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Regulatory effect of exogenous regucalcin on cell
function in osteoblastic MC3T3-E1 cells:
Involvement of intracellular signaling factor
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Abstract. Bone loss is induced in regucalcin transgenic rats.
The role of exogenous regucalcin in the regulation of
osteoblastic cell function was investigated. Osteoblastic
MC3T3-El cells with subconfluent monolayers were cultured
for 24-72 h in medium containing regucalcin (10 or 10° M)
without fetal bovine serum. The presence of regucalcin did not
have a significant effect on cell number. Culture with
regucalcin (10° M) for 24 h caused a significant decrease in
protein and DNA contents in osteoblastic cells. The effect of
regucalcin in decreasing cellular protein content was
significantly inhibited in the presence of various kinase
inhibitors including staurosporine (107 M), dibucaine (10° M),
PD98059 (10®* M), or wortmannin (10* M). Meanwhile,
culture with regucalcin caused a significant decrease in
cellular DNA content in the presence of various kinase
inhibitors. The presence of regucalcin did not have a
significant effect on protein and DNA contents in the cells
cultured with cycloheximide (107 M), an inhibitor of protein
synthesis, or 5,6-dichloro -1-B-D-ribofuranosylbenzimidazole
(10 M), an inhibitor of transcription activity; which each
inhibitor caused a significant decrease in those contents. The
effect of regucalcin in decreasing cellular protein content was
seen in the presence of insulin-like growth factor-I (IGF-I;
10 or 10 M). Such an effect was not observed in cellular
DNA content. The results of reverse transcription-polymerase
chain reaction analysis with specific primers showed that the
expression of Runx 2 (Cbfa 1) and alkaline phosphatase
mRNAs in osteoblastic cells was significantly suppressed in
the presence of regucalcin (10-'° or 10 M). Glyceraldhyde-3-
phosphate dehydrogenase mRNA level was not significantly

Correspondence to: Dr M. Yamaguchi, Laboratory of
Endocrinology and Molecular Metabolism, Graduate School of
Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku,
Shizuoka 422-8526, Japan

E-mail address: yamaguch@u-shizuoka-ken.ac.jp

Key words: regucalcin, bone function, osteoblast

changed with culture of regucalcin (107'° or 10° M). This
study supports the view that exogenous regucalcin regulates the
function of osteoblastic cells, and that the effect of protein is
mediated through signaling factors.

Introduction

Regucalcin was discovered in 1978 as a calcium-binding
protein that does not contain EF-hand motif of Ca*-binding
domain (1-3). The name regucalcin was proposed for this
Ca%**-binding protein, which may regulate Ca?* and/or
calmodulin effects on liver cell function (4,5). In recent
years, regucalcin has been demonstrated to play a
multifunctional role in maintaining cell homeostasis and
function as the regulatory protein in intracellular signaling
process in many cell types (6-8).

Rat and human regucalcin genes are localized on
chromosame X (9,10). Regucalcin messenger ribonucleic
acid (mRNA) and its protein are greatly present in liver and
kidney cortex, and regucalcin is also found in other tissues
(11,12). The expression of regucalcin mRNA is mediated
through the Ca?*-signaling mechanism (13,14). AP1, NFI-A1
and RGPR-p117 (novel protein) have been found to be
transcriptional factors for the enhancement of regucalcin
gene promoter activity (15-17).

Regucalcin plays a role in maintaining intracellular Ca**
homeostasis, the inhibitory regulation of various Ca**-
dependent protein kinases and tyrosine kinases, protein
phosphatases, nitric oxide synthase, and the control of the
enhancement of protein synthesis, nuclear deoxyribonucleic
acid (DNA) and RNA synthesis in proliferative cells (6-8,
18-25). Recent study has demonstrated that regucalcin has
suppressive effects on cell proliferation and apoptosis, which
are mediated through many signaling factors, in cloned rat
hepatoma H4-II-E cells and normal rat kidney proximal tubular
epithelial NRK52E cells overexpressing regucalcin (26-28).
Regucalcin has been proposed to play a role in maintaining cell
homeostasis and function in many cell types (8).

