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Gene expression in mouse spermatogenesis during ontogenesis
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Abstract. In this study, we evaluated the expression of genes
probably involved in spermatogenesis in the mouse. We
examined cytosolic chaperonin theta subunit (CCT6), Nggl
interacting factor 3 like 1 binding protein 1 (NIF3L1 BP1)
and apolipoprotein H (ApoH) expression during mouse onto-
geny using RT-PCR. Testicular tissue was obtained from mice
3,6,8,10, 12, 14, 18, 20 and 40 (adult) days after birth. For
each mouse, one testis was used for histological examination,
whereas RNA was extracted from the controlateral testis for
expression analysis. RT-PCR analysis showed that CCT8 gene
expression was low until day 10, but increased drastically
afterwards. At this age, spermatocytes started to be present in
the mouse testis. Therefore, CCT protein could be involved in
chromatin packaging and remodeling during spermiogenesis,
as also suggested by other studies. NIF3L1 BP1 expression
increased steadily during ontogenesis reaching maximum
levels in the adult mouse when all germ cell stages are present.
This finding suggests that NIF3L1 BP1 is a gene not expressed
by a specific germ cell type. ApoH expression was very low
or absent during prepuberal stages, whereas it was detectable
in the adult testis when spermatogenesis was completed. This
suggests that ApoH may be involved in clearing apoptotic
bodies during spermatogenesis since apoptotic events increase
during spermatogenesis. This study contributes to under-
standing the role played by genes important for spermato-
genesis.
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Introduction

Spermatogenesis is a complex biological process controlled
by many genes which start acting in the prenatal life and
regulate the production of mature spermatozoa in adults.
Although an important part in spermatogenesis regulation
is played by the so-called azoospermia factor (AZF) genes
located on the Y chromosome long arm (Yqll) (1), other
genes are involved in this process, but the role of some of
them is not known yet (2,3). The aim of many studies has
been to contribute to the understanding of which genes are
important for spermatogenesis. We focused our attention
on the expression of the following three genes: cytosolic
chaperonin 6 subunit (CCT6), Nggl interacting factor 3 like
1 binding protein 1 (NIF3L1 BP1) and apolipoprotein H
(ApoH).

CCT6 and NIF3L1 BP1 are two genes which we found,
by differential display mRNA technique, to be differently
expressed in the testicular biopsy of a patient with obstructive
azoospermia and normal spermatogenesis, utilized as control,
compared with the biopsy of an azoospermic patient with
Sertoli cell-only syndrome (SCOS) and Y chromosome micro-
deletion (AZFb and AZFc regions). RT-PCR results showed
that significant CCT6 and NIF3L1 BP1 expression occurred
in the control testis, whereas a lower expression was present
in the testis of the patient with SCOS.

The human CCT6 gene maps on chromosome 21q22.11.
It codifies a subunit of the hetero-oligomeric molecular
chaperone (CCT), a member of the chaperonin family, which
plays an important role in the refolding of denaturated protein
and in the folding of actively synthesized protein in the
cytosol of mammalian cells (4-7). Soues and colleagues
unveiled two main cytoplasmic localizations of CCT during
spermatogenesis: the centrosome and the microtubules of
the ‘manchette’, a structure unique to male germ cells, both
of which are essential for spermatid differentiation (8).

The human NIF3L1 BP1 gene maps on chromosome
3pl4.1 and encodes a recently characterized protein bearing a
putative leucine zipper domain necessary for interaction with
NIF3L1. This is a protein which prevents NIF3L1 BP1 from
binding DNA (9).
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The human ApoH gene maps on chromosome 17q23. The
gene encodes a serum glycoprotein whose physiological role
has not been clarified. In vitro, there is evidence that this
protein binds anionic phospholipids, platelets, heparin,
DNA and mitochondria (10,11). ApoH is involved in blood
coagulation processes with an inhibitory effect on ADP-
mediated platelet aggregation and on prothrombinase activity
(12,13). In addition, it has a role in lipoprotein metabolism
(14). Although the major site of ApoH synthesis is the liver,
its expression seems to be ubiquitous (15). Our previous study
(15) suggested that ApoH is implicated in membrane re-
modeling, clearing apoptotic bodies (16,17) and proliferation
processes. RT-PCR showed that ApoH gene expression is
up-regulated in human SCOS testis compared with the control.

