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Gastrointestinal cancer - only a deregulation
of stem cell differentiation? (Review)
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Abstract. Recent research on embryonic and adult stem
cells questions the currently accepted models of multi-step
carcinogenesis in solid cancer. Accordingly, differentiated
epithelial cells are considered to be the main target for
mutational steps, leading to a growth and survival advantage
of malignantly transformed cells. In contrast, the stem cell
model of carcinogenesis emphasizes the role of stem cells as
the initiating structure for tumor development. Yet, it is unclear
if tumors contain dysregulated (embryonic) stem cells or if
tumors consist of differentiated adult cells that obtained a
de-differentiated stem cell-like phenotype. Here, we review the
current knowledge on the roles of stem cells in gastrointestinal
cancer formation and the implication on future diagnostic and
therapeutic strategies.
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1. Introduction

Gastrointestinal malignancies are among the most frequent
cancer diseases in men and women and represent leading
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causes of cancer-related deaths worldwide (1,2). Especially
colorectal (3,4), liver (5) and pancreatic cancers (6) still remain
urgent medical problems. Although some progress has been
made in treatment of early disease stages, advanced and
metastasized carcinomas can only be treated palliatively.
Several risk factors like infectious agents (e.g. Hepatitis C
virus), chronic inflammation (e.g. colitis ulcerosa or chronic
pancreatitis) or genetic predispositions (e.g. familial forms of
colorectal cancer such as familial adenomatous polyposis)
have been identified in the past. Additionally, different
genetic changes like activation of oncogenes as well as
genetic or epigenetic inactivation of tumor suppressor genes
were commonly observed in several cancer types, leading to
the postulation of the so-called multistep carcinogenesis
models (7,8). While these models are attractive in supporting
morphologic and molecular diagnosis at early stages, they
fail to explain several commonly observed features of tumor
development and progression, dissemination or relapse.

2. The current concept: multistep carcinogenesis

The present textbook knowledge of tumor development
favors the consecutive accumulation of oncogenic events in
preneoplastic cells that finally leads to a malignant phenotype.
In these models, several activating mutations in cellular proto-
oncogenes as well as the genetic or epigenetic inactivation of
tumor suppressor genes lead to a stepwise alteration of the
morphologic appearance of normal epithelium to dysplasia,
adenoma or intraepithelial premalignant lesions, and finally
to invasive carcinoma (Fig. 1). Several distinct oncogenic
pathways are commonly altered during the course of this
development, e.g. changes in B-catenin/Wnt-signaling,
inactivation of endogenous cell cycle regulators such as Rb
or pl6™“ re-activation of telomerase or mutations in K-ras
or p53. These genetic or epigenetic events lead to the
acquisition of growth promoting features defined as the
‘hallmarks of cancer’ by Hanahan and Weinberg in their
outstanding review (9). In particular, these include: 1) the
independence of the tumor cell to growth-regulating signals
(e.g. constitutive activation of K-ras by point mutations in
codon 12; mutations in p53 or Rb) (10-18), 2) deficiency in
apoptosis (e.g. overexpression of bcl-2) (19-24), 3) tissue
remodeling and metastasis (e.g. B-catenin/Wnt) (25-29), 4)
unrestricted proliferation (activation of telomerase) (30-32)
and 5) induction of neo-angiogenesis (e.g. by autocrine or
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Figure 1. Model for multistep carcinogenesis in colorectal and pancreatic cancer development. Modified schematic overview over the current models of
colorectal (7) and pancreatic (8) cancer development. Several oncogenic events are acquired during malignant transformation which provide a survival and
growth advantage for the transformed cell, leading to the functional state of a cancer cell (9). The genetic events depicted here are variable in different tumor
entities and some of the morphologic or genetic features can also be omitted during tumor development.

paracrine secretion of VEGF) (33-35). It is important to note
that during this process of malignant transformation not all of
these steps have to be fulfilled and that there is a huge variety
of possibilities for the timing and the order of the above
described genetic or epigenetic changes. Additionally, these
multistep models should not be considered as a linear process
but should be viewed as a non-linear dynamic network of
intertwining and interdependent steps of malignant trans-
formation (36,37).

