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Comparative integromics on FZD7 orthologs: Conserved binding
sites for PU.1, SP1, CCAAT-box and TCF/LEF/SOX transcription
factors within S'-promoter region of mammalian FZD7 orthologs
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Abstract. Canonical WNT signals are transduced through
Frizzled (FZD) family receptor and LRP5/LRP6 co-receptor to
upregulate MYC, CCNDI, FGF20, JAGI, WISPI and DKKI
genes, while non-canonical WNT signals are transduced
through FZD family receptor and PTK7/ROR2/RYK co-
receptor to activate RHOA/RHOU/RAC/CDC42, JNK, PKC,
NFAT and NLK signaling cascades. FZD7, expressed in
the normal gastrointestinal tract, is upregulated in esophageal
cancer, gastric cancer, colorectal cancer, and hepatocellular
carcinoma. Here, chimpanzee FZD7 and cow Fzd7 genes were
identified and characterized by using bioinformatics (Techint)
and human intelligence (Humint). Chimpanzee FZD7 and
cow Fzd7 genes were identified within NW_001232110.1 and
AC173037.2 genome sequences, respectively. Chimpanzee
FZD7 and cow Fzd7 showed 100% and 97.2% total-amino-
acid identity with human FZD7. All of the nine amino-acid
residues substituted between human FZD7 and human FzE3
were identical to those of human FZD7 in chimpanzee, cow,
mouse and rat FZD7 orthologs. Functional analyses using FzE3
with multiple cloning artifacts and/or sequencing errors are
invalid. FZD7 orthologs were seven-transmembrane proteins
with extracellular Frizzled domain, leucine zipper motif around
the 5th transmembrane domain, and cytoplasmic DVL- and
PDZ-binding motifs. Ser550 and Ser556 of FZD7 orthologs
were putative aPKC phosphorylation sites. Dimerization
and Ser550/556 phosphorylation were predicted as regulatory
mechanisms for the signaling through FZD7. Transcriptional
start site of human FZD7 gene was 735-bp upstream of
NM_003507.1 RefSeq 5'-end. In addition to gastrointestinal
cancer, hepatocellular cancer and pancreatic cancer, human
FZD7 mRNAs were expressed in blastocysts, undifferentiated
embryonic stem (ES) cells, ES-derived endodermal progenitors,
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ES-derived neural progenitors, fetal cochlea, retinal pigment
epithelium, olfactory epithelium, regenerating liver, and
multiple sclerosis. Comparative genomics analyses revealed
that the binding sites for PU.1, SP1/Kriippel-like, CCAAT-
box, and TCF/LEF/SOX transcription factors were conserved
among 5'-promoter regions of mammalian FZD7 orthologs.

Introduction

Cross-talk of the WNT signaling pathway and FGF, Notch,
Hedgehog and BMP/Nodal/TGF8 signaling pathways con-
stitute the stem-cell signaling network, which is implicated in
embryogenesis and adult tissues homeostasis (1-13). Canonical
WNT signals are transduced through Frizzled (FZD) family
receptor and LRP5/LRP6 co-receptor to upregulate MYC,
CCNDI, FGF20, JAGI, WISPI1 and DKKI genes (14-24),
while non-canonical WNT signals are transduced through the
FZD family receptor and PTK7/ROR2/RYK co-receptor to
activate RHOA/RHOU/RAC/CDC42, JNK, PKC, NFAT and
NLK signaling cascades (25-30). WNT signals are context-
dependently transduced to canonical and non-canonical
signaling cascades.

We previously reported molecular cloning and character-
ization of human FZD7 (31), which showed six amino-acid
substitutions with human FzE3 (32). We then identified and
characterized rat Fzd7 gene (33). FZD7 is upregulated in gastric
cancer (31,34), esophageal cancer (32), colorectal cancer
(31,35), and hepatocellular carcinoma (36). Here, chimpanzee
FZD7 and cow Fzd7 genes were identified and characterized
by using bioinformatics (Techint) and human intelligence
(Humint). Chimpanzee FZD7 and cow Fzd7 genes were
identified within NW_001232110.1 and AC173037.2 genome
sequences, respectively. Comparative proteomics analyses on
FZD7 orthologs were then performed. In silico expression
analyses revealed FZD7 expression in human embryonic stem
(ES) cells. In addition, comparative genomics analyses on
FZD7 promoter region revealed conserved transcription factor
binding sites within 5'-promoter region of mammalian FZD7
orthologs.