Altogether these findings suggested that CCT6, NIF3L1
BP1 and ApoH genes may be involved in the regulation of
spermatogenesis. We therefore evaluated their expression in
the mouse testis explanted at different ages. This model was
chosen because murine spermatogenesis is homologous to the
human one and gene products are often similar. In addition,
murine testes have, at different ages, a homogenous germ cell
population (18) which may hint at the possible function of
these gene products.

Materials and methods

Testicular samples. CD1 SPF/VAF mice were sacrificed 3, 6,
8,10, 12, 14, 18, 20 and 40 (adult) days after birth. For each
mouse, one testis was used for histological examination,
whereas RNA was extracted from the controlateral one for
mRNA expression analysis. Animals used in this study were
maintained and sacrificed according to procedure described
in the NIH guide for the care and use of laboratory animals.

Tissue preparation and histological examination. The testes
were excised, decapsulated and immersed in a fixative
containing 2.5% gluteraldehyde and 2% paraformaldehyde
in phosphate buffer pH 7.4 for 2 h at 4°C. After timing,
specimens were post-fixed in 1% osmium tetroxide for 1 h at
4°C. Finally, samples were embedded in Epon resin (TAAB,
UK). Sections (0.7 ym) were stained with Richardson's stain
(19) and examined by light microscopy.

RNA extraction and RT-PCR. Total RNA was extracted from
decapsulated testis by the acid guanidinium thiocyanate method
(20). The concentration of RNA was determined by spectro-
photometry at 260 nm absorbance. The contaminated DNA
was removed by DNAse I (Gibco BRL) digestion. One ug of
total RNA was transcribed into cDNA by incubation at 37°C
for 60 min in 50 mM Tris-HCI pH 8.3, 75 mM KCl, 3 mM
MgCl,, 10 mM DTT, 1 ug random esamers (Pharmacia,
Uppsala, Sweden) and 200 U Moloney murine leucemia
virus reverse transcriptase (RT) (Amersham, Cleveland, OH)
in a total volume of 20 y1. The PCR reactions were performed
in a 50 pI mix containing 1X PCR buffer (Invitrogen), 1.5 mM
of MgCl,, 0.2 mM of each dNTP (Invitrogen), 1 uM of
each primer, 2.5 U of TagDNA polymerase, recombinant
(Invitrogen) and 5 ul of cDNA.

Thermocycling conditions consisted of an initial
denaturation of 5 min at 94°C, 35 cycles of 1 min at 94°C,
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Figure 1. Microphotographs of mouse testicular tissue explanted at different
ages showing a homogeneous cellular populations of Sertoli cells and primitive
type A spermatogonia (6 days) (A), type A and B spermatogonia (8 days)
(B), primary spermatocyte at preleptotene, zhygotene, pachytene stages (10,
12, 14 and 18 days) (C, D and E, respectively), secondary spermatocytes and
haploid spermatids (18 and 20 days) (F and G, respectively).

1 min at specific primer annealing temperature (62°C for
CCT6: forward 5'-gcctgtcagtatcagaggta-3', reverse 5'-taca
gagtcgtctaggatee-3'; 59°C for NIF3L1 BP1: forward 5'-gctga
agttcatggatgg-3', reverse 5'-gatgttgcttcctaccac-3'; 55°C for
ApoH: forward 5'-tattcctgettgtgctcg-3', reverse 5'-ggcaagaagg
accaagtt-3"). As an endogenous internal control, the phospho-
glycerate kinase-1 gene (PGK-1) was co-amplified (PGK:
forward 5'-aggtgctcaacaacatgg-3', reverse 5'-ccagtcttggcatt
ctca-3"). RT-PCR products were separated by electrophoresis
in a 1% agarose gel in TBE 1X buffer. The ethidium bromide-
stained gels were visualized using an ultraviolet light source
and photographed on a gel video imager. Amplified products
for CCTo, NIF3L1 BP1, ApoH and PGK-1 genes were
respectively 611, 398, 374 and 162 bp. The same experiment
was repeated in order to confirm the RT-PCR results.

Results

Murine testes at different ages had homogeneous cellular
populations of Sertoli cells and primitive type A spermato-
gonia (3 and 6 days), type A and B spermatogonia (8 days),
primary spermatocyte at preleptotene, zhygotene, pachytene
stages (10, 12, 14 and 18 days), secondary spermatocytes and
haploid spermatids (18 and 20 days) (Fig. 1).

