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SHP-2 positively regulates adipogenic differentiation
in 3T3-L1 cells
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Abstract. The Src homology domain 2 (SH2)-containing
tyrosine phosphatase SHP-2 has been implicated in the
regulation of proliferation and differentiation in various cell
types. Here, we investigated the ability of SHP-2 to mediate
insulin-induced adipogenic differentiation of mouse 3T3-L1
cells. We found that the expression of SHP-2 was increased
along with adipogenic differentiation. Overexpression of
wild-type SHP-2 in 3T3-L1 cells resulted in enhanced adipo-
cyte differentiation. Furthermore, insulin-stimulated adipo-
genic differentiation of 3T3-L1 cells was abolished by down-
regulating SHP-2 expression using short interfering RNA.
These results suggest that SHP-2 is a positive effector in signal
transduction pathways necessary for adipocyte differentiation.
In SHP-2 knockdown cells, the expression of peroxisome
proliferator-activated receptor vy, a master regulator of adipo-
genesis, was entirely suppressed even in the late phase of
differentiation, whereas the expression level of C/EBPS was
unchanged. These results highlight a novel role of SHP-2 in
the signal transduction pathways regulating adipocyte
differentiation.

Introduction

Obesity is a major risk factor for diseases such as type-2
diabetes, cardiovascular disease, stroke, and hypertension. As
a specialized organ for energy storage, adipocytes synthesize
and store triglycerides during periods of caloric excess, and
they mobilize these energy depots as free fatty acids and
glycerol during periods of nutritional deprivation (1). Obesity
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is the result of an overgrowth of adipose tissue due to an
imbalance between energy intake and energy expenditure. At
the cellular level, adipose tissue overgrowth is associated with
adipocyte hypertrophy and hyperplasia (2,3). Hypertrophy
results from excessive triglyceride accumulation in adipo-
cytes, whereas hyperplasia results from recruitment of new
adipocytes via the proliferation and differentiation of pre-
adipocytes.

Although adipose tissue has long been considered a passive
tissue specialized in energy storage, the concept of adipose
tissue as an energy warehouse has been recently revised (4).
Increasing evidence indicates that adipose tissue is an
important endocrine organ that secretes adipocytokines, such
as leptin and adiponectin, which modulate lipid and
carbohydrate metabolism. Adipose tissue plays a central role
in whole body energy homeostasis (5,6). In view of the
prevalence of obesity and obesity-related diseases, it is
important to identify factors regulating adipocyte development
and function.

Several key transcription factors have been reported to be
involved in adipocyte differentiation, including peroxisome
proliferator-activated receptor y (PPARy), CCAAT/enhancer-
binding protein (C/EBP) family proteins, and adipocyte
determination-differentiation factor 1 (7-10). These tran-
scription factors are induced at different stages of adipocyte
differentiation, and they functionally interact with each other
to carry out adipogenesis and lipogenesis by regulating the
expression of various genes (11,12). The upstream signals
regulating the induction and expression of these transcription
factors, however, are poorly understood.

Many external hormones such as insulin, insulin-like
growth factor-1, and glucocorticoids are known to promote
the proliferation and/or differentiation of preadipocytes
(13,14). Of these, insulin is well known to play a key role in
adipocyte differentiation in vivo and in vitro. Insulin elicits
diverse biological actions such as proliferation and differ-
entiation by binding to its tyrosine kinase receptors. Upon
ligand binding, the insulin receptor dimerizes and auto-
phosphorylates on tyrosine residues. This in turn stimulates
the phosphorylation of a number of intracellular substrates.
These molecules, including the insulin receptor substrate
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(IRS) family, Shc, Gabl, and Grb10, act as adaptor proteins
that transduce signals from the cell surface receptor to
downstream effectors (15-17). The roles of protein tyrosine
phosphatases (PTPs) in signal transduction have been
examined for several growth factor receptors. SHP-2, a
member of the PTP family, is ubiquitously expressed and
generally positively regulates signaling, for example, by the
epidermal growth factor (EGF) and platelet-derived growth
factor (PDGF) receptors (18-21). Tyrosine phosphorylated
SHP-2 acts as an adaptor molecule that recruits Grb2 and
other proteins, leading to the activation of mitogen-activated
protein kinases (MAPKSs) downstream of the several growth
factor receptors (22,23).

