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Coincidence of mutations in different connexin genes
in Hungarian patients
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Abstract. Mutations in the GJB2 gene are the most common
cause of hereditary prelingual sensorineural hearing impair-
ment in Europe. Several studies indicate that different
members of the connexin protein family interact to form gap
junctions in the inner ear. Mutations in different connexin
genes may accumulate and, consequently lead to hearing
impairment. Therefore, we screened 47 Hungarian GJB2-
heterozygous (one mutation in coding exon of the GJB2
gene) patients with hearing impairment for DNA changes in
two further connexin genes (GJB6 and GJB3) and in the 5'
non-coding region of GJB2 including the splice sites. Eleven
out of 47 GJB2-heterozygous patients analyzed carried the
splice site mutation -3170G>A in the 5'UTR region of GJB2.
One out of these 11 patients showed homozygous -3170G>A
genotype in combination with p.R127H. Next to the GJ/B2
mutations we noted 2 cases of deletion in GJB6 [ A(GJB6-
D13S1830)] and 3 (2 new and 1 described) base substitutions
in GJB3 [c.357C>T, ¢.798C>T and ¢.94C>T (p.R32W)]
which are unlikely disease-causing. Our results suggest the
importance of routine screening for the rather frequent -
3170G>A mutation (in addition to ¢.35delG) in patients with
hearing impairment.
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Introduction

Hearing impairment (HI) represents the most frequent neuro-
sensory disorder worldwide. Contrary to former assumptions
ascribing the basis of this highly heterogenous disease mainly
to the ageing process and external factors, in recent years it
has been demonstrated that at least 2/3 of all hearing
deficiencies are of genetic origin. Approximately 70% of all
hereditary hearing impairment cases occur as non-syndromic
forms without additional clinical symptoms. GJB2 is the
gene responsible for a large proportion of these diseases
(OMIM 121011). The GJB2 gene encodes the gap junction
protein connexin 26 (CX26) which is expressed in the cochlea
and may play a role in K* circulation between different
partitions in the cochlea (1,2). Gap junctions comprise the
major system of intercellular communication for electrolytes,
second messengers and metabolites. Therefore, it is not
surprising that alterations in several members of the connexin
protein family contribute to the development of hearing
impairment, e.g. connexin 26, 30 and 31 (3-7).

Currently, more than 100 different mutations have been
described within GJB2 making it the most frequently
examined gene in patients with hearing impairment (8).
Although major progress has been made over the last several
years in understanding GJB2-based hearing impairment,
various patients belonging to multiple ethnic groups were
described with only one single heterozygous GJB2 mutation.
The pathogenic mutations in this gene are generally inherited
recessively and therefore induce hearing impairment only if
occuring in both alleles; assessment and genetic counseling
of single mutation carriers are difficult.

Several studies have demonstrated that most cells generally
express more than one connexin isoform and assemble
homomeric or heteromeric connexins leading to the
formation of homotypic or heterotypic gap junctions (9-11).
Four connexins (CX26, CX30, CX31 and CX43) were
identified as prominently expressed in the cochlea. Moreover,
digenic inheritance of mutations in two distinct connexin
genes was shown to lead to hearing impairment (12).
Therefore, we screened the patients with a heterozygous GJB2
mutation for alterations in further connexin genes (GJB3 and



316

GJB6) and for mutations in the basal GJB2 promoter as well
as in the non-coding GJB2 region.

Materials and methods

Subjects and selection criteria. In this study 410 patients
were involved. Patients showed congenital, bilateral non-
syndromic sensorineural hearing impairment and were
recruited from the outpatient service of the Department of
Otolaryngology, University of Debrecen. The control group
was composed of 156 unrelated individuals. Information on
the medical history and pedigree structure was obtained in
personal interviews with the affected individuals or with their
unaffected relatives. Written informed consent was obtained
from all participants and from parents of patients younger
than 18 years. Control cases were collected comprising 156
individuals with normal hearing also originating from
Hungary. The study was approved by the Ethics Committee
of the University of Debrecen.

Case histories were obtained using a questionnaire
regarding the following aspects, with special attention to
disease: age at onset of SNHI, hearing aids, symmetry of the
hearing impairment, middle ear infections, medical treatment,
noise damage, trauma, meningitis, ototoxic agents, tinnitus,
vertigo and other clinical manifestations (neurologic, ophthal-
mologic, gynecologic, pediatric, dermatologic, and orthopedic)
to exclude other syndromic forms of hearing impairment.

Audiological methods. All patients involved in the study
underwent otoscopic and audiometric examinations by using
age-appropriate methods. We used air- and bone-conduction
at 125, 250, 500, 1000, 2000, 4000, and 8000 Hz for all
affected participants. The audiometric configuration, assess-
ment of age at onset, severity and pattern of hearing loss by
pure-tone audiometry, tympanometry and auditory brainstem
response were performed according to the recommendations
of the European Workgroup on Genetics of Hearing
Impairment (13).

