 
downloaded from the EMBL-EBI database, followed by 
identification of differentially expressed genes (DEGs) which 
were used to construct gene-gene network. Then, multi-omics 
composite networks were constructed. Subsequently, random 
walk with restart was expanded to a multi-omics composite 
network to identify and prioritize the metabolites according to 
the AF-related seed genes deposited in the OMIM database, 
the whole metabolome as candidates and the phenotype of AF. 
Using the interaction score among metabolites, we extracted 
the top 50 metabolites, and identified the top 100 co-expressed 
genes interacted with the top 50 metabolites. Based on the FDR 
<0.05, 622 DEGs were extracted. In order to demonstrate the 
intrinsic mode of this method, we sorted the metabolites of the 
composite network in descending order based on the interaction 
scores. The top 5 metabolites were respectively weighed 
potassium, sodium ion, chitin, benzo[a]pyrene-7,8-dihydrodiol-
9,10-oxide, and celebrex (TN). Potassium and sodium ion 
possessed higher degrees in the subnetwork of the entire 
composite network and the co-expressed network. Metabolites 
such as potassium and sodium ion may provide valuable clues 
for early diagnostic and therapeutic targets for AF.

Introduction

Atrial fibrillation (AF), a highly prevalent heart disorder 
with a significant genetic component (1), is regarded as the 
most common sustained arrhythmia in clinical practice 

worldwide, which can result in heart failure and represents 
an important risk factor for ischemic stroke, thereby leading 
to significant morbidity and mortality  (2-4). A higher rate 
of adverse outcomes for the elderly are connected with AF. 
According to literature, arrhythmia has been demonstrated to 
arise because of the interaction between genetic and acquired 
risk factors (5). However, the molecular pathogenesis of AF 
was not well elucidated, leading to the need of exploring the 
precise mechanisms of this disease as well as developing novel 
treatments. Extraction of novel biomarkers for AF is critically 
important to the understanding and future prevention of this 
disease.

Metabolites have been regarded as the eventual response 
of biological systems to the changes of inheritance or environ-
ment, whose level directly reflect the physiological status of the 
body (6). Consequently, selecting disease-associated metabo-
lites is very important for enhancing clinical diagnosis (7,8). 
Of note, functionally associated metabolites and genes are 
tended to infer to phenotypically similar disorders. Notably, 
‘omics’ data, for example, metabolic, phenomic and genomic, 
will offer valuable information for identification of disease 
risk candidate metabolites. From a biological perspective, a 
biological system is expressed as a multi-omics network. It is 
a natural method to combine gene, metabolite and phenotype 
data to establish a composite network for detecting disease-
related metabolites, and this combination approach can offer 
accurate information (9,10). Nevertheless, few attempts have 
been made to explore the possible involvement of cardiac 
metabolism in AF and the underlying pathways remain poorly 
understood.

In the present study, with the aim of further clarifying 
metabolic processes in the progression of AF and to confirm 
whether metabolic derangements may exert important func-
tions in contributing to the arrhythmia occurrence, human atrial 
tissues obtained from the matched cohorts in sinus rhythm (SR) 
were analyzed to identify and prioritize candidate metabolites 
by constructing a composite network that combined meta-
bolic, phenomic, and genomic data. Specifically, microarray 
data selection (E-GEOD-79768) and differentially expressed 
genes (DEGs) identification were first conducted. Then, a 
multi-omics composite network by combining six data sets 
was established. Next, we mapped the AF-related seed genes 
and known metabolites to the composite network, following 
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by the prioritization of candidate metabolite related to AF 
according to the global functional relations of the composite 
network using random walk with restart (RWR). Via using 
the interaction score among metabolites, we extracted the top 
50 metabolites and identified the top 100 co-expressed genes 
interacted with the top 50 metabolites. 

Materials and methods

Acquisition of data set and pretreatment of the original 
data. The genechip data on AF (E-GEOD-79768) (11) were 
downloaded from the EMBL-EBI database according to the 
platform of A-AFFY-44 - Affymetrix GeneChip Human 
Genome U133 Plus 2.0 [HG-U133_Plus_2]. E-GEOD-79768 
included 26 samples including data from patients with AF 
(n=14), and SR samples as control (n=12).

Subsequently, the original data were pre-processed based 
on a series of steps including background correction, quan-
tile normalization, perfectmatch/mismatch correction, and 
mediapolish summarization, and transformation of probe IDs 
into human gene symbols.

Identification of DEGs. As reported, the change of gene 
expression reflects the propensity of a given disease. In the 
present study, detecting DEGs between two groups was 
performed using Student's t-test. Then, we utilized the multiple 
test to correct the original P-values based on Benjamini-
Hochberg (12) using false discovery rate (FDR). DEGs were 
screened out when the FDR was <0.05. These DEGs were used 
to establish a gene network.