To better understand the molecular mechanism of how
insulin regulates adipogenesis via downstream signaling
molecules, we investigated the role of SHP-2 in adipocyte
differentiation by 3T3-L1 cells. We found that overexpression
of SHP-2 in these cells results in enhanced adipocyte
differentiation. Furthermore, insulin-stimulated adipogenic
differentiation of 3T3-L1 cells was abolished by down-
regulating SHP-2 expression using a short interfering RNA.
These results highlight a novel role of SHP-2 in the signal
transduction pathways regulating adipocyte differentiation.

Materials and methods

Antibodies and reagents. Monoclonal antibodies against
SHP-2 and GAPDH were purchased from Santa Cruz
Biotechnology. Dulbecco's modified Eagle's medium
(DMEM) was from Sigma. TRIzol reagents and G418 were
from Invitrogen. GeneJammer transfection reagent was from
Stratagene.

Cell culture. 3T3-L1 cells were grown in DMEM containing
heat-inactivated 10% fetal bovine serum (FBS) at 37°C in an
atmosphere containing 5% CO,. Cells were used in differ-
entiation experiments 2 days after they reached confluence.
Adipocyte differentiation was induced by treating the cells
with medium containing 1 pg/ml insulin, 1 M dexa-
methasone, 1 mM isobutyl-methylxanthine, and 10% FBS.
After 2 days, the differentiation medium was replaced with
post-differentiation medium containing 1 g g/ml insulin and
10% FBS. After an additional 2 days, the medium was
switched back to DMEM supplemented with 10% FBS.

Oil Red O staining. 3T3-L1 cells were washed with
phosphate-buffered saline and 60% isopropyl alcohol and
then stained with filtered Oil Red O staining solution (0.3%
Oil Red O in 60% isopropyl alcohol) for 15 min at 37°C.

Stable expression of SHP-2. The coding region of wild-type
human SHP-2 was subcloned in pcDNA3.1/myc-His
(Invitrogen). To generate an SHP-2 short hairpin RNA
(shSHP-2), a pair of 59-bp oligonucleotides (5'-GATCCGC
ACAGTACCGGTTTATCTTTCAAGAGAAGATAAACCG
GTACTGTGCTTTTTTT-3' and 5'-CTAGAAAAAAAGC
ACAGTACCGGTTTATCTTCTCTTGAAAGATAAACC
GGTACTGTGCG-3) were synthesized, annealed, and
ligated between the BamHI and Xbal sites of pGE-1
(Stratagene). The expressed hairpin is complementary to
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nucleotides 1685-1703 of the mouse SHP-2 mRNA sequence.
Constructs were verified by restriction analysis and
sequencing. 3T3-L1 cells stably expressing hSHP-2 or a
small interfering RNA (siRNA) targeting mouse SHP-2 were
prepared by transfecting the cells with the constructs and
then growing them in selection medium containing 0.8 mg/
ml G-418. Gene expression and functional analysis were
performed on individual G-418-resistant clones.

RNA preparation and quantitative real-time PCR. Total
RNA was isolated from 3T3-L1 cells using TRIzol reagent
(Invitrogen) according to the manufacturer's instructions.
After quantification by spectrophotometry, 2 #g of RNA was
reverse-transcribed into cDNA at 42°C for 45 min using an
ExScript RT reagent kit (Takara) in the presence of the
random hexamer. Quantitative RT-PCR was performed using
a Platinum SYBR-Green qPCR SuperMix UDG (Invitrogen).
The oligonucleotides used for analysis of mouse gene
expression were as follows: mouse SHP-2, 5'-CATGCCTG
AGTTTGAGACCA-3' (sense) and 5'-TCCGACCTTAGAG
AGTTTGA-3' (antisense); hSHP-2, 5'-CGGTCTGGCAATA
CCACTTT-3' (sense) and 5'-GATATCTCTGAAACTTT
TCTGCTGTTGC-3' (antisense); PPARy, 5'-AGACAACG
GACAAATCACCAT-3' (sense) and 5-TCACAGCAAACT
CAAACTTAGG-3' (antisense); fatty acid-binding protein
(FABP), 5-CCAGTGAAAACTTCGATGATTAC-3' (sense)
and 5'-CATTCCACCACCAGCTTGTCACC-3' (antisense);
lipoprotein lipase, 5'-CGAAATTTCTCTGTACGGCAC-3'
(sense) and 5'-CTGCAGATGAGAAACTTTCT-3' (antisense);
C/EBPS, 5'-CCAGGAGATGCAGCAGAAG-3' (sense) and
5'-GGGGTCTGAGGTATAGGTCG-3' (antisense); Pref-1,
5-TCTGCGAGGCTGACAATGTCTGC-3' (sense) and 5'-
CCTTGTGCTGGCAGTCCTTTCC-3' (antisense); and
cyclophilin, 5'-AGCACTGGAGAGAAAGGATT-3' (sense)
and 5'-CACAATGTTCATGCCTTCTT-3' (antisense).