Genetic analysis. Anticoagulated venous blood (6 ml) was
obtained from all tested individuals, and DNA was extracted
according to the manufacurer's recommendations (Puregene
kit, GENTRA System, Minneapolis, MN, USA).

GJB2 analysis. The coding exon of GJB2 was sequenced
using a capillary sequencer model CEQ 8000 (Beckman
Coulter) (14). Sequences were compared with the reference
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sequence (GenBank no. AF281280) using the DNAsis
software (MWG).

Mutation ¢.380G>A (p.R127H) was screened in control
individuals applying a restriction fragment length poly-
morphism (RFLP) assay. Using primers GJB2,3F (gtggcctac
cggagacatgag) and GJB2,5R (gggcaatgcgttaaactgge) a 409-bp
PCR product was amplified. The mutation abolishes a
restriction site for SfaNI resulting in three bands (143, 189 and
77 bp) for the mutant and four bands (107, 36, 189 and 77 bp)
for wild-type alleles after SfaNI digestion and polyacrylamide
gel electrophoresis.

The 5' non-coding region of GJB2, promoter region -3458
to -3331 relative to the A of the ATG translation initiation
codon located in exon 2 (15), and the non-coding first exon
including both splice sites were sequenced using primers
GJB2P H2.1F (cagggcgctgggggcacttgggg) and GJIB2P,H2.1R
(caaccgctctgggtctcgeggtee). Sequences were aligned with the
reference sequence (Gen Bank no. U43932.1) utilizing the
CEQ software (Beckman Coulter). The splice site mutation
-3170G>A (IVS1(+1)G-->A) was screened by an RFLP assay.
Applying primers FOR (ggtgtggggtgeggttaaaaggeg) and
MUT_REYV (cagtccggggccggeggggtca) a 221-bp PCR
fragment was generated. Since the mutation destroys a
restriction site for Eco911, wild-type alleles show two bands
(199 and 22 bp) and mutated alleles only one band (221 bp)
after Eco911 digestion. Samples revealing a mutated allele
were sequenced on both strands.

GJB3 analysis. The coding exon of GJB3 was sequenced
using primers described elsewhere (16,17). Sequences were
compared with the reference sequence (GenBank no.
NT_079620) using the CEQ software (Beckman Coulter).

The ¢.94C>T (p.R32W) sequence variant was screened
applying primers 1f (acctattcattcatacgatgg) and 1r (gagtgtgca
gcaggtagagg) (16). The variant has just one restriction site
for Benl while the wild-type allele has two. After digestion
and elecrophoresis, two DNA fragments (240 and 282 bp) for
the mutant and three fragments (79, 161 and 282 bp) for the
wild-type allele were observed.

GJB6 analysis. Applying a multiple PCR strategy the 342-kb
deletion [A(GJB6-D13S1830)] was examined. Using primers
forl (gccatgcatgtggectacta), revl (actatctgaaatcagcetcattc) and
for2, del (cattgttgtgaactaacctcca, GenBank no. AL590096.16)
a 441-bp PCR product was generated for wild-type alleles
and a 480-bp fragment was produced for an allele representing
the deletion.

no mutation detected (70,2%)

R32W / GJB3 (2,1%)
A(GJB6-D13S1830) (4,3%

splice site mutation / GJB2
(23,4%)

Figure 1. Distribution of G/B2 mutations detected in Hungarian hearing impaired patients and the frequency of further connexin mutations.
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Results

Audiologic. GJB2 mutations were detected in 225/410
patients (55%). All individuals were diagnosed with
prelingual, sensorineural, bilateral, and moderate to profound
hearing impairment. In most of the cases both ears presented a
similar degree of hearing impairment. The auditory deficit
involved all frequencies, and the morphology of the audio-
metric curves was flat in 153/225 (68%) of the cases and
slightly decreased towards the high frequencies in 72 (32%)
of the cases. No other configurations were observed.

GJB2 mutations. The most common GJB2 mutation in the
Hungarian population is the ¢.35delG (18). The mutation
frequency of c¢.35delG in this cohort was 39% (319/820
alleles analyzed) which is in accordance with our previous
studies (19). One hundred and seventeen patients showed the
¢.35delG mutation in GJB2 in homozygous form (28.5%) and
61 were c¢.35delG compound heterozygous (14.8%). Forty-
seven patients (11.4%) with sporadic hearing impairment
showed only one GJB2 mutation (c.35delG, p.V27I, p.G59V,
p-R127H or p.E129K) (Fig. 1 and Table I). Most of these
patients (24/47, ~51%) revealed the c.35delG mutation,
whereas 3/47 (6.4%) showed the c.79G>A (p.V27I)
mutation, 2/47 (4.3%) patients the ¢.385G>A (p.E129K) and
only one the c.177G>T (p.G59V). A high number of the
¢.380G>A (p.R127H) mutations were found (17/47, ~36.2%)
in our patients. Subsequently the ¢.380G>A (p.R127H) DNA
change revealed 4/156 (allele frequency 1.3%) heterozygous
control individuals.