3. Constraints of multistep models

The acquisition of several mutations that synergistically
provide the epithelial cell with a growth advantage is of low
statistical probability as the differentiated epithelium in the
gastrointestinal tract is predominantly in the G, state of the
cell cycle. Most of the genetic material is present as tightly
packed and highly organized chromatin in the center of the
nucleus, thus being protected from mutational influences, e.g.
by irradiation or chemical carcinogens. Additionally, most
genetic programs regulating cell growth and migration are
inactivated during differentiation and maturation (38-40) and
can be rescued by numerous redundant pathways. Gastro-
intestinal epithelia, especially of large and small intestine, are
regenerated by asymmetric division of peripheral stem cells
at the crypt basis, giving rise to a small number of highly
proliferating progenitor cells that migrate and differentiate
to terminal epithelial cells in a course of 2-3 days. Overall, the
life-time of differentiated epithelial cells is limited to about
7-10 days in humans, which further decreases the statistical
probability for acquiring targeted mutations (41-43).

Recent research efforts therefore focused 1) on the role
of long-living and persistent stem and progenitor cells during
carcinogenesis, an already accepted concept for hematopoietic
neoplasias (44-46), but 2) also on the possibility of trans- or
de-differentiation of mature cells during carcinogenesis
(44.47-49).

4. Stem cells in the gastrointestinal system

The organs of the gastrointestinal system possess a high
capability of continuous tissue regeneration (e.g. mucosa of
small and large intestine) or in response to acute or chronic
injuries or inflammatory conditions (e.g. chronic helicobacter
pylori gastritis; inflammatory bowel diseases, such as colitis
ulcerosa; chronic viral hepatitis). These processes are largely
maintained by a stable pool of peripheral stem cells that are
tightly regulated in their proliferative capacity and give rise
to a pool of highly proliferating progenitor cells (42,43,50).
These progenitor cells already lost some of the key features of
true stem cells, predominantly the capabilities to asymmetric
self-renewal and limitless replication with extended life span.
Intestinal stem cells are phenotypically characterized by nuclear
expression of B-catenin (51) and of the RNA-binding protein
Musashi-1 (52-54). These factors are involved in Wnt/APC-
and Notch-signaling, respectively, which have also been
shown to be important pathways for colorectal carcinogenesis
(29,55-58). Some other factors identified in stem cell
differentiation and carcinogenesis are Oct-4, Notch, bone
morphogenic protein (BMP), janus family kinase (JAK) or
sonic hedgehog (Shh) (9,44,58-60) in different anatomic
gastrointestinal sites indicating the close relationship between
the tightly regulated physiologic process of stem cell main-
tenance and differentiation and the dysregulated malignant
transformation. During embryonic development, but also
during the process of cell maturation and migration from the
colonic crypt basis, stem cells and their offspring are able to
induce angiogenesis and matrix remodeling (60).

A population of progenitor cells has been identified in
different forms of liver regeneration and has also been
associated with the development of hepatocellular carcinomas.
These so-called oval cells form a distinct population in the
periductular region of the liver lobules and express markers
specific for hepatocytes (e.g. AFP, albumin), as well as
biliary tract markers such as cytokeratin 19 or y-GT, and
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Figure 2. Tissue and stem cell plasticity. True stem cells have the capability of self-renewal and asymmetric division into a resting stem cell and an already
committed progenitor cell, which can either give rise to one or to multiple cell types, and has only a limited capacity of self-renewal. Trans-differentiation
describes the re-programming of progenitor cells to form different cell types or tissues, while de-differentiation denotes the acquisition or re-activation of
immature (stem or progenitor) cell capabilities to give rise to new phenotypes. Adapted from (49,60).

classical bone marrow markers like Thy-1, CD34, c-kit or
flk-2 (61). In addition to this phenotypic characterization,
experimental evidence from rodents and humans shows that
bone marrow cells are capable of repopulating the liver (62-64)
and that these progenitor cells are involved in different
liver diseases such as hepatocellular carcinoma or cirrhosis
(65-69). The notion of bone marrow-derived cells contributing
to peripheral tissue maintenance in the gastrointestinal tract
has been strengthened by observations of female patients
receiving a mixed-sex bone marrow transplantation from male
donors. Differentiated Y-chromosome-positive cells have
been detected in various organs of the gastrointestinal tract
(64,70,71). Yet, the exact mechanism of how bone marrow-
derived cells support peripheral tissue regeneration is still
under debate and several models (e.g. cell fusion, trans-
differentiation, de-differentiation, phenocopying) are
controversially discussed in the literature (47,60,72) (Fig. 2).