Western blot analysis. Cells were homogenized in sample
buffer (62.5 mM Tris-HCI, pH 6.8, 2% SDS, 5 mg/ml
bromphenol blue, and 10% glycerol), and proteins were
separated by SDS-PAGE on a 10% acrylamide gel and then
transferred to a PVDF membrane. The membrane was
incubated for 1 h at room temperature in TBS/0.05% Tween-20
containing 5% dry-milk and then for 1.5 h in TBS/0.05%
Tween-20 containing a mouse monoclonal antibody raised
against a C-terminal SHP-2 peptide. Immunostained proteins
were visualized with HRP-conjugated anti-mouse 1gG
(Cappel), followed by Western blotting luminol reagent
(Santa Cruz Biotechnology).

Statistical analysis. Data were expressed as mean + SE of
values from several experiments, and statistical significance
was evaluated using the unpaired t-test. A value of p<0.05
was considered statistically significant.

Results and discussion

Insulin is an important metabolic hormone secreted by
pancreatic B cells that promotes the synthesis and storage of
carbohydrates, lipids, and proteins and inhibits their
degradation and release into circulation. Insulin action is
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Figure 1. Expression of SHP-2 is up-regulated by adipogenic differentiation.
3T3-L1 cells were differentiated into adipocytes, and total RNA was
prepared at the indicated stage of differentiation. The expression of SHP-2
was measured by RT-PCR. "P<0.05 vs. undifferentiated 3T3-L1 cells.
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Figure 2. Establishment of SHP-2 transgenic and knockdown cell lines. (A)
Total RNA was prepared, and the expression of SHP-2 was measured by
RT-PCR. (B) Cell extracts were prepared and analyzed by Western blotting
using antibodies against SHP-2 and GAPDH.

mediated, in part, by the activation of protein kinases and
phosphatases, which modulate transcription and promote
cellular growth and differentiation. Insulin is generally
thought to play a crucial role in the process of adipogenesis
(24-27). To determine whether SHP-2 is involved in this
process, we first examined the expression pattern of SHP-2
during adipocyte differentiation in 3T3-L1 cells by real-time
RT-PCR (Fig. 1). On day 4 of differentiation, the level of
SHP-2 expression was markedly increased.

To examine whether SHP-2 influences adipogenesis, we
established 3T3-L1 cells overexpressing human SHP-2 and
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cells in which SHP-2 was knocked down using an siRNA.
The expression of mRNA and protein for mouse and/or human
SHP-2 was assessed by RT-PCR (Fig. 2A) and Western
blotting (Fig. 2B), respectively, and the differentiation status
was examined by staining with Oil Red O and by measuring
the level of mRNAs encoding adipose-specific genes such as
PPARy and FABP. Treatment of the cells overexpressing
wild-type SHP-2 with differentiation medium resulted in an
increase in the accumulation of intracellular lipid droplets
compared to naive (untransfected) cells (Fig. 3). On the other
hand, no significant lipid accumulation occurred in cells
expressing the SHP-2 siRNA. These results indicate that
SHP-2 is a positive regulator of 3T3-L1 adipogenesis.

To elucidate the role of SHP-2 in adipocyte differentiation,
we next examined the effects of knocking down SHP-2 on
the expression of adipocyte-specific genes (Fig. 4). In naive
3T3-L1 cells, the expression of Pref-1, a preadipocyte-
secreted factor that inhibits adipogenesis, was gradually
decreased as the cells differentiated, which agrees with the
findings of previous studies (28). Suppression of SHP-2
expression increased the expression of Pref-1 without
inducing adipogenesis. A similar pattern of expression was
observed in both control and SHP-2-depleted cells for
C/EBP$, which is induced in the early phase of adipogenesis,
although its expression in SHP-2 knockdown cells was up-
regulated on day 8 of differentiation. On the other hand, the
induction of PPARy was completely suppressed in the SHP-2
knockdown cells. Expression of FABP, another adipocyte-
specific protein, was also suppressed in SHP-2-depleted cells.
These results support the idea that SHP-2 positively regulates
adipocyte differentiation.

