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Abstract. Atrial fibrillation (AF) is the most frequent cardiac 
arrhythmia and is a major cause of morbidity and mortality. 
Previous studies have established genetic defects as a risk factor 
for AF in a minority of patients. However, AF is of substantial 
genetic heterogeneity and the molecular determinants for AF 
in a majority of cases remain unclear. In this study, the entire 
coding sequence and splice junctions of GATA4, which encodes 
a zinc-finger transcription factor essential for cardiogenesis, 
were sequenced in 160 unrelated patients with lone AF. A total 
of 200 unrelated ethnically matched healthy individuals were 
used as controls. The available relatives of the patient carrying 
an identified mutation were genotyped. The functional charac-
teristics of the mutant GATA4 were analyzed using a luciferase 
reporter assay system. As a result, two novel