We generated regucalcin transgenic (TG) rats to determine
a regulatory role of endogenous regucalcin in vivo using a
TG rat model (29). Bone loss and hyperlipidemia have been
induced in regucalcin TG rats (30,31), supporting the view
that regucalcin has an important role on pathophysiologic
state.
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The mechanism by which bone loss is induced in regucalcin
TG rats has not been fully clarified. Regucalcin is expressed
in rat bone marrow cells, and bone loss in regucalcin TG rats
is partly involved in osteoclastic bone resorption (32,33).
Regucalcin has been demonstrated to stimulate osteoclast-like
cell formation in mouse marrow culture in vitro, and the protein
stimulates bone resorption in rat femoral tissue in vitro (34).
Also, regucalcin is found to have suppressive effects on cell
differentiation and mineralization in osteoblastic MC3T3-E1
cells in vitro (35).

Furthermore, this study was undertaken to determine
whether the effect of endogenous regucalcin on the function
of osteoblastic cells in vitro is involved in intracellular
signaling factors.

Materials and methods

Chemicals. a-Minimal essential medium (a-MEM) and
penicillin-streptomycin (5000 U/ml penicillin: 5000 pg/ml
streptomycin) were obtained from Gibco Laboratories. Fetal
bovine serum (FBS) was obtained from Bioproducts INC.
Staurosporine, PD98059, dibucaine, wartmannin, cyclo-
heximide, 5,6-dichloro-1-B-D-ribofuranosylbenzimidazole
(DRB), and insulin-like growth factor-I (IGF-I) were
obtained from Sigma Chemical Co. Other chemicals were of
reagent grade and were obtained from Wako Pure Chemical
Industries. All water used was glass distilled. Tissue culture
plastic dishes were purchased from Falcon Plastics. Other
materials used were commercial products of the highest
grade available.

Isolation of regucalcin. Regucalcin is markedly expressed in
the liver cytosol (11,12). Regucalcin was isolated from rat
liver cytosol. The livers were perfused with Tris-HCI buffer
(pH 7.4, containing 100 mM Tris, 120 mM NaCl, 4 mM KCl,
cooled to 4°C). The livers were removed, cut into small
pieces, and suspended 1:4 (weight:volume) in Tris-HCI
buffer (pH 7.4); the homogenate was spun at 5,500 x g in a
refrigerated centrifuge for 10 min, and the supernatant was
spun at 105,000 x g for 60 min. The resulting supernatant
was heated at 60°C for 10 min and recentrifuged at 38,000 x g
for 20 min. Regucalcin in the supernatant was purified to
electrophoretic homogeneity by gel filtration in Sephadex G-75
and G-50 followed by ion-exchange chromatography on
diethylaminoethyl (DEAE)-cellulose, as reported previously
().

Cell culture. Osteoclastic MC3T3-E1 cells were cultured at
37°C in a CO, incubator in plastic dishes containing a-MEM
supplemented with 10% FBS. They were subcultured every 3
days using 0.2% trypsin plus 0.02% EDTA in Ca>*/Mg**-free
phosphate-buffered saline (PBS). For experiments, ~1x10° cells
per dish were cultured for 3 days to obtain subconfluent
monolayers in 35-mm plastic containing 2 ml a-MEM with
10% FBS. After the cells were rinsed with FBS, the medium
was exchanged for medium without FBS containing either
vehicle or regucalcin (10'° or 10 M) in the presence or
absence of various inhibitors, and the cells were cultured
further for 24-72 h. Cell viability was estimated by staining
with trypan blue.
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Cell counting. After trypsinization of the cells in each culture
dish using a Ca**/Mg**-free PBS containing 0.2% trypsin and
0.02% EDTA for 2 min at 37°C, cells were collected and
wash-centrifuged in a PBS solution at 100 x g for 5 min. The
cells were resuspended in a 0.5 ml PBS solution, and an
aliquot was stained with eosin. The cells were counted under
a microscope using a hemocytometer plate. For each dish, we
took the average of two counts.