Constructing multi-omics composite network. A composite 
network was constructed by combing six data, which could 
be denoted by six networks, namely gene, phenotype, metabo-
lite, phenotype-gene association, gene-metabolite association 
network, as well as phenotype-metabolite association network.  

Gene network construction. In the present study, all protein-
protein interactions (PPIs) of human having combine scores 
(1,048,576 interactions) were downloaded from the STRING 
to build the original PPI network. Following removal of the 
duplicated PPIs, and transformation of proteins into gene 
symbols, 1,515,370 highly correlated gene-gene interac-
tions among 16,785 genes were identified to construct the 
background PPI network (combine-score of edges <0.8). 
Subsequently, the intersection between the 16,785 genes in the 
background PPI network and DEGs was extracted to construct 
the informative gene-gene network.

Metabolite network construction. First, a total of 4,994 human 
metabolites were collected from KEGG, HMDB, Reactome, 
MSEA  (13) and SMPDB  (14). Subsequently, metabolite-
metabolite associations of human and their corresponding 
confidence scores were extracted from STITCH (15), where 
the the 4,994 human metabolites were covered. Finally, a total 
of 3,764 human metabolites and 74,667 human metabolite-
metabolite interactions were obtained.

Phenotype network construction. In the phenotype-phenotype 
similarity associations (16), there are 5,080 phenotypes and 

similarity scores across them. The majority of recorded human 
phenotypes were included in these phenotypes. Based on the 
phenotype-phenotype similarity associations, we constructed 
a phenotype network.

Gene-metabolite association network construction. With the 
goal of extracting human gene-metabolite interactions, we 
downloaded the chemical and gene associations of human 
and the corresponding confidence scores from STITCH. 
After discarding the metabolites that were not included in the 
metabolite network mentioned above and removing the genes 
that were not involved in the above gene network, overall 
192,763 gene-metabolite interactions were obtained among 
12,342 genes as well as 3,278 metabolites.

Phenotype-gene association network construction. We got 
the phenotype-gene interactions according to the OMIM 
database. Following removing the phenotypes not appearing 
in the phenotype network and the genes not covered in the 
gene network, 2,603 gene-phenotype associations were found 
between 1,715 genes and 1,886 phenotypes. The weighted score 
was determined as 1 for every phenotype-gene interaction. 

Phenotype-metabolite association network construction. 
We obtained the phenotype-metabolite associations from the 
HMDB. Analogously, a total of 664 associations between 
388 metabolites and 149 phenotypes were reserved after filtra-
tion. Moreover, the weighted score was defined as 1 for every 
phenotype-metabolite interaction.

Establishment of a multi-omics composite network. To 
identify and prioritize the potential metabolite, the six 
networks mentioned above were merged into one weighted 
composite network. Specific steps were as described in 
Yao et al (17). 

Prioritization of candidate metabolite relying on the multi-
omics composite network. The corresponding seed genes of 
AF were ABCC9, GJA5, KCNA5, KCNE2, KCNJ2, KCNQ1, 
NPPA, NUP155, SCN1B, SCN2B, and SCN5A, which were 
deposited in the database of OMIM. Next, we mapped these 
seed genes and known disease metabolites to the multi-omics 
composite network. 

In an attempt to obtain the candidate metabolite prioritiza-
tion from the weighted composite network, the RWR method 
was expanded to the multi-omics composite network  (18). 
Then, we scored the candidate metabolites and ranked these 
candidate metabolites based on distance proximity. Based 
on the interaction score, we identified the top 50 metabolites 
which were defined as the AF-prioritized metabolites.

Then, based on the top 50 metabolites, co-expressed genes 
interacted with the top 50 metabolites were identified, and 
then, we analyzed these co-expressed genes. According to 
the score distribution, the top 100 co-expressed genes were 
extracted.

The subnetwork on the top 50 metabolites obtained from 
the composite network, and the co-expressed network were 
constructed. Furthermore, degree analyses were performed 
for these two networks to further identify several important 
AF-related metabolites.
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Results

DEG identification and construction of multi-omics composite 
network. In the present study, we used DEGs to comprise the 
gene nodes of the composite network, thus, we first identified 
the DEGs between the two groups. Based on the FDR <0.05, a 
total of 622 genes were extracted as DEGs. The top 20 DEGs 
are shown in Table I. This method identified and prioritized 
the disease-related metabolites via combining multi-omics 
information. In the present study, we first established a multi-
omics composite network by merging information derived 
from the genome, phenome, and metabolome. There were 
three kinds of nodes (metabolite, gene, and phenotype) and 
six kinds of interactions (gene-gene, phenotype-phenotype, 
metabolite-metabolite, phenotype-gene, gene-metabolite, and 
phenotype-metabolite) in the multi-omics composite network. 
In this network, there were 9,415 nodes and 10,227,292 edges 
(Table II). 