Materials and methods

Identification and characterization of chimpanzee and cow
FZD7 orthologs. Chimpanzee and cow genome sequences
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Figure 1. Chimpanzee and cow FZD7 orthologs. (A), Chimpanzee FZD7 complete CDS. Nucleotide position 1-3000 is shown. Nucleotides and amino-acid
residues are numbered on the right. (B), Cow FZD7 CDS. Nucleotide position 1-2400 is shown. Nucleotides and amino-acid residues are numbered on the right.

homologous to human FZD7 were searched for with BLAST
programs as described previously (37-39). Exon-intron
boundaries were determined based on the consensus sequence
of exon-intron junctions (‘gt ... ag’ rule of intronic sequence)
and codon usage within the coding region as described
previously (40-42). Complete coding sequence (CDS) of
chimpanzee FZD7 or cow Fzd7 was determined by assembling
exonic region(s).

Comparative proteomics analyses. The domain architecture
of FZD7 orthologs was analyzed by using RPS-BLAST and
PSORT II programs.

In silico expression analyses. Expressed sequence tags (ESTs)
derived from human FZD7 were searched for by using the
BLAST programs as described previously (43-45). The sources
of human ESTs were listed up for in silico expression analyses.

Comparative genomics analyses. Human genome sequences
around the FZD7 gene was compared with chimpanzee, cow,
mouse and rat genome sequences to identify evolutionarily
conserved regions. Binding sites for transcription factors were
then searched for as described previously.

Results

Transcriptional start site of human FZD7. FZD7 gene at
human chromosome 2q33.1 is located within human genome
sequence AC069148.6 as previously reported (33). BLAST
programs using human genome sequence around the FZD7

gene revealed that several FZD7 ESTs were transcribed from
more upstream position than the 5'-end of FZD7 RefSeq
(NM_003507.1). CD673704.1 EST was transcribed from
735-bp upstream position, CN288787.1 EST from 706-bp
upstream position, CN370065.1 EST from 699-bp upstream
position, and CN370066.1 EST from 654-bp upstream position.
Based on these facts, it was concluded that the transcriptional
start site of human FZD7 gene was 735-bp upstream of
NM_003507.1 RefSeq 5'-end.

Chimpanzee FZD7 and cow Fzd7 genes. BLAST programs
using human FZD7 complete CDS revealed that chimpanzee
FZD7 gene was located within NW_001232110.1 genome
sequence. FZD7 gene without intron corresponded to the
nucleotide position 33170705-33175279 of NW_001232110.1.
Complete CDS of chimpanzee FZD7 was then determined.
Genetyx program revealed that nucleotide position 785-2509
was the coding region. Chimpanzee FZD7 gene was found to
encode a 574-amino-acid protein (Fig. 1A).

BLAST programs revealed that cow Fzd7 gene was
located within AC173037.2 genome sequence. CDS of cow
Fzd7 was next determined. Genetyx program revealed that
nucleotide position 62-1786 was the coding region. Cow Fzd7
gene was found to encode a 574-amino-acid protein (Fig. 1B).