5. Contribution of stem (cell-like) cells in gastrointestinal
carcinogenesis

Comparing the properties of cancer cells and (embryonic) stem
cells, there seem to be more similarities than differences and
of course, more similarities than to resting and differentiated
adult cells (Fig. 3). Therefore, two main questions arise: 1) Do
stem cells really participate in tumorigenesis and 2) are these

cells true stem cells or de-differentiated adult cells with a
temporary stem cell-like phenotype?

Morphological comparisons between gastrointestinal
embryogenesis and carcinogenesis displayed a similar
patterning, i.e. organized arrangement of cells and tissues.
In the colon, embryologic development is characterized by
the buildup of primitive tubules. Adenomas and adeno-
carcinomas of the colon show the same pattern with tubular
branching imitating colon embryology in an apparently
uncontrolled fashion (73,74).

These findings are further supported by the observation
that relevant markers of embryogenesis are expressed in
early or late stages of gastrointestinal tumorigenesis. While
cytokeratin 7 (CK7) is abundantly expressed in the fetal
stomach, it is barely detectable in adult gastric tissue. Yet,
during gastric carcinogenesis, a neo-expression of CK7 is
observed. These cells are considered as de-differentiated
cells resembling a stem cell-like phenotype (75). Similar
results regarding the nuclear expression of B-catenin were
obtained from colorectal adenomas (73). In pancreatic cancer
development, re-expression of the pancreatic duodenal
homeobox gene 1 (PDX-1), a regulator of exocrine/endocrine
development during embryogenesis, is commonly observed
(76,77). A further regulator of embryonic gut development is
the family of Hedgehog (Hh) proteins that is required for
correct specification and patterning (78). Especially, expression
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Figure 3. Schematic comparison of tumor and stem cell properties. Both cell types posses growth-promoting features that distinguish them from terminally
differentiated cells. It is thus conceivable that tumors either harbor a stem cell population with reactivated embryonic properties or that epithelial cells
dedifferentiate to a more stem cell-like phenotype by the acquisition of several genetic or epigenetic events.

of Sonic Hedgehog (Shh) has been attributed to gastro-
intestinal stem cells and its overexpression has now been
described in colorectal, pancreatic and other digestive tract
tumors (79-83). The expression of early markers of hepatic
development has been observed in dysplastic foci of the liver
and in hepatocellular adenomas. This has been linked to the
presence of hepatic progenitor cells or the fusion of
progenitor cells with mature hepatocytes, but not to the
reactivation of embryonic programs in differentiated liver
parenchyma (84-86).

Recently, a novel class of non-coding RNAs, the so-called
micro-RNAs (miRNA), have been identified as important
regulators of gene expression, cellular differentiation and
survival (87,88) and might be involved in tumorigenesis by
dysregulating oncogenes such as ras (8§9-95). However, the
exact meaning and impact of miRNAs on stem cell biology,
differentiation, and cancer development remains to be
clarified.

In summary, the processes of determination in embryonic
differentiation as well as in gastrointestinal carcinogenesis
are relevantly influenced by various signaling pathways
(e.g. Wnt/B-catenin, sonic hedgehog proteins). Additionally,
morphology studies showed major morphological similarities
and analogies of these two scenes. Overall, tumor cells display
morphological phenotypes and molecular markers of early
embryonic development with the complete, possibly dangerous,
potency of this de-differentiation status. Besides the classical
hallmarks of cancer such as proliferation, apoptosis, tissue
remodeling and metastasis as well as induction of neo-
angiogenesis, it seems that de-differentiation and re-activation
of embryonic-signaling pathways plays an additional role
in gastrointestinal carcinogenesis. With reference to our
questions at the beginning of this paragraph, we suggest that
de-differentiation processes are essentially involved in this
process, as it is not possible to distinguish embryonic from
adult stem cells with our currently established techniques.

