
Abstract. Integrin ß4 is a transmembrane protein expressed
predominantly on epithelial cells. In human epidermis
integrin ß4 associates with integrin ß6. Integrin ·6ß4 is
concentrated at the basement membrane zone, where it localizes
to specialized adhesion structures called hemidesmosomes.
In addition to its adhesive functions, keratinocyte integrin ß4
has been identified as an important regulator of epidermal
homeostasis. This review summarizes the current knowledge
regarding the role of integrin ß4 in keratinocyte adhesion,
migration, as well as growth and differentiation. Changes in
integrin ß4 expression in pathological conditions in skin and
mucosa, especially those associated with human papillomavirus
infection, are described.
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1. Integrins - general features

Integrins are a family of glycosylated heterodimeric trans-
membrane adhesion receptors that consist of noncovalently

linked ·- and ß-subunits. Most integrins bind to the com-
ponents of the extracellular matrix, e.g. laminins, collagens,
fibronectin, while others bind to counter-receptors of the
immunoglobulin-like superfamily (1). The name integrin
refers to their function of integrating the cells' exterior, extra-
cellular matrix to the cells' interior, cytoskeleton. Sequencing
of the human genome has revealed as many as 24 ·- and 9 ß-
subunits (2). Among them are the newly identified 6 ·- and 1 ß-
subunits, however, their existence has not yet been firmly
established. Currently, 24 functional heterodimers of different
composition are known to be generated in humans and
expressed on a variety of cell types, i.e. epithelial cells, endo-
thelial cells, fibroblasts, hematopoietic cells, neurons and
muscle cells (1,3). In these tissues integrins serve to modulate
many aspects of cell behavior, including adhesion, cell
shape, motility, survival, proliferation and differentiation.
Signals transduced via integrins are essential for embryonic
development, tissue regeneration, immune defense and tumor
progression.

The combination of the ·- and ß-subunits determines the
ligand specificity of the integrin. Despite the fact that many
integrins have binding specificities for the same ligands, the
loss of almost any integrin subunit leads to biological defects
in knockout mice. These defects vary from subtle imperfec-
tions, as in the ·1-knockout mouse to severe abnormalities in
several ·- or ß-subunit knockout mouse strains, resulting in
lethality at embryonic stages or shortly after birth (4-7).

The integrin-stimulated signaling pathways are similar to
those triggered by growth factor receptors and are intimately
coupled with them (reviewed in ref. 8). Many cellular responses
to soluble growth factors, such as epidermal growth factor
(EGF), platelet-derived growth factor (PDGF) are dependent
on the cells being adherent to a substrate via integrins (4).
Additionally to the classical ‘outside-in signaling’, integrins
function as bidirectional signaling receptors. Their activity can
also be modulated through a yet incompletely understood
‘inside-out signaling’ mechanism, which involves the propa-
gation of conformational changes from the cytoplasmic tails
across the membrane towards the ligand-binding region (9).
Integrins have been described by Hynes (4) as signal trans-
duction receptors, which are at least as significant to cells as
more traditional growth factor receptors.

In human epidermis, integrin expression is restricted to the
basal layer. It is down-regulated as keratinocytes move through
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the suprabasal layers and undergo terminal differentiation. The
most abundant constitutive integrins in the epidermis are ·2ß1,
a receptor for collagen, and ·3ß1 and ·6ß4, receptors for
laminins. The ß1 containing integrins localize to focal contacts
and are distributed over the basal, lateral and apical surfaces
of basal cells. The ·6ß4 integrin is primarily concentrated at
the basement membrane zone. It localizes to hemidesmosomes
and appears as large patches organized in ring-like structures.
In addition to its adhesive functions, integrins in the skin
have been identified as important regulators of epidermal
homeostasis, influencing the balance between keratinocyte
proliferation and differentiation (10-12).

2. Integrin ß4 - genomic and structural organization

According to the HUGO Gene Nomenclature Committee
(www.gene.ucl.ac.uk/nomenclature/) ‘integrin ß4’ is the
official name of the protein. Less frequently used alternate
names are CD104 antigen or GP150. The human ITGB4
gene is located on chromosome 17q25. It spans about 28 kb
and contains 41 exons (Genebank acc. no. Y11107) (13,14). 