Comparative proteomics analyses on FZD7 orthologs.
Chimpanzee FZD7 and cow Fzd7 showed 100% and 97.2%
total-amino-acid identity with human FZD7, respectively.
Among nine amino-acid substitutions between human FZD7
(31) and human FzE3 (32), Ala8, Leul5, Arg201, Leu308,
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Signal peptide
+ + + + +

Hs FZD7 |MRDPGAAAP~LSSLGLCALVLALLGALSAGAGADPYHGEKGISVPDHGFCQPISIPLCTDIAYNQTILPNLLGHTNQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLD 114
Pt FZD7 |MRDPGAAAP-LSSLGLCALVLALLGALSAGAGADPYHGERGISVPDHGFCQPISIPLCTDIAYNQTILPNLLGHTNQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLD 114
Bt Fzd7 |MRGSRAAASRLP-LDLCTVVLALLGSLPAGAGAQPYHGEKGISVPDHGFCQPISIPLCTDIAYNQTILPNLLGETNQEEAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLD 114
Mm Fzd7 |[MRGPGTAASHSP-LGLCALVLALLCALPTDTRAQPYHGEKGISVPDHGFCQPISIPLCTDIAYNQTILPNLLGHETNQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLD 114
Rn Fzd7 |MRGPGTEASHSP-LGLCALVLALLGALPTDTGAQPYHGEKGISVPDHGFCQPISIPLCTDIAYNQTILPNLLGHTNQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLD 114
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Hs FZD7 QAIPPCRSLCERARQGCEALMNKFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGPGGGPTAYPTAPYLPDLPFTALPPGASDGRGRPAFPFSCPRQLKVPPYLGYRFLGERD 229
Pt FZD7 QAIPPCRSLCERARQGCEALMNRKFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGPGGGPTAYPTAPYLPDLPFTALPPGASDGRGRPAFPFSCPRQLKVPPYLGYRFLGERD 229
Bt Fzd7 KAIPPCRSLCERARQGCEALMNKFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGAGGGPTAYPTAPYLPDLPFTALPPGAADGRGRSAFPFSCPROQLKVPPYLGYRFLGERD 229
Mm Fzd7 QAIPPCRSLCERARQGCEALMNKFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGAGGSPTAYPTAPYLPDPPFTAMSP--SDGRGRLSFPFSCPRQLKVPPYLGYRFLGERD 227
Ron Fzd7 QAIPPCRSLCERARQGCEALMNRFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGAGGSPTAYPTAPYLPDPPFTAMSP--SDGRGRWSFPFSCPRQLKVPPYLGYRFLGERD 227
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TMA TM2 TM3

Hs FZD7 CGAPCEPGRANGLMYFEEEERRFARLWVGVWSVLCCASTLFTVLIYLVDMRRFSYPERPIIFLSGCYFMVAVAHVAGFLLEDRAVCVERFSDDGYRTVAQGTRKKEG 344
Pt FZD7 CGAPCEPGRANGLMYFKEEERRFARLWNGVWSVLCCASTLFTVLIYLVDMRRFSYPERP[IIFLSGCYFMVAVAHVAGFLLEDRAVCVERFSDDGYRTVAQGTRKEGCTILFMVLY 344
Bt Fzd7 CGAPCEPGRANGLMYFREEERRFARLWVGVWSVLCCASTLFTVLIYLVDMRRFSYPERPIIFLSGCYFMVAVAEVAGFLLEDRAVCVERFSDDGYRTVAQGTRREGCTILFMVLY 344
Mm Fzd7 CGAPCEPGRANGLMYFREEERRFARLWVGVWSVLCCASTLFTIVLIYLVDMRRFSYPERP[IFLSGCYFMVAVAEVAGFLLEDRAVCVERFSDDGYRTVAQGTRKEGCTILFMVLY 342
Rn Fzd7 CGAPCEPGRANGLMYFKEEERRFARLWNVGVWSVLCCASTLFIVL[IYLVDMRRFSYPERPIIFLSGCYFMVAVAEVAGFLLEDRAVCVERFSDDGYRTVAQGTRKEGCTILFMVLY 342
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TM 4 TMS