Analytical procedures. To determine the protein concentration
in osteoblastic cells, the cells were washed 3 times with PBS,
scraped into 0.5 ml of ice-cold 0.25 M sucrose solution, and
disrupted for 30 sec with an ultrasonic device. Protein
concentration in the cell homogenate was determined by the
method of Lowry er al (36) and expressed as the amount of
protein (ug) per dish.

To measure DNA content in the cells, the cells were
detached by using 0.2% trypsin plus 0.02% EDTA in
Ca?/Mg?**/free PBS and washed with PBS. The cells were
shaken with 2.0 ml of ice-cold 0.1 N NaOH solution for 6 h
after disruption (37). After alkali extraction, the samples
were centrifuged at 10,000 x g for 5 min, and the supernatant
was determined by the method of Ceriotti (38) and expressed
as the amount of DNA (ug) per dish.

Determination of specific mRNA by reverse transcription-
polymerase chain reaction (RT-PCR). Total RNAs were
prepared as described previously (39). Osteoblastic MC3T3-E1
cells with subconfluency were cultured for 24 h in medium
containing either vehicle or regucalcin (10°or 10° M). After
culture, cells were washed three times with ice-cold PBS, and
then cells were homogenized in buffer solution containing
4 M guanidinium thiocyanate, 24 mM sodium citrate (pH 7.0),
0.5% sarcosyl, and isoamyl alcohol, and the phases were
separated by centrifugation at 10,000 x g for 20 min at 4°C.
RNA located in the aqueous phase was precipitated with
isoprepanol at -20°C. RNA precipitates were pelleted by
centrifugation, and the pellets were redissolved in diethyl-
pyrocarbonate-treated water.

RT-PCR was preformed with a Titam™ one tube RT-
PCR kit (Roche Molecular Biochemicals) as recommended
by the supplier. Primers for amplification of mouse Runx2
(type 1) cDNA were 5'-ATGCGTATTCCTGTAGA
TCCGAG-3' (sense strand, positions 1016-1038 of cDNA
sequence) and 5-CATCATTCCCGGCCATGACGGTAAC-3'
(antisense strand, positions 1451-1475) (40). The pair of
oligonucleotide primers was designed to amplify a 459-bp
sequence from the mRNA of mouse Runx2 (type 1). Primers
for amplification of mouse alkaline phosphate cDMA were
5'-GATCGGGACTGGTACTCGGATAA-3' (sense strand,
positions 729-751 of cDNA sequence) and 5'-CACATCA
GTTCTGTTCTTCGGGTAC-3' (antisense strand, positions
860-884) (40). The pair of oligonucleotide primers was
designed to amplify a 155-bp sequence from the mRNA of
alkaline phosphatase. For semiquantitative PCR, glycer-
aldehyde-3-phosphate dehydrogenase (G3PDH) was used as an
internal control to evaluate total RNA input. Primers for
amplification of G3PDH ¢cDNA were 5-GATTTGGCCGT
ATCGGACGC-3' (sense strand) and 5'-CTCCTTGGAGG
CCATGTAGG-3' (antisense strand). The pair of oligo-
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Figure 1. Effects of regucalcin on the number of osteoblastic MC3T3-E1
cells. Cells (1x10%) were cultured for 72 h in medium containing 10% fetal
bovine serum (FBS) to obtain subconfluent monolayers, and then in medium
containing either vehicle or regucalcin (10° or 10° M) in the absence of 10%
FBS. After medium change, cells were cultured for 3, 24, 48, or 72 h. At each
time point, the number of cells was measured. Each value is the mean + SEM
of six experiments with separate cell culture. Data were not significant as
compared with the control (none) value. White bars, control (none); double
hatched bars, regucalcin (10°'° M); black bars, regucalcin (10 M).
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Figure 2. Effects of regucalcin on protein (A) and DNA (B) contents in
osteoblastic MC3T3-E1 cells. Cells (1x10°) were cultured for 72 h in
medium containing 10% FBS. Cells with subconfluency were changed to
medium containing either vehicle or regucalcin (10-'° or 10° M) in the
absence of 10% FBS. At each time point, protein content in the cells was
measured. Each value is the mean + SEM of six experiments with separate
cell culture. "P<0.01 compared with the control (none) value. White bars,
control (none); double hatched bars, regucalcin (10-'° M); black bars,
regucalcin (10° M).