Untranslated DNA sequences in the first exon precede the
translated sequences in 5' region. The initiation codon and the
amino acid residues of the signal peptide are entirely contained
within exon 2. Fifteen exons ranging in size from 24 to 265 bp
encode the NH2-terminal extracellular region of the poly-
peptide composed of 710 amino acids and containing a 4-fold

of a cysteine-rich motif similar to those of other integrin ß
subunits and displaying high sequence homology with the
epidermal growth factor-calcium-binding motif (EGF-CB) (14).

The short 23-amino-acid transmembrane region is encoded
by the 18th exon and the long cytoplasmic tail of the COOH-
terminus, approximately 1000 amino acid long, is distributed
within the last 23 exons (14-16). The uniquely long intra-
cellular domain of integrin ß4 bears no homology with cyto-
plasmic tail of other ß subunits (15). It contains binding sites
for plectin and bullous pemphigoid antigen 180 (BP180) and
two pairs of fibronectin type III-like repeats. Each repeat is
encoded by two distinct exons, as in the fibronectin gene. 

Most of the known functions of the cytoplasmic tail, such
as the localization of ß4 in the cell membrane and recruitment
of plectin, reside in the first pair of fibronectin III domain and
the first 36 amino acids of the connecting segment (17,18). The
cytoplasmic tail of integrin ß4 contains also a calx-ß motif,
which is commonly present in the cytoplasmic domain of Na-
Ca exchangers, where it overlaps domains used for calcium-
binding and regulation. Its functional role for integrin ß4
remains unclear (19).

The molecular weight of integrin ß4 subunit is about
202 kDa. In addition to the most common form of integrin
ß4, a number of integrin ß4 variants have been described.
Some are generated by proteolytic processing of the mature
form of the ß4 polypeptide, while others are translated from
an alternatively spliced pre-mRNA. For the cytoplasmic
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Figure 1. Hemidesmosomes are dense cytoplasmic plaques that mediate the attachment of epidermal cells to the underlying dermis by connecting the
extracellular anchoring filaments (laminin) of the basement membrane with the cytoskeletal intermediate filaments. Clusters of integrin ·6ß4 form the core of
hemidesmosome along with BP180 and tetraspan CD151 protein. Plectin and BP230 belong to the plakin family of proteins and contain intermediate
filament-binding domains.
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domain of integrin ß4 five (A-E) splicing variants have been
described, with ß4A being the most abundant variant. The ß4B
and ß4C contain insertion in the connecting segment of 53 and
70 amino acids, respectively. The ß4D variant carries a 21-bp
deletion within intron 38 and ß4E has a cytoplasmic domain
of only 232 amino acids (20-23).

Integrins ß4A and ß4B demonstrated similar ability to
associate with hemidesmosomal components. The splice
variants ß4B and ß4C were detected at a constant ratio in a
subset of analyzed human tissues (23). Undifferentiated human
intestinal crypt cells in contrary to differentiated cells, which
express a full length integrin ß4A, express a novel integrin
ß4A subunit lacking the intracellular COOH-terminal segment.
This new variant associates with integrin ·6 but is not
functional for adhesion to laminin-5 (24). Function and
detailed characteristics of these minor ß4 variants remain to
be elucidated.

3. Integrin ß4 - expression and hemidesmosome formation

Integrin ß4 transcription is regulated from a promoter region
characterized by a high G/C content and lack of TATA and
CAAT boxes (25). Data base analysis of the 5'-flanking
sequence of the integrin ß4 gene revealed the presence of
several putative-binding sites for transcription factors, including
AP1, Ets, MyoD, NFκB, and Sp1. Functional assays indicated
that AP1 and Ets cooperate and activate integrin ß4 expression.
Among the transcription factors comprising AP1, to integrin
ß4 promoter bound c-Jun, JunB, JunD and a fos family
protein, Fra-2 (25). Consistent with the differentiation-specific
appearance of various AP1 transcription factors, JunB, JunD
and Fra-2 are all expressed in proliferating basal keratinocytes,
where integrin ß4 is also detected (26).

Additionally, integrin ß4 expression was shown to be up-
regulated by EGF or re-expression of integrin ß1 and down-
regulated by c-Myc activation and high calcium concentration
(27-30). Expression of integrin ß4 was also down-regulated
by human chorionic gonadotropin (hCG) in human endometrial
adenocarcinoma cell line or acute hyperglycaemia in human
endothelial cells (31,32). However, the intracellular signaling
pathways involved in the regulation of integrin ß4 expression
remain poorly understood.