Hs FZD7 |FFGMASSIWWVILSLTWFLAARGMKWGHEAIEANSQYFHLAAWAVPAVRTITIL QVDGDLLSGVCYVGLSSVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGT 459
Pt FZD7 |FFGMASSIWWVILSLTWFLAAGMKWGHEAIEANSQYFH[LAAWAVPAVKTITIL QVDGDLLSGVCYVGLSSVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGT 459
Bt Fzd7 |[FFGMASSIWWVILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAVKTITILAMGQVDGDLLSGVCYVGLSSVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHEDGT 459
Mm Fzd7 |FFGMASSIWWVILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAVKTITILAMGQVDGDLLSGVCYVGLSSVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKEDGT 457
Rn Fzd7 |(FFGMASSIWWVILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAVKTITILAMGQVDGDLLSGVCYVGLSSVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKEDGT 457
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TMes TM7 DVL-binding PDZ-binding

Hs FZD7 KTERLERLMVRIGVFSVLYTVPATIVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFPPMSPDFTVFMIKYLMTMIVGI TIGFWIWSGKTLOSWRRFYHRLSESSKGETAV 574
Pt FZD7 KTERLEKLMVRIGVFSVLYTVPATIVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFPPMSPDFTVFMIKYLMTMIVGITIGFWIWSGKTLOSWRRFYHRLSHSSKCGETAV 574
Bt Fzd7 KTERLERKLMVRIGVFSVLYTVPATIVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFPPMSPDFTVFMIKYLMTMIVGI TIGFWIWSGRTLOSWRRFYHRLSHSSKGETAV 574
Mm Fzd7 RTERLEKLMVREGVFSVLYTVPATIVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFSPMSPDFTVFMIKYLMTMIVGIT'GFWIWSGKTLQSWRRFYHRLSHSSKGETAV 572
Rn Fzd7 KTEKLEKLMVRlGVFSVLYTVPATIVLACYFIEQAFRBHHERTWLLQTCKSYAVPCPPGHFSPMSPDFTVFMIR!LMTNIVGITFGFWIHSGKTLQSWRRFYHRLSHSSKGETAV 572
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Figure 2. Mammalian FZD7 orthologs. Hs, human; Pt, chimpanzee; Bt, cow; Mm, mouse; Rn, rat. Signal peptide and seven-transmembrane domains (TM1-TM7)
are boxed. Amino-acid residues are numbered on the right. Conserved Cys residues (cross) and Asn-linked glycosylation sites (sharp) within the N-terminal
extracellular Frizzled region, leucine zipper motif around the TM5 domain (over line), DVL-binding and PDZ-binding motifs within the C-terminal cyto-
plasmic region (double over line) are shown above the alignment. Ser550 and Ser556 around the DVL-binding motif (open arrow head) and conserved amino-

acid residues (* or @) are shown below the alignment. Locations of nine amino-

PU-box

acid substitutions between human FZD7 and human FzE3 (@) are also shown.
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Figure 3. Mammalian FZD7 promoters. Hs, human; Pt, chimpanzee; Bt, cow; Mm, mouse; Rn, rat. Region corresponding to human FZD7 exon is shown by an
open box. Conserved PU.1-, SP1-, CCAAT box-, and TCF/LEF/SOX-binding sites are shown by double overlines.

Ser408, Leu415, Leud33, Leud447 and Tyr534 corresponding
to human FZD7 were conserved among mammalian FZD7
orthologs (Fig. 2). These facts indicate that 9 amino-acid
substitutions in FzE3 are caused by sequencing errors and/or
cloning artifacts.

FZD7 orthologs were seven-transmembrane proteins with
extracellular Frizzled domain and, leucine zipper motif around

the 5th transmembrane domain, and cytoplasmic DVL- and
PDZ-binding motifs (Fig. 2). Asn63 and Asnl164 within the
N-terminal extracellular region of FZD7 orthologs were Asn-
linked glycosylation sites. Ser550 and Ser556 around the DVL-
binding motif of FZD7 orthologs were very similar to Ser554
and Ser560 of Drosophila Frizzled, which are phosphorylated
by human aPKC (46).
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In silico expression analysis on human FZD7. Expression of
human FZD7 mRNAs were detected in blastocysts, ES cells
in undifferentiated state, ES cells differentiated to endodermal
progenitors, ES cells differentiated to neural progenitors, fetal
cochlea, retinal pigment epithelium, olfactory epithelium,
regenerating liver, multiple sclerosis, and a variety of cancer,
such as gastric cancer, colorectal cancer, pancreatic cancer,
head/neck tumors, adrenal cortex carcinoma, lymphoma,
osteosarcoma, melanoma and germ cell tumors.