nucleotide primers was designed to amplify a 977-bp sequence
from the mRNA of rat G3PDH. RT-PCR was performed using
reaction mixture (20 ul) containing 2 or 4 ug of total RNA,
supplied RT-TCR buffer, Titam™ enzyme mix (AMV and
Expand™ High Fidelity), 0.2 mM dNTP, 5 mM dithiothreitol,
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Figure 3. Effects of regucalcin on protein (A) and DNA (B) contents in
osteoblastic MC3T3-El cells in the presence of signaling inhibitors. Cells
(1x10%) were cultured for 72 h in medium containing 10% FBS. Cells with
subconfluency were cultured for 24 h in medium containing either vehicle or
regucalcin (10 M) with or without staurosporine (10”7 M), dibucaine (10 M),
worthmannin (10® M) or PD98059 (10°® M) in the absence of 10% FBS.
After culture, DNA content in the cell was measured. Each value is the
mean + SEM of six experiments with separate cell culture. “P<0.01
compared with the control (none) value. “P<0.01 compared with the value
obtained from regucalcin alone. White bars, without regucalcin; black bars,
with regucalcin.

5 U RNase inhibitor, and 0.3 M primers. Samples were
incubated at 50°C for 30 min, and then amplified for 30 cycles
under the following conditions: denaturation for 30 sec at 94°C,
annealing for 30 sec at 56°C, and extension for 60 sec at 68°C.
The amplified products were separated by electrophoresis on
a 1.5% agarose gel and visualized by ethidium bromide
staining. Image density was quantified using a Fluorolmager SI
(Amersham Pharmacia Biotech).

Statistical analysis. Data are expressed as the mean + SEM.
Statistical differences were analyzed using Student's t-test.
P-values <0.05 were considered to indicate statistically
significant differences. The ANOVA multiple comparison
test was used to compare the treatment groups.

Results

Effects of regucalcin addition in osteoblastic MC3T3-El
cells. Osteoblastic MC3T3-E1 cells were cultured for 72 h in
medium containing 10% FBS. The cells with subcon-
fluency were cultured for 24-72 h in medium containing
either vehicle or regucalcin (10° or 10 M) without FBS.
The number of cells was not significantly changed in the
presence of regucalcin (Fig. 1). The presence of regucalcin
(10 M) caused a significant decrease in protein content in
the cells cultured for 24 h (Fig. 2A). DNA content in the
cells was significantly decreased with culture of regucalcin
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Figure 4. Effects of regucalcin on protein (A) and DNA (B) contents in
osteoblastic MC3T3-E1 cells in the presence of cycloheximide or DRB. Cells
(1x10%) were cultured for 72 h in medium containing 10% FBS. Cells with
subconfluency were cultured for 24 h in medium containing either vehicle or
regucalcin (10 M) with or without cycloheximide (107 M) or DRB (10° M)
in the absence of 10% FBS. After culture, protein content in the cells was
measured. Each value is the mean + SEM of six experiments with separate
cell culture. "P<0.01 compared with the control (none) value. White bars,
without regucalcin; black bars, with regucalcin.

(10°1° or 10° M) for 3 or 24 h (Fig. 2B). Thus, culture with
regucalcin (10° M) caused a significant decrease in protein and
DNA contents in osteoblastic MC3T3-El cells, indicating that
extracellular regucalcin has a regulatory effect on cell
function.