The phosphorylation of proteins on tyrosine residues
serves as a switch regulating various cellular events as well
as the cellular response to environmental stimuli. Tyrosine
phosphorylation is controlled by the coordinated actions of
protein tyrosine kinases and PTPs. PTPs play both inhibitory
and permissive roles in the physiological responses to
particular ligands, and SHP-2 has been shown to participate
in the activation of MAPKs by EGF (29). SHP-2 binds
directly to activated PDGF and EGF receptors via its N-
terminal SH2 domain. SHP-2 also plays a pivotal role in
insulin signaling related to cellular proliferation and differ-
entiation. Our results suggested that SHP-2 plays a positive
role in insulin-induced adipocyte differentiation by 3T3-L1
cells.

Adipocyte differentiation is a complex process that
requires communication between intracellular signaling
cascades evoked by extracellular stimuli such as insulin and
transcription factors in the nucleus (30). The molecular
mechanism regulating the transcription of adipocyte-specific
genes during the process of preadipocyte differentiation is
relatively well characterized (31). On the other hand, the
intracellular signaling pathways downstream of the insulin
receptor tyrosine kinase are not completely understood. Upon
ligand binding, the insulin receptor phosphorylates itself as
well as cytosolic proteins including IRS proteins and Shc
(15,16,32). These phosphorylated proteins then recruit other
SH2 domain-containing signaling proteins such as the p85
subunit of phosphatidylinositol 3-kinase (PI3K), Grb2, and
SHP-2 (33-35). Activation of the PI3K pathway is necessary
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Figure 3. Expression of SHP-2 influences adipocyte differentiation. Naive, SHP-2 overexpressing, and SHP-2 suppressed 3T3-L1 cells were differentiated
into adipocytes. On day 8, the cells were stained with Oil Red O.
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Figure 4. SHP-2 knockdown suppresses adipogenic differentiation. Adipocyte differentiation was induced in naive (©) and SHP-2 knockdown (e) 3T3-L1
cells, and total RNA was prepared from the cells at the indicated stage of differentiation. Expression of Pref-1 (A), C/EBP$ (B), PPARy (C), and FABP (D)
were measured by RT-PCR. "P<0.05 vs. undifferentiated naive 3T3-L1 cells.
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for complete differentiation of preadipocytes, and the binding
of IRS-1 and IRS-2 to PI3K is transiently increased during
adipocyte differentiation (36). Because SHP-2 participates in
growth factor activation of PI3K, SHP-2 is thought to mediate
insulin-induced adipocyte differentiation in 3T3-L1 cells by
activating PI3K (37).

MAPK activation is known to be required for the mitogenic
response, but the role for MAPK in the regulation of cellular
differentiation is not fully understood. Some studies in PC12
cells have suggested that the sustained activation of the
MAPK cascade induces neuronal differentiation, but other
studies have found that this prolonged activation of MAPK is
not sufficient for their terminal differentiation (38,39). The
role of MAPK activation in adipocyte differentiation is also
controversial. Studies with antisense RNAs by Sale et al
have indicated that MAPK activation is necessary for insulin-
induced adipocyte differentiation of 3T3-L1 cells (40). On
the other hand, Porras et al showed that MAPK inhibits
insulin-induced differentiation in rat fetal brown adipocytes
(41). In addition, MAPK-mediated phosphorylation of
PPARy, a master regulator of adipocyte differentiation,
suppresses its transcriptional activity, leading to the inhibition
of adipogenesis (42).

There is also some disagreement regarding the role of
SHP-2 in tyrosine kinase signaling and the relative
contributions of its SH2 domains, catalytic domain, and C-
terminal tail in its downstream effects. Two tyrosine phos-
phorylation sites located at the C-terminus of SHP-2 are
consensus binding sites for the SH2 domain of the Grb2
adaptor protein (43). Thus, SHP-2 may act as a positive
effector of signal transduction by serving as an adaptor
protein linking Grb2 and mSos to Ras, leading to activation
of the MAPK cascade. Conversely, SHP-2 has been demon-
strated to function as a negative regulator in the interferon-
stimulated JAK/STAT pathway, resulting in cell growth
arrest (44). In this case, specific substrate proteins of SHP-2
might be involved. Alternatively, tyrosine residues at the C-
terminal tail of SHP-2 may play an important role in
balancing cell growth and differentiation. How SHP-2
regulates insulin intracellular signaling pathways down-
stream of the insulin receptor remains to be determined.

In conclusion, we have demonstrated that SHP-2 plays a
positive role in adipocyte differentiation of 3T3-L1 cells. The
precise mechanism of how SHP-2 regulates the differ-
entiation process remains unknown, but it may act at the
early stage of the differentiation. Further studies are needed
to define the signaling events downstream of SHP-2 that are
responsible for adipocyte differentiation and to determine
how the various adipogenic signals influence each other
during the differentiation process.
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