All cells that express ß4 also express integrin ·6 subunit.
Integrin ß4 associates solely with integrin ·6 to form a receptor
for most of the known basement membrane laminins, binding
to laminin 5 with the highest affinity (33). Integrin ·6ß4 is
expressed on epithelial cells, such as keratinocytes, endothelial
cells and epithelial cells lining the gastrointestinal, respiratory
and genitourinary tracts, but also on thymocytes, where its
density parallels thymocyte maturation. Expression of integrin
·6ß4 was also detected on Schwann cells and fibroblast in
the peripheral nervous system, where the ·6ß4 is involved in
ensheathment and myelination of axons (34-38). Integrin ·6ß4
has also been found on human first-trimester trophoblast
and term placenta (39). During embryonic development and
differentiation, integrin ·6ß4 plays an important role in tissue
and organ morphogenesis (40-43).

In epithelia, ·6ß4 is typically concentrated at the ventral
surface of the cells opposed to the basal membrane zone in
specialized adhesion structures, called hemidesmosomes

(Fig. 1). They are implicated in the stable attachment of the
basal cells to the underlying basement membrane by
connecting the intermediate keratin filaments with the extra-
cellular matrix. Based on structural constituents, two subtypes
of hemidesmosomes are distinguished. Type I or classical
hemidesmosomes are present in basal keratinocytes of
stratified squamous epithelia. At the core of the hemides-
mosome is ·6ß4 integrin, accompanied by cytoplasmic
proteins, such as plectin, bullous pemphigoid antigen 180
(BP 180), transmembrane bullous pemphigoid antigen 230
(BP 230) and tetraspanin CD151 (44-46). Type II hemides-
mosomes also termed hemidesmosome-like structures contain
only ·6ß4 and plectin and are found in simple epithelia and
cultured epithelial cells (47,48).

Intracellularly, integrin ß4 interacts with the intermediate
filament system, i.e. keratin filaments in epidermal cells or
vimentin filaments in endothelial cells (49,50). In vitro, ·6ß4
is also found on the leading lamellae of a migrating cell in
association with filamentous actin (51).

4. Integrin ß4 - role in keratinocyte adhesion and migration

Generation of mice lacking ß4 integrin underscored its
importance in cell adhesion to the underlying basement
membrane. Mice with targeted deletion of the ß4 subunit
died shortly after birth and displayed extensive detachment
of the epidermis and other epithelia normally expressing
·6ß4. The effect was most pronounced in the gastrointestinal
tract (40,41). When integrin ß4 was missing, ·6 integrin was
barely detectable in mouse skin, suggesting that in the absence
of ß4, ·6 is unstable. Hemidesmosomes were completely
absent in the ß4 null mouse keratinocytes and despite the
presence of other components of hemidesmosomes such as
BP180 and BP230, the keratin filaments failed to attach to the
basal membrane (40,41).

Humans who have mutations in ß4 integrin gene develop
junctional epidermolysis bullosa with pyloric atresia (JEB-PA),
an autosomal recessive disorder with a high mortality rate. In
addition to severe blistering at the dermo-epidermal junction
in epidermolysis bullosa with pyloric atresia, recurrent erosions
occur in the gastrointestinal and genitourinary tracts as well as
in the cornea and the respiratory tract (52).

Patients with the lethal variant of the disorder usually have
mutations leading to premature termination of integrin ß4,
whereas missense mutations rather lead to nonlethal pheno-
types (53). Immunofluorescent studies of affected skin revealed
negative staining for integrin ß4 in lethal cases and positive but
attenuated staining in nonlethal cases (53). The phenotype is
strongly influenced by the position of the mutation in the
protein functional domains. Lethal variant of JEB-PA has
been described in a patient with homozygous in-frame 33-bp
deletion in the ITGB4 gene. It has been hypothesized that the
deletion interferes with folding of the mutated protein leading
to its rapid degradation (54).

Recently, a 2 bp-deletion encompassing the third fibronectin
III repeat in the cytoplasmic domain of integrin ß4 was shown
to be clinically pathogenic and manifested by the predominant
features of epidermolysis bullosa simplex (EBS) (55).