Table Ι. The top 20 differentially expressed genes (DEGs).

Gene symbols	 FDR	 Gene symbols	 FDR

LBH	 9.23E-06	 IDH3A	 1.73E-04
PPP4C	 7.52E-05	 RNF141	 1.85E-04
NOL6	 7.48E-05	 TOMM22	 2.14E-04
AGK	 1.25E-04	 TSPAN12	 2.78E-04
DEDD	 1.37E-04	 PDK1	 2.92E-04
THOC6	 1.55E-04	 SAFB	 3.20E-04
COL21A1	 1.61E-04	 LRIF1	 3.21E-04
CAPZA2	 1.65E-04	 INPP4A	 3.26E-04
FLI1	 1.69E-04	 ZBTB43	 3.32E-04
KLHL12	 1.71E-04	 SETD5	 3.39E-04

FDR, false discovery rate. 

Table II. The composite network.

Statistics of the		
composite network	 Nodes	 Edges
	
Gene-gene network	 571	 4,254
Metabolite-metabolite	 3764	 74,667
network	
Phenotype-phenotype	 5080	 10,140,046
network
Gene-metabolite	 571	 3,763
association network	
Phenotype-gene 	 5080	 2,600
association network	
Phenotype-metabolite	 537	 664
association network		
Sum	 9415	 10,227,292

Table III. The top 50 metabolites.

Metabolite ID	 Metabolite name	 Score

813	 Potassium	 0.004268
923	 Sodium ion	 0.002251
24139	 Chitin	 0.001765
41322	 Benzo[a]pyrene-7,8-	 0.001509
	 dihydrodiol-9,10-oxide	
2662	 Celebrex (TN)	 0.001131
5957	 Triphosadenine (DCF)	 0.001094
3676	 Dentipatch (TN)	 0.001053
935	 Nickel	 0.001025
187	 Acetylcholine	 0.000897
1775	 Dilantin (TN)	 0.000829
2554	 Tegretol (TN)	 0.000805
5816	 Adrenalin (TN)	 0.000798
1103	 Spermine	 0.000772
105024	 L-selenomethionine	 0.000758
945	 Nitric oxide	 0.000753
3348	 Telfast (TN)	 0.000735
888	 Magnesium ion	 0.000725
24755493	 PIPP	 0.000711
4913	 Procainamide (INN)	 0.000709
3446	 Neurontin (TN)	 0.00064
5505	 Orinase (TN)	 0.00063
5284627	 Topamax (TN)	 0.000603
2337	 Parathesin (TN)	 0.000546
4946	 Propranolol (TN)	 0.000536
5202	 Serotonin	 0.000535
439155	 S-adenosylhomocysteine	 0.000521
2812	 Lotrimin (TN)	 0.000515
89594	 Habitrol (TN)	 0.000484
4914	 Procaine (INN)	 0.000483
24798682	 1-Radyl-2-acyl-sn-	 0.00048
	 glycero-3-phosphocholine	
5839	 Aldosterone	 0.00047
5354618	 Caesium	 0.000439
5280961	 Genistein	 0.000429
10114	 Hidermart (TN)	 0.000426
441074	 Conquinine	 0.000409
6022	 Adenosine 5'-diphosphate	 0.000395
444795	 Tretinoin (TN)	 0.00038
1548943	 Capsaicin (JAN/USP)	 0.000367
3121	 Depakene (TN)	 0.000364
702	 Dehydrated ethanol	 0.000361
5819	 Forthyron (TN)	 0.000342
172198	 Delivert (TN)	 0.000327
60961	 Adenocard (TN)	 0.000327
94715	 Glucuronic acid	 0.000317
5994	 Prometrium (TN)	 0.0003
2519	 Caffeine (USP)	 0.000293
65064	 Epigallocatechin 3-gallate	 0.000273
8980	 Benadryl (TN)	 0.000271
5546	 Dyrenium (TN)	 0.000267
2719	 Chloroquine (USP/INN)	 0.000264
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Figure 1. Composite network including the top 50 metabolites and the 11 seed genes.  Yellow nodes, the seed genes; Pink nodes, the metabolites; and red nodes, 
behalf of the top 5 metabolites.