During the development of the prepuberal mouse, CCT6,
NIF3L1 BP1 and ApoH genes were differently expressed.
CCT0 gene was barely expressed in the mouse testis at 3, 6
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Figure 2. Expression by RT-PCR of cytosolic chaperonin 6 subunit (CCT) (upper panel), Nggl interacting factor 3 like 1 binding protein 1 (NIF3L1) (FLJ)
(middle panel) and apolipoprotein H (ApoH) (lower panel) genes in mouse testicular tissue explanted at different ages post-natally. A, adult testis; Pgk-1, internal

control; ct-, no DNA.

and 8 days after birth, when Sertoli cells and type A and B
spermatogonia were present. Its expression was increased at
10, 12 and 14 days after birth, when spermatocytes in several
stages of meiosis were also present. CCT6 gene expression
further increased in day 18 and 20 mouse testes when round
spermatids appeared as well as in the adult mouse testis (40
days) when all spermatogenesis cellular populations were
present (Fig. 2, upper panel).

NIF3L1 BP1 was steadily expressed at low levels in mouse
testes at 3, 6, 8, 10, 12 and 14 days post-natally, while it
increased in the testes of 18- and 20-day-old mice and reached
maximum levels in the adult mouse, at which point all germ
cell stages are present (Fig. 2, middle panel).

ApoH expression was absent or very low until 18 days
after birth and was barely detectable at 20 days, whereas it
was strongly expressed in the adult testis, at which point all
stages of spermatogenesis are present (Fig. 2, lower panel).

Discussion

Spermatogenesis is a complex proliferative and differentiative
process which involves the interplay of many gene products,
most of which are still unknown. In this study, we evaluated
the testicular expression of CCT6 and NIF3L1 BP1 genes
because, by differential mRNA display technique, they had a
lower expression in the testicular biopsy of a patient with
SCOS compared with that of a patient with obstructive
azoospermia and normal spermatogenesis (unpublished data).
In addition, we studied ApoH as a possible ‘candidate’
spermatogenesis gene, since its product has been involved
in membrane remodelling, lipid trafficking and clearing
apoptotic bodies (16,17,21).

Cytosolic chaperonin 6 subunit. We found that the CCT6 gene
had a low expression pattern at the age of 3, 6 and 8 days
post-natally, when only spermatogonia are present, whereas

its expression increased drastically at day 10, when spermato-
cytes appeared in the testis, and remained steady afterwards,
when spermatids and spermatozoa are present. The expression
of the CCT6 gene in the mouse has recently been reported by
Shima et al using an Affymetrix gene chip containing 36,000
transcripts (22). This study showed CCT8 expression increasing
progressively during post-natal development until day 20 but
had a lower expression in the adult mouse while, in our model,
CCTB8 expression remained elevated in the adult. This divergent
result could depend on the different type of mouse used in
the two studies. However, further studies will be necessary to
verify the correctness of the data and, most importantly, to
evaluate protein expression.

CCT is a member of the chaperonin protein family, which
includes GroEL of bacteria, HSP60 of mitochondria, Rubisco
subunit binding protein of plastids and archa group II
chaperonins (4,6). These stress-inducible proteins act as
molecular chaperones for the recovery of proteins denaturated
by stress (7). In particular, CCT is a molecular chaperone that
plays important roles in cell growth by assisting in the folding
of actin, tubulin and other cytosolic proteins in the presence
of ATP. All CCT subunits contain several highly conserved
motifs for ATP binding, but the overall amino-acid sequence
identity is only of 30%, suggesting that each subunit has a
specific function (23). Although tubulin and actin chains are
the main substrates, CCT has been shown to bind a large
panel of unrelated unfolded polypeptides of cytosolic origin,
such as a-transducin, cofilin and cyclin E (24).

Kubota and colleagues showed, by Western and Northern
blot analysis, that all of the subunits are required for CCT
function and that CCT expression levels vary greatly among
different mouse tissues and cultured cells (23). Yokota and
colleagues found that CCT subunits are highly expressed in
growing mouse tissues, such as the testis (24).

Apart from cell growth, a tissue-specific requirement of
CCT is also possible in particularly differentiated tissues, such
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as the testis: CCT is probably necessary to produce tubulins
of sperm tail microtubules in testicular germ cells (23).