Several studies revealed a relevant and reciprocal inter-acting
association between the hallmarks of malignancy, treatment
outcome and patient survival with markers of differentiation,
e.g. the Wnt/B-catenin pathway (96-98), which could be used
for novel targeted approaches.

6. Modulation of differentiation status of gastrointestinal
tumors

Presuming that human gastrointestinal tumors resemble
de-differentiated states of embryonic or adult stem cells, it will
be an interesting therapeutic approach to induce differentiation
of these tumor cells into normal resting adult cells or to reduce
the malignant potency of de-differentiation.

Several classes of differentiation modulating agents have
been examined and tested in pre-clinical or clinical settings.
Among these, natural or synthetic derivatives of retinoic
acids (e.g. all-trans retinoic acid, ATRA), epigenetic
modulators such as the DNA methyltransferase inhibitor
zebularine, inhibitors of histone deacetylases like suberoy-
lanilide hydroxamic acid (SAHA) or Trichostatin A (TSA), as
well as ‘specific’ inhibitors of WNT/B-catenin or hedgehog-
signaling-like cyclopamine, are the most prominent. Besides
inhibition of proliferation and induction of apoptosis, retinoids
interact with nuclear receptors forcing differentiation of cells
in several non-gastrointestinal malignancies such as acute
promyelocytic leukemia, teratocarcinomas and different solid
tumors (e.g. squamous cell carcinoma and breast carcinoma)
(99). Several natural and synthetic derivatives are currently
tested in clinical trials. Additionally, retinoids have the
potential of chemoprevention (100). Epigenetic modulators
(e.g. zebularine or SAHA) regulate gene transcription via
inhibition of DNA methylation or deacetylation of lysine
residues in core histones. Hypermethylation and hypo-
acetylation are observed in many solid tumors, especially in
gastrointestinal tumors. These phenomena have been linked
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Figure 4. Morphologic and molecular stabilization of pancreatic cancer xenografts after treatment with epigenetic modulators. Tumor-bearing nude mice were
treated intraperitoneally with the DNMT inhibitor zebularine or the HDAC inhibitor SAHA and parameters of differentiation [cytokeratin (CK) 7] and
embryonic-signaling pathways (pdx-1 and shh) were assessed by immunohistochemistry in paraffin-embedded specimens as described (77; unpublished data)
compared to untreated controls. In short, our experiments show a morphological shift from a solid (controls) to a more ductal phenotype (zebularine, H&E-staining),
associated with an upregulation of CK7 and PDX-1 and a downregulation of SHH.

to the inactivation of tumor suppressor genes (e.g.
transcriptional repression of pl16™4 by promoter hyper-
methylation), while the inactivation of genes by these processes
is also commonly observed during embryogenesis and cellular
differentiation. In vitro and in vivo experiments confirmed
that these two classes of drugs (inhibitors of DNA methylation
and histone deacetylation) have anti-proliferative and pro-
apoptotic capabilities as well as pro-differentiation potency
(101-104). Our experience with zebularine and SAHA
confirmed earlier findings, that these compounds have anti-
proliferative and pro-apoptotic effects (105). Additionally,
pancreatic carcinoma xenografts in nude mice show a morpho-
logical and molecular stability after this treatment, especially
regarding the expression of different cytokeratins or PDX-1
(Fig. 4) (77; unpublished data). Different agents (e.g. cyclo-
pamine or sulindac) have been identified which selectively

inhibit components of the Wnt/B-catenin or hedgehog signaling
pathways; thus, inhibiting proliferation and inducing apoptosis
and differentiation (106). These results indicate that inter-
ference with these embryonic pathways, which represent
early changes during the process of carcinogenesis, might be
promising approaches for the development of future therapies.

7. Summary and future directions

The challenge is to gain better understanding and deeper
knowledge on mechanisms and impact of differentiation and
its dysregulation in the process of malignant transformation of
embryonic or adult stem cells. As current therapy options aim
at tumor cells at the end of a differentiation process, novel
therapies should concentrate on the other side of this scale,
i.e. early changes in stem cell-like tumor progenitor cells that
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could revert the instability of the differentiation status and
lead to a phenotypic stabilization.
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