Analyses of the human and mice tissues lacking integrin
ß4 indicated that other epidermal integrins seem unable to
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compensate for the loss of ·6ß4 in providing the strong cell-
substratum adhesion necessary to anchor the epidermis to the
skin. The weak adhesion that does occur in the absence of ·6ß4
is most likely attributable to integrin heterodimers containing
integrin ß1 subunit, but this is not sufficient to withstand the
extensive traumas to which the skin is routinely subjected.

Recent studies have demonstrated a novel and apparently
contrasting function for integrin ·6ß4 in the migration of
epithelial cells. These findings revealed that in response to
migratory stimuli, hemidesmosomes are disassembled and
integrin ·6ß4 associates with filamentous actin and localizes
at the leading edge of a migrating cell in actin protrusions. It
has been shown that integrin ß4 has the ability to promote
formation and stabilization of the membrane protrusions
associated with migration, as antibody-specific for ·6ß4
inhibited the formation of filopodia and lamellipodia and
inhibited cell migration (51). The observation that ·6ß4
interacts with actin filaments suggested that it could transmit
forces to the substrate generated by the acto-myosin system.
This hypothesis was confirmed by the results of traction-force
detection assays, indicating that the traction forces were exerted
directly through ·6ß4 in cells plated on laminin or on anti
·6ß4-antibody, without the need to engage other integrins.
The ·6ß4-dependent forces were organized into the com-
pression machine localized at the base of lamellae. Thus, in
this way integrin ·6ß4 may remodel the basement membrane
components and this ability of ·6ß4 could have important
implications for the mechanism of cell migration and invasion
(56).

Recently, it has become clear that self-association of the ß4
cytoplasmic domains is capable of ligand-independent signal
transduction influencing migration of carcinoma cells. This
possibility implies that ß4 signaling is not strictly limited to a
specific matrix environment and might also occur on non-
laminin substrates. In these cases, integrin ß4 might be phos-
phorylated after activation of the cells by growth factors (51). 

The central molecule regulated by ß4 and implicated in
epithelial motility is phosphatidylinositol 3'-kinase (PI-3K).
In breast carcinoma cell lines, activation of PI-3K by integrin

·6ß4 took place in cells expressing also erbB2, a receptor of
the EGFR family. This finding indicated that cooperation of
integrin ·6ß4 with a specific growth factor receptor is required
for PI-3K activation. Alternatively, activation of PI-3K was
shown to involve the insulin receptor substrates (IRS-1 and
IRS-2) and the tyrosine residue (Y1494) located at the third
fibronectin type III repeat of integrin ß4 cytoplasmic tail
(Fig. 2) (51,57). Activation of PI-3K by ·6ß4 may stimulate
the function of other integrins, especially ·3ß1, that are
important for epithelial migration. Additional signaling
pathways by which ·6ß4 stimulates cell migration are mitogen-
activated protein kinase (MAPK) and Rac and RhoA GTPases
(51,57). 

Integrin ß4 was initially identified as a tumor-associated
antigen (TS180) associated with metastasis. However, given its
widely known function of mediating adhesive contacts in
epithelia, this role of integrin ß4 was long not anticipated (58).
Expression of integrin ß4 is maintained or even increased in
several types of invasive and metastatic carcinoma and the
expression level often correlates with tumor aggressiveness
(57). In the skin, an association between enhanced ß4 integrin
expression and tumor progression has been demonstrated for
squamous cell carcinoma (59,60). In a usually non-metastatic
basal cell, carcinoma of the skin ß4 integrin expression is
reduced (61,62). 

5. Integrin ß4, role in keratinocyte growth and differen-
tiation

Several observations indicate that ·6ß4 integrin is implicated
in transducing signals from the extracellular matrix that do
not only control the cytoskeleton organization and assembly
of hemidesmosomes but also influence cell proliferation,
survival and differentiation (63). In normal undamaged
epidermis the expression of ·6ß4 is restricted to the basal cell
layer, which contains cells endowed with proliferative capacity
(10,34). As cells leave the basal layer, hemidesmosomes
disappear and no integrins are expressed (12). It is also known
that epidermal stem cells are more adhesive to the extra-
cellular matrix than their transit-amplifying daughter cells,
committed to differentiation (64). Thus, the restricted integrin
ß4 expression pattern implies its involvement in the regulation
of cell proliferation.