Soues and colleagues studied CCT cellular distribution
throughout rat spermatogenesis by immunofluorescence (IF)
and immunoelectron microscopy (IEM) using an anti-CCTa
antibody (8). The CCTa subunit was first identified in mouse
testis (25), where its expression increases at the onset of meiosis
and sperm differentiation (26,27). The results of Soues et al
indicated that, at the beginning of spermiogenesis, CCT was
mainly associated with centromeres of early round spermatids
where nucleation of microtubules occurs primarily (8).

During the second phase of spermiogenesis, in elongating
spermatids, CCT was associated with the manchette, a
structure present during the period of maximum morpho-
genetic change. This cone-shaped microtubular structure is
held by a perinuclear ring of proteic material and it seems
implicated both in sperm head nuclear shaping and in caudal
redistribution of the cytoplasm.

Molecular chaperone involved in tubulin folding localizes
near the manchette because this is a long-lived structure
which lasts for almost a week in rodents and thus may need a
safeguard system for stabilization and/or renewal. During
spermatid maturation, the centrosomes and manchette
disorganize themselves and the cytoplasmic pool of CCT
shed residual bodies, such as unpolymerized tubulin and most
cytoplasmic components, unessential to mature spermatozoa,
although a subpopulation of them may still contain these
proteins as demonstrated by Western blotting.

IEM allowed the detection of CCTa in the cell nucleus
associated with heterochromatin. This localization was not
restricted to germ cells but was also observed in Sertoli and
Leydig cells. Soues et al hypothesized that CCT may be
implicated in the maintenance and remodeling of hetero-
chromatin. CCT probably assists the folding of substrates in
the nucleus and possibly nuclear tubulin or actin, putative
proteins of the nuclear matrix and functional or structural
proteins involved in DNA remodeling (8).

Our data indicated that CCT6 subunit expression (and,
therefore, presumably also CCT) increased from the moment
in which spermatocytes appear. This observation is not in
contrast with Soues' results since most of the cells studied by
Soues et al (8) were of germinal origin: at least 80% of the cells
isolated from testes were spermatids and 99-100% of the cells
isolated from epididymes were spermatozoa. In addition, we
studied CCTH mRNA expression but not protein localization.
CCTB8 gene expression further increased when round spermatids
appeared and during spermiogenesis, the third phase of sperm-
atogenesis characterized by cytodifferentiation of spermatids.
This is an elaborate process that includes nuclear shaping and
DNA condensation, flagellum formation, redistribution of
cytoplasmic organelles and shedding of the cytoplasm,
ending with the release of viable spermatozoa into the lumen
of the seminiferous tubules. All these morphological changes
are linked to a complete reorganization of the microtubular
cytoskeleton which demands the presence of CCT that may
play an essential role in spermatogenesis.

Nggl interacting factor 3 like 1 binding protein 1. NIF3L1 BP1
expression increased progressively during germ cell maturation,
reaching a maximal expression in the adult mouse, at which
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point all spermatogenetic cell types are present. This finding
suggested that NIF3L1 BP1 is a gene which is not expressed
by any specific germ cell type. The constant increment of
expression observed in this study indicates that this protein
could be important for maturation events. Shima et al (22), in
their expression array study, reported the expression profile
of the NIF3L1 gene that codifies for the NIF3L1 protein which
interacts with the NIF3L1 BP1 protein in the cell cytoplasm.
Interestingly, the expression profile of NIF3L1 shows an
opposite pattern with respect to that of NIF3L.1 BP1.

The human NIF3L1 BP1 was first described by Kleiderlein
and colleagues studying cDNA libraries from human brain
(28). Tascou et al (9) characterized human and mouse NIF3L1
BP1 proteins, which show 90% homology at the nucleotide
level and 97% homology at the amino-acid level. Both
represent novel proteins bearing in the carboxy-terminal region
a putative leucine zipper-like domain essential for interaction
with the NIF3L1 protein. This leucine zipper motif is adjacent
to a putative DNA-binding domain consisting of two clusters
of amino acids. Deletion analysis showed the relevance of
the zipper domain for interaction with NIF3L1 which thereby
prevents NIF3L1 BP1 binding to chromosomal DNA (9).