Effect of regucalcin in osteoblastic MC3T3-El cells in the
presence of various inhibitors. Osteoblastic MC3T3-E1 cells
with subconfluency were cultured for 24 h in a medium
containing either vehicle or regucalcin (10° M) in the presence
or absence of staurosporine (107 M), an inhibitor of protein
kinase C (41), dibucaine (10®* M), an inhibitor of Ca?*/
calmodulin-dependent protein kinase (42), wortmannin (10#
M), an inhibitor of PI; kinase (43), or PD 98059 (10 M), an
inhibitor of mitogen-activated protein kinase (44) with an
effective concentration (Fig. 3). The presence of staurosporine,
dibucaine, wortmannin, or PD98059 caused a significant
decrease in protein and DNA contents in osteoblastic MC3T3-
E1 cells. The effect of regucalcin in decreasing cellular
protein content was significantly inhibited in the presence of
staurosporine, dibucaine wortmannin, or PD98059 (Fig. 3A).
The effect of regucalcin in decreasing cellular DNA content
was also observed in the presence of staurosporine, dibucaine,
wortmann, or PD98059 (Fig. 3B).

The effect of cycloheximide, an inhibitor of protein syn-
thesis, or DRB, an inhibitor of transcription activity, on
regucalcin action in osteoblastic MC3T3-E1 cells with subcon-
fluency was examined (Fig. 4). Cells were cultured for 24 h
in medium containing either vehicle or regucalcin (10° M) in
the presence or absence of cycloheximide (107 M) or DRB
(10 M). Cellular protein and DNA contents were significantly
decreased with culture of cycloheximide or DRB. The
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Figure 5. Effects of regucalcin on protein (A) and DNA (B) contents in
osteoblastic MC3T3-El cells in the presence of IGF-I. Cells (1x10%) were
cultured for 72 h in medium containing 10% FBS. Cells with subconfluency
were cultured for 24 h in medium containing either vehicle or regucalcin
(10 M) with or without IGF-I (10 or 10® M) in the absence of 10% FBS.
After culture, protein content in the cells was measured. Each value is the
mean + SEM of six experiments with separate cell culture. "P<0.01 compared
with the control (none) value. White bars, without regucalcin; black bars, with
regucalcin.

presence of regucalcin did not have a significant effect on
protein and DNA contents in cells cultured with cyclo-
heximide or DRB.

Effects of regucalcin in osteoblastic MC3T3-El cells in the
presence of IGF-I. Osteoblastic MC3T3-E1 cells with
subconfluency were cultured for 24 h in medium containing
either vehicle or regucalcin (10 M) in the presence or
absence of IGF-I (10 or 10 M). Culture with IGF-I did not
have a significant effect on cellular protein and DNA
contents (Fig. 5). The effect of regucalcin in decreasing
cellular protein content was also seen in the presence of IGF-
1(10° or 10 M) (Fig. SA). However, the effect of regucalcin
in decreasing cellular DNA content was not observed in the
presence of IGF-1 (10 or 10 M) (Fig. 5B).

Effect of regucalcin on gene expression in osteoblastic MC3T3-
E1 cells. Osteoblastic cells with subconfluency were cultured
for 24 h in medium containing either vehicle or regucalcin
(101 or 10° M) in the absence of FBS. The change in the
expression of Runx?2, alkaline phosphatase, or G3PDH mRNAs
in osteoblastic cells was examined using RT-PCR analysis with
specific primers (Fig. 6). The signal of bands for Runx2 or
alkaline phosphatase mRNA expression was significantly
reduced in cells cultured in the presence of regucalcin (10-° or
10 M). The levels of G3PDH mRNA were not significantly
changed in the presence of regucalcin (Fig. 6C).