GJB2-non-coding region and promoter analysis. The first
non-coding exon including the splice sites was analyzed for
DNA changes. Ten heterozygous and one homozygous
patient (11/47) showed the already described splice site
mutation -3170G>A in the non-coding GJB2 region (23.4%).
No -3170G>A splice site mutation was found in 156 control
individuals (<0.32% allele frequency).

GJB6 mutations. All 47 GJB2-heterozygous patients were
analyzed for the 342-kb deletion [A(GJB6-D13S1830)] using
a multiple PCR strategy. Only two patients out of 47 GJB2-
heterozygous patients showed the deletion in heterozygous
form, accounting for ~4.3%. This deletion [A(GJB6-
D13S1830)] was analyzed in 46/185 hearing impaired
patients without GJ/B2 mutations and the corresponding
control samples as well. In contrast to other studies, none of
the 46 patients negative for G/B2 mutations carried this
deletion. Furthermore, 156 controls exhibited only wild-type
alleles.

GJB3 mutations. By sequencing the coding region of GJB3,
3 common GJB3 (2 new and 1 described) base substitutions
(c.357C>T, ¢.798C>T, and p.R32W) were detected in our
patients and the corresponding control samples, respectively.
The new ¢.357C>T, c.798C>T base changes were not the
result of a change of amino acid and they were likely
polymorphisms since they also occurred in the control
population. The ¢.357C>T variant occured with an incidence
of ~6% (controls) to 15% (patients), a frequency comparable
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to other studies (17,20). The SNP ¢.798C>T occured in 6%
(patients) to 11% (controls) of all analyzed individuals,
which also concurs with other research (20). In addition the
c.94C>T (p.R32W) variant in GJB3 was detected in one out
of 47 heterozygous patients (2.1%). This DNA variant was
the only GJB3 mutation resulting in a change of amino acid.
Nine out of 156 control individuals (5.7%) carried this DNA
change in the heterozygous state.

Discussion

Mutations in GJB2, the gene encoding the gap-junction
protein connexin 26, are the most common cause of
recessively inherited prelingual hearing impairment in
Europe. Since several studies have demonstrated that single
mutations in different connexin genes lead to digenic hearing
impairment, we investigated a patient cohort consisting of
Hungarian patients with one heterozygous GJB2 mutation for
mutations in further connexin genes and the regulatory
region of GJB2.

GJB2 promoter and the non-coding region. The basal GJB2
promoter was characterized by Tu and Kiang in 1998. Using
reporter gene assays they localized the promoter region to
position -3458 to -3331 relative to the translation initiation
codon. Furthermore, a critical regulatory region extending
from -3427 to -3399 was determined (15). Analyzing this
DNA region via direct sequencing in GJB2-heterozygous
Hungarian patients revealed no DNA change suggesting an
infrequent involvement of promoter mutations in the
development of hearing impairment in our patients.

In contrast, mutation -3170G>A which is located within
the splice site, and therefore may have a pathogenic impact,
was detected in 23.4% of GJB2-heterozygous patients (Table I).
It is likely that the -3170G>A allele is either not transcribed
or the mRNA is unstable, thereby leading to hearing impair-
ment. This recessive mutation occurs most frequently in
combination with ¢.35delG resulting in severe to profound
hearing impairment (21,22). Less common is the occurrence
in conjunction with GJ/B2 mutations p.R184P and c.167delT
(23-25). Our new observation for the Hungarian population is
similar. Ten heterozygous -3170G>A carriers also had the
c.35delG mutation, whereas only one individual had the
p-R127H mutation in combination with homozygous splice
site mutations. The severity of HI varies from moderate to
profound in the cases with [GJB2: ¢.35delG] + [S'UTR GJB2:
-3170G>A] genotype. The binaural mean pure tone average
(PTA) threshold for air conduction at 0.5, 1 and 2 kHz
(PTAy5., ;) Was moderate in two patients, severe in three
and profound in five. The patient with the homozygous splice
site mutation was a 3-year-old girl. Auditory brainstem
response (ABR) was performed and showed moderate HI.