NIF3L1 is a protein strongly conserved during evolution
from bacteria to mammals (29). The NIF3L1 gene is
ubiquitously expressed with strong overexpression in the
spermatogonia-derived cell line, GC-1 spg, and in the terato-
carcinoma cell line, F9 (30). The cellular localization of
NIF3L1 BP1 expression is comparable with that of the NIF3L1
protein. Both proteins are ubiquitously expressed and both
proteins are present in the cytoplasm. NIF3L1 BPI is also
present in the nucleus of the cell, but its amino-acid sequence
does not show any nuclear localization signal (NLS); therefore,
the protein would be able to diffuse into the nucleus, for
example, through the nuclear pore complex or by co-transport
with a nuclear protein. However, the interaction of NIF3L1
and NIF3L1 BP1 takes place exclusively in the cytoplasm of
the cell. Although, in some tissues, NIF3L1 BP1 works as a
repressor (29), its specific cellular function remains to be
determined (31,32). The reported higher expression in the
spermatogonia (9) suggests a greater involvement of NIF3L1
BP1 in the initial fundamental steps of germinal cell maturation.
However, we could not confirm this observation in the mouse
testis.

Apolipoprotein H. ApoH expression was very low or absent
during the early stages of spermatogenesis, whereas it was
detectable when mature germ cells and, therefore, spermatozoa
were present. A similar ApoH gene expression profile has been
reported by Shima and co-workers (22); in their analysis, ApoH
gene expression increased strongly when round spermatids
appeared in the testis.

The interactions of ApoH with phospholipids have been
considered as a basic mechanism related to its physiological
and pathogenic functions and it is reported that ApoH is one
of the major proteins appearing in the very rapidly cleared
large liposomes that contain phosphatidylcholine, cholesterol
and negatively charged phospholipids (phosphatidylserine,
phosphatidic acid or CL) (16,17). The ability of ApoH to
preferentially bind negatively charged phospholipids has been
demonstrated by several laboratories.
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Apoptotic bodies have been observed in germ cells of
normal testes but not in Sertoli cells, and apoptosis is
considered a regulatory mechanism of spermatogenesis in
normal and pathological conditions (33). Using several in vivo
model systems, Balasubramanian et al (34) have shown that
endogenous ApoH binds apoptotic cells in situ irrespective
of the triggering pathway; their data provide evidence for a
physiological role of ApoH in the recognition and disposal
of apoptotic cells in vivo. The increased apoptotic processes
observed during spermatocyte and spermatid maturation
(35-37) suggest that ApoH may perform its biological
functions as a ‘cleaner’, purging the plasmic liposomes
coming from senescent and apoptotic cells in mature adult
testes, during the late phase of spermatogenesis when its
expression increases.

In addition, it is possible to speculate that the expression
of ApoH may also increase during inflammatory processes of
the male genital tract, which are characterized by an increased
apoptotic rate due to reactive oxygen species overproduction
by leukocytes and spermatozoa (38). However, the up-
regulated ApoH expression found in a patient with SCOS
compared to a patient with obstructive azoospermia and
normal spermatogenesis suggests that ApoH plays additional
function(s) at the testicular level in humans, which deserves
further investigation. In this regard, it is noteworthy that a
glycoprotein highly homologous to ApoH, isolated from the
human follicular fluid, was able to increase the straight line
velocity (VSL) and the amplitude of lateral head displacement
(ALH) of spermatozoa obtained from normozoospermic men
(39).

Moreover, Aleporou-Marinou et al (39) proposed that the
purified ApoH-like protein may have a local regulatory effect
on the mitotic proliferation of granulosa cells. This hypo-
thesis is in agreement with our previous study (40) performed
on a rat liver regeneration model. In this work, it was clearly
documented that ApoH expression is related to the proliferative
status of hepatic cells, being the mRNA and protein expression
higher in mitotic elements, and that the protein behaves as a
survival factor for HepG2 cells in culture.

In conclusion, CCT6, NIF3L1 BP1 and ApoH genes are
differently expressed in the mouse testis during ontogeny and
seem to regulate different aspects of spermatogenesis. In
particular, it may be hypothesized that CCT6 participates in
chromatin packaging and remodeling during spermiogenesis;
NIF3L1 BPI plays a role in cell differentiation but is not
specific of any stage of spermatogenesis, and ApoH may be
involved in clearing apoptotic bodies during the last phase of
spermatogenesis. The murine model proved useful in studying
the mechanisms which regulate spermatogenesis.
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