Figure 2. Construction of the co-expressed network. Blue nodes, top 100 co-expressed genes; yellow nodes, the seed genes; pink nodes, the metabolites; and 
red nodes, behalf of the top 5 metabolites.
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Prioritization of the risk metabolites of AF. There are 
11 disease-related genes related to AF in OMIM, including 
ABCC9, GJA5, KCNA5, KCNE2, KCNJ2, KCNQ1, NPPA, 
NUP155, SCN1B, SCN2B, and SCN5A, which were extracted 
and defined as seed genes. Nevertheless, no known disease 
metabolite data on AF were deposited in HMDB. In our work, 
the whole metabolome as candidates, the phenotype of AF and 
the 11 disease genes were utilized as seeds. With the goal of 
illustrating the intrinsic mode of this method, we sorted the 
metabolites of the composite network in descending order 
based on the interaction scores. The top 50 metabolites were 
dissected, as shown in Table III. The top 5 metabolites were 
respectively potassium (score = 0.004268), sodium ion (score 
= 0.002251), Chitin (score = 0.001765), Benzo[a]pyrene-7,8-
dihydrodiol-9,10-oxide (score = 0.001509), and Celebrex (TN) 
(score = 0.001131). A subnetwork was detected from the whole 
composite network in which the top 50  metabolites were 
included (Fig. 1). Based on the degree analysis for the entire 
composite network, we found that potassium had the highest 
degree (degree = 42), and sodium ion also possessed the higher 
degree (degree = 39).

Subsequently, we identified the co-expressed genes which 
interacted with the top 50 metabolites based on the score 
ranking. Based on the defined condition, we identified the top 
100 genes, and the co-expressed network of the top 100 genes 
and the top 50 metabolites are shown in Fig. 2. After degree 
analysis for the co-expressed network, 4 metabolites possessed 
the degree >50, including adenosine 5'-diphosphate (degree 
= 58), magnesium ion (degree = 57), potassium (degree = 52), 
and sodium ion (degree = 52).

Discussion

AF is the most common cardiac arrhythmia, but the molecular 
metabolites remain undefined. To the best of our knowledge, 
the present study was the first to compare the expression of 
metabolites between both atria in AF and SR. Based on the 
results, we found that the top metabolites of potassium and 
sodium ion had the highest degrees in the composite network 
and co-expressed network.

Potassium is reported to be connected with a higher risk of 
cardiovascular disease, for example, ventricular arrhythmias 
and cardiac arrest  (19). Many studies have suggested that 
increased inward-rectifier K+ current (IK1) is a prominent 
feature of atrial electrical remodeling (20-22). Moreover, AF is 
a final common endpoint of atrial remodeling  (23). Olesen et al 
(24) demonstrated that enhanced potassium current increases 
AF susceptibility and Linz  et  al  (25) demonstrated that 
blocking the activated atrial potassium currents inhibits AF 
in a pig model of obstructive apnea. Accordingly, we infer that 
the changes of potassium during AF might contribute to the 
self-perpetuating nature of the arrhythmia.

Another metabolite of sodium ion also had the higher 
degree in our study. 

Sodium current is responsible for the early fast depolar-
ization upstroke of the cardiac action potential (26). Reduced 
sodium current has been demonstrated to shorten the 
refractory period, and then to create a substrate for re-entry, 
thereby contributing to AF susceptibility (27,28). Importantly, 
decreased sodium current may slow the electric conduction, 

and electrical remodeling plays important roles in the develop-
ment of AF (29). Moreover, AF-related mutations have been 
found in sodium ion channel subunits, for example, SCN5A, 
SCN1B, and SCN2B (30). Thus, we speculate that sodium ion 
is highly associated with the progression of AF.

Our work is the first to implement the analysis on AF by 
identifying the metabolites through systematically integrating 
multi-data including metabolic, phenomic, and genomic 
information. This is the main strong advantage of our work. 
We successfully detected several significant metabolites 
according to this computational method. Nevertheless, in 
the process of our study, we carried out an in-depth analysis 
using extremely well-matched but small size samples. The 
evaluation of the influence of metabolism underlying AF 
progression will need further exploration based on larger 
independent data sets. Moreover, our study merely fixed on 
analysis based on the bioinformatics, but the findings were 
not proven by the experiments. Further, this work is based 
on the gene expression in transcriptional level, not protein 
level. Consequently, further validation studies and functional 
experiments are required to confirm the significance of these 
initial discoveries. Despite these limitations, we believe that 
the prioritized metabolites can provide researchers valu-
able information for focusing research efforts to explore the 
molecular mechanisms of disease, and extracting potential 
bio-signatures for diagnosis and treatment of AF. 

In a nutshell, metabolites such as potassium and sodium 
ion might be potential biomarkers for AF. Moreover, these 
metabolites might provide worthy clues for early diagnostic 
and therapeutic targets for AF.
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