GJB6 and A(GJB6-D1351830) deletion. It is known that
CX26 can form heteromeric and heterotypic channels with
other inner ear connexins in mammals (26). Co-immuno-
staining showed expression of CX26 (GJB2) and CX30
(GJB6) in the same gap junction plaques (27,28). Interaction
of both proteins was demonstrated pointing to their ability to
form heteromeric CX26/CX30 connexins in vivo (29). The
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GJB6 situation is particular because of its chromosomal
localization within 50 kb to GJB2. Mutations in GJB6 have
been shown to result in non-syndromic autosomal dominant
and recessive hearing impairment (6,30). Recently, the impact
of GJB6 in the development of hearing impairment was
confirmed by the generation of a knock-out mouse model
(31). These mice exhibited severe hearing impairment. The
cochlear sensory epithelium started to degenerate by cell
apoptosis after P18 resulting in the deterioration of hearing
in adult animals (31). A common 342-kb spanning deletion
[A(GJB6-D13S1830)] was identified in patients who carried
one heterozygous pathogenic GJB2 mutation (c.35delG)
(30,32,33) (Table I). These patients are thought to develop
hearing impairment with variable severity due to a digenic
pattern of inheritance (34). A(GJB6-D13S1830) leaves the
GJB2 coding region intact but deletes a large region close to
GJB2 and truncates GJB6. Thus, the deletion may eliminate
an upstream regulatory element for GJB2 that is essential for
the normal expression of this gene in the inner ear. This
deletion is mainly found in combination with a GJB2
mutation, and the associated HI is assumed to be caused either
by the deletion of a putative GJB2 regulatory element or by
digenic inheritance (12,33). Our two patients with the ¢.35delG
mutation combined with the A(GJB6-D13S1830) mutation
showed more severe hearing impairment compared to the
other patients, whereas the group of patients combining the
c.35delG with the splice site mutation -3170G>A showed
significantly less severe hearing loss. This result is consistent
with the multicenter study of Snoeckx and coworkers (35).
The frequency of the 342-kb deletion [A(GJB6-D13S1830)]
affecting GJB6 varies tremendously between different
populations. In our study, as well as in other studies of Polish
and Austrian patients, the deletion was observed infrequently
(36,37). In contrast, a multicenter study in nine countries
revealed high mutation frequencies with the highest ones
(32-72%) observed in France, Spain, Israel, and the UK (33).
Furthermore, the frequency of a digenic cause for hearing
impairment based on GJB2/[A(GJB6-D13S1830)] mutations
in North American patients varied between 16 and 20%
(38-40). According to our results, mutations within the coding
region of GJB6 and the 342-kb deletion encompassing parts
of GJB6 seem not to be a common cause for hearing impair-
ment in Hungarian patients.

GJB3 sequence variants. In several studies mutations within
GJB3 were described which resulted in HI (5,17,20,41).In a
family with palmoplantar keratoderma and various forms of
HI, Kelsell and coworkers were the first to detect the p.R32W
mutation which occurred in combination with two missense
mutations in GJB2 (p.M34T and p.D66H) segregating with
the skin disease (41). Since p.R32W affects a highly conserved
residue, the authors supposed that the high frequency HI
observed in their patients resulted from defective CX31/
CX26 channel formation caused by additive mutations in
both genes. In contrast, Lopes-Bigas and coworkers
demonstrated that p.R32W in GJB3 did not segregate with
HI and/or skin disease in their Spanish patient cohort (42).
They presented a mother of a patient who carried ¢.35delG
(GJB2) in combination with p.R32W (GJB3) and showed
normal hearing and absence of skin disease. The authors
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presumed that p.R32W (GJB3) most likely represents a poly-
morphism with a frequency of 7.5% in the Spanish population.
Rouan and coworkers subsequently showed that the intra-
cellular coupling of HeLa cells transfected with R32W-CX31
was comparable to wild-type CX31, which is consistent with
the view that R32W is a polymorphism of CX31 (43). In our
study p.R32W was the only mutation that caused an amino
acid exchange found in our GJB2-heterozygous patients
(Table I). Only one patient, who was compound heterozygous
for c.35delG and the splice site mutation -3170G>A in
GJB2, displayed this mutation. Since 5.7% of the Hungarian
control individuals analyzed also showed this DNA change,
it most likely represents a common polymorphism.

In summary, approximately one fourth of all patients with
one heterozygous GJB2 mutation carried another mutation in
the 5'UTR region of GJB2 (splice site mutation -3170G>A).
RFLP analysis as presented in this study provides an efficient
tool to analyze patients with one heterozygous GJB2 mutation
at a relatively low cost. Therefore, we suggest the importance
of the additional routine screening for the -3170G>A mutation
in GJB2-heterozygous hearing impaired patients. Further
mutations in the GJ/B3 and GJB6 genes are less frequently
responsible for the hereditary hearing impairment in our
patients.
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