Keratinocytes exit the cell cycle and begin their differ-
entiation program when they detach from the basement
membrane to migrate to the upper epidermal layers (65). This
process could be replicated in vitro by depriving cultured
keratinocytes of anchorage to their endogenously produced
matrix, which is rich in laminin-5, a ligand for ·6ß4 integrin
(66).

A proposed ·6ß4-mediated signaling cascade affecting
keratinocyte proliferation seems to lead via the activation of
Ras-MAPK pathways. Activation of ·6ß4 in response to
ligation and adhesion leads to recruitment of Shc, Grb2 and
Sos, activation of Ras and stimulation of the MAPK, Jnk and
Erk signaling cascades (67). The tyrosine residue (Y1526)
located in the third fibronectin type III repeat of integrin ß4
was reported to be the binding site for Shc (Fig. 2) (51).

Signaling through ·6ß4 has also been proposed to be
independent of its adhesive functions due to its ability to

OLDAK et al:  INTEGRIN ß4198

Figure 2. Integrin ·6ß4 signaling. Details in text.
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interact with activated receptor tyrosine kinases, i.e. EGF
receptor or Met. In this model the cytoplasmic domain of
integrin ß4 becomes phosphorylated by the activated receptors
and serves as an amplifier of their mitogenic and motogenic
signals (reviewed in ref. 68).

The primary effect of complete ß4 integrin deletion is
massive epidermal blistering associated with degeneration.
The epidermal regions that remain attached to the basement
membrane also contained cells presenting signs of
degeneration similar to those described when keratinocytes
could not adhere to their substratum (40). These data implied
that survival of mitotically active cells of stratified squamous
epithelia is dependent upon ß4 integrin, whereas its lack
makes the cells susceptible to degeneration. 

Furthermore, Murgia et al (69) found that keratinocytes
from mouse embryos carrying a targeted deletion of the
cytoplasmic tail of the ß4 subunit display a significant
proliferative defect. However, according to Di Persio et al
(70) decrease of keratinocyte proliferation was not observed
in ß4-null embryos.

In addition, Raymond et al (71) have recently shown
using a conditional knockout mouse strain, in which the
integrin ß4 gene was inactivated only in small stretches of
skin, that epidermal differentiation and proliferation was
normal in the absence of integrin ·6ß4 provided that cell
adhesion was not compromised. They concluded that there is
no evidence for a role of ·6ß4 integrin in controlling cell
proliferation and survival which is independent of its
adhesive function (71).

In human hyperproliferative skin pathologies, for example
during wound healing, in psoriatic lesions or in squamous
cell carcinoma, integrins have an aberrant expression pattern
and beside the basal cell layer appear also in suprabasal
differentiating cells (11). Recently, it has been demonstrated
that the suprabasal ·6ß4 expression has positive influence on
the susceptibility of keratinocytes to chemical carcinogenesis.
In response to treatment with a phorbol ester tumor promoter,
the suprabasal ·6ß4 integrin enhanced the proliferative
response of basal cells leading to the formation of papillomas
and carcinomas. The effect of suprabasal ·6ß4 on cell
proliferation involved disruption of TGF-ß-mediated growth
inhibition by suppressing nuclear translocation of activated
Smad2/3 proteins. It has been shown that for the inhibition of
TGF-ß signaling suprabasal ·6ß4 integrin required PI-3K
activity and E-cadherin-mediated cell-cell adhesion (72).

In case of carcinoma cells, ·6ß4-mediated signals appear
to have different effects on cell behavior depending on the
cell type and their differentiation status. For example, in a
keratinocyte-derived A431 human epidermoid carcinoma cell
line activation of ·6ß4 with a monoclonal antibody directed
against ß4 protected the cells from apoptosis through activation
of PI-3K and Akt kinase signaling pathway (73). In squamous
cell carcinoma-derived HPV-18 positive HeLa cells ligation
of ·6ß4 by laminin 5 promoted transcription from the fos
serum response element and cell proliferation (67). Similarly,
expression of ·6ß4 on epithelial cells lines derived from colon,
breast and thyroid carcinomas positively correlated with
proliferation. On the contrary, expression of the ß4 subunit in
the rectal or gastric carcinoma cells was associated with
apoptosis induction (reviewed in ref. 74).