Comparative genomics analyses on FZD7 orthologs. Human
FZD7, chimpanzee FZD7 and cow Fzd7 genes are located
within AC069148.6, NW_001232110.1 and AC173037.2
genome sequences, respectively, as mentioned above. Mouse
Fzd7 and rat Fzd7 genes are located within AC132574.3 and
AC136379.2 genome sequences, respectively, as previously
reported (33). The 5'-promoter regions of mammalian FZD7
orthologs were aligned to search for the conserved trans-
cription factor-binding sites. PU.1-, SP1-, CCAAT box-, and
TCF/LEF/SOX-binding sites within 5'-promoter regions of
mammalian FZD7 orthologs were evolutionarily conserved

(Fig. 3).
Discussion

Comparative integromics analyses on FZD7 orthologs were
performed in this study. Chimpanzee FZD7 was identified
within NW_001232110.1 genome sequence, while cow Fzd7
gene within AC173037.2 genome sequence. Chimpanzee FZD7
and cow Fzd7 genes were found to encode 574-amino-acid
protein showing 100% and 97.2% total-amino-acid identity
with human FZD7, respectively (Fig. 1).

FZD7 orthologs were seven-transmembrane proteins with
extracellular Frizzled domain, leucine zipper motif around the
5th transmembrane domain, and cytoplasmic DVL- and PDZ-
binding motifs. Ser550 and Ser556 of FZD7 orthologs were
putative aPKC phosphorylation sites (Fig. 2). Dimerization is
necessary for the functional activation of seven-transmembrane
G-protein-coupled receptors (47). Cytoplasmic C-terminal
phosphorylation on Drosophila Frizzled by human aPKC is
implicated in the inhibition of Frizzled signaling to the non-
canonical WNT signaling pathway or planar cell polarity (PCP)
signaling pathway (46). Together, these facts indicate that
dimerization and Ser550/556 phosphorylation are important for
the regulation of the signaling through FZD7.

All of the nine amino-acid residues substituted between
human FZD7 and human FzE3 were identical to those of
human FZD7 in chimpanzee, cow, mouse and rat FZD7
orthologs (Fig. 2), which clearly indicates that FzE3 is an
aberrant cDNA with multiple sequencing errors and/or cloning
artifacts. Because Leu433 and Leu447 are substituted to
Phe433 and Phe447 in FzE3, leucine zipper motif around the
5th transmembrane domain is disrupted in FzE3 as previously
pointed out (33,34). Therefore, functional analyses using FzE3
are invalid.

Transcriptional start site of human FZD7 gene was 735-bp
upstream of NM_003507.1 RefSeq 5'-end. In silico expression
analyses revealed that human FZD7 mRNAs were expressed
in blastocysts, undifferentiated ES cells, ES-derived endo-
dermal progenitors, ES-derived neural progenitors, fetal
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cochlea, retinal pigment epithelium, olfactory epithelium,
regenerating liver, and multiple sclerosis. Comparative
genomics analyses revealed that the binding sites for PU.1,
SP1/Kriippel-like, CCAAT-box, and TCF/LEF/SOX
transcription factors were conserved among 5'-promoter
region of mammalian FZD7 orthologs (Fig. 3). Human FZD7
mRNA is expressed in gastrointestinal tract and gastro-
enterological cancer (31-36), and mouse Fzd7 mRNA is
expressed in stem/progenitor cells in colonic epithelium
(48). Together, these facts indicate that FZD7 plays a key
role for ES cells and gastrointestinal stem/progenitor cells to
orchestrate the scenario of embryogenesis and tissue
homeostasis, respectively.
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