Discussion

Regucalcin is expressed in rat bone marrow cells and femoral
tissue (30,32). Bone loss is induced in regucalcin TG rats
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Figure 6. Effects of regucalcin on the expression of Runx2 (A), alkaline phosphtase (B) or G3PDH (C) mRNAs in osteoblastic MC3T3-E1 cells. Osteoblastic cells
(1x105 cells) were cultured for 24 h in medium containing 10% FBS. Cells with subconfluency were changed to a medium without FBS in the presence or absence
of regucalcin (10'°or 10 M), and the cells were cultured for 24 h. Total RNA (2 ug) extracted from the cells was analyzed by RT-PCR using specific primers. One
of five experiments with separate samples. The densitometric data for each mRNA level in the cells cultured for 24 h in the presence of regucalcin were indicated as
% of control (mean = SEM for five experiments). "P<0.01 compared with the control value.

(30). The mechanism by which bone loss is induced in
regucalcin TG rats has not been fully clarified. Bone loss in
regucalcin TG rats is partly involved in osteoblastic bone
resorption (33,34). More recently, regucalcin has been shown
to have suppressive effects on cell differentiation and mineral-
ization in osteoblastic MC3T3-El cells that participate in
bone formation and mineralization in vitro (35). Furthermore,
this study has demonstrated that exogenous regucalcin has
suppressive effects on protein and DNA contents in osteo-
blastic MC3T3-El1 cells in vitro.

The effect of regucalcin in decreasing protein and DNA
contents in osteoblastic cells was observed at 24 h of culture
with regucalcin addition. These decreases were restored at 48
and 72 h. Regucalcin did not have a significant effect on cell
number in osteoblastic cells with culture for 72 h. It is
speculated that exogenous regucalcin binds to the plasma
membranes, and that the protein transmits signal(s) into
osteoblastic cells. Iodinated regucalcin has been shown to
bind to the plasma membranes isolated from rat liver in vitro
(45). Specific binding sites for regucalcin in osteoblastic cells
remain to be elucidated. Regucalcin may be released during
longer culture times, and the protein signal may disappear in
osteoblastic cells. This is in connection with the restoration
of cellular protein and DNA contents reduced with culture of
regucalcin.

The effect of regucalcin in decreasing protein contents in
osteoblastic cells was inhibited in the presence of various
kinase inhibitors including protein kinase C, Ca?*/
calmodulin-dependent protein kinase, PI3 kinase, and MAP
kinase. This result suggests that the effect of regucalcin in
decreasing cellular protein content is partly mediated through
various protein kinases that are involved in intracellular
signaling process. Meanwhile, culture with regucalcin caused

a significant decrease in DNA content in osteoblastic cells in
the presence of various kinase inhibitors. The effect of regu-
calcin in decreasing cellular DNA content may be involved
in other signaling mechanisms, which differ from its action
on cellular protein content. From these observations, it is
assumed that the effect of exogenous regucalcin is mediated
through several signaling pathways in osteoblastic cells.

The effects of regucalcin on protein and DNA contents in
osteoblastic cells were examined in the presence of IGF-I,
which can stimulate cell proliferation (46). The effect of
regucalcin in decreasing cellular protein content was also seen
in the presence of IGF-I. However, the regucalcin-induced
decrease in cellular DNA content was not observed in the
presence of IGF-I. Presumably, the effect of regucalcin is
transmitted independent of the intracellular signaling process of
IGF-I action.

Culture with regucalcin suppressed the expression of
Runx2, a transcription factor (47), and alkaline phosphatase,
a key enzyme of mineralization (48), mRNAs in osteoblastic
cells. This result supports the view that endogenous
regucalcin has suppressive effects on differentiation and
mineralization in osteoblastic cells (35). In addition, the
effect of regucalcin is transmitted to that transcription
process in the nucleus of osteoblastic cells.

Culture with regucalcin may have inhibitory effects on
protein and DNA syntheses, which are mediated through
different intracellular signaling processes, in osteoblastic cells.
At present, the signaling factors which are involved in
regucalcin action are unknown. Various protein kinases may
partly be related to the intracellular signaling of regucalcin
action in osteoblastic cells. Moreover, other signaling factors
may be involved in the action of regucalcin in osteoblastic
cells.
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In conclusion, it has been demonstrated that exogenous

regucalcin regulates the function of osteoblastic cells in vitro,
and that regucalcin action is mediated through intracellular
signaling factors.
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