6. Integrin ß4 and human papillomaviruses

Human papillomaviruses (HPVs) induce a wide spectrum of
epithelial proliferative lesions ranging from benign warts to
invasive carcinoma (75). The targets of HPV infection are
stratified epithelia at different anatomical sites. According to
the preferred site of tropism, two categories of HPV can be
distinguished, the cutaneous HPVs and the mucosal HPVs.
The latter primarily infect epithelia of anogenital region, oral
cavity or upper respiratory tract (76).

Infection by HPVs is believed to occur through micro-
traumas in the stratified epithelium, exposing the basal cells
to entry for viruses. The receptor for HPV entry has not been
functionally identified. However, the ·6 integrin complexed
with either ß1 or ß4 integrin has been proposed to be the
HPV receptor (77). During wound healing, expression of
integrins is up-regulated in epithelial cells, which makes
them good candidates. Nevertheless, it should be underlined
that no functional studies have yet shown the ·6ß1 or ·6ß4
integrins to mediate HPV entry.

Most lesions induced by HPVs in immunocompetent
individuals are benign warts, which display self-limited growth
and usually regress, spontaneously or after treatment (78). On
the contrary, infection with cutaneous HPV types, i.e. HPV5
and HPV8 is associated with the development of skin
carcinoma in patients suffering from an inherited skin disease,
epidermodysplasia verruciformis (EV) (79,80).

Furthermore, specific mucosal HPV types play a central
role in anogenital carcinogenesis, especially in carcinoma of
the uterine cervix, the second leading cause of cancer-related
deaths in women worldwide (81). Approximately 80% of
cervical cancers are associated with four HPV types, i.e.
HPV16, 18, 31 and 45 (82). Oncogenic genital HPV types,
especially HPV type 16, are also causally associated with a
fraction of vaginal, vulvar, penile, and anal cancers (83).

In vitro study of HPV16 oncogene E6/E7-immortalized
esophageal keratinocytes revealed a lower level of integrin
ß4 in these cells. Reduced expression of ß4 integrin led to
more rapid proliferation and anchorage-independent growth
potential, which was interpreted by the authors as a critical
step in malignant progression (84).

In situ studies of vulvar warts and neoplasia of the uterine
cervix gave different results. In vulvar warts associated with
HPV infection up-regulation of integrin ß4 expression was
detected. In these lesions, expression of ß4 integrin was
found at the periphery of basal cells, in epibasal and spinous
layers of warts (85).

Immunohistochemical analysis of integrin ß4 expression
pattern in cervical intraepithelial neoplasia revealed its presence
in the upper cell layers of cervical epithelium. The extent of
extrabasal staining for integrin ß4 corresponded with the grade
of cervical intraepithelial neoplasia (CIN) (86,87). Similar
results were obtained in HPV-associated cervical intraepithelial
neoplastic lesions. In this study, high expression of integrin ß4
was found in HPV16-associated CIN III and invasive tumors
as compared with low integrin ß4 levels in CIN I and II (88). In
the analyzed lesions, expression of integrin ß4 reversely
correlated with the presence of viral E2 transcripts.

The papillomavirus E2 protein is a transcription factor
involved in regulation of viral replication and transcription.
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E2 functions predominantly as a repressor of viral E6, E7
oncogene expression in the mucosal high risk HPVs. The E2
open reading frame is disrupted in HPV-induced cervical
carcinoma as a result of viral genome integration into the
cellular genome. Loss of E2 leads to up-regulation of viral
oncogene E6 and E7 transcription, an event considered to
play a key role in cellular transformation (89).

Recently, we have found that the E2 protein from cutaneous
HPV8 and mucosal high risk HPV18 is an important regulator
of human integrin ß4 expression. Expression of HPV8 or
HPV18 E2 protein in human keratinocytes led to a dose-
dependent reduction of integrin ß4 expression. In case of
HPV8 E2, the suppression at least partially resulted from
direct interactions between E2 and the human integrin ß4
promoter (90). 

We hypothesized that in papillomavirus infection, down-
regulation of integrin ß4 may provide a signal inducing
differentiation and enabling the virus to begin its productive
life cycle, which takes place exclusively in the suprabasal
layers of stratified epithelia. Loss of E2 expression as a result
of progression of HPV-induced lesions towards malignancy
may lead to deregulation of integrin ß4 expression and its
appearance in the suprabasal layers. The mechanism involved
in the aberrant expression pattern of integrin ß4 as shown for
high grade CIN lesions (88) still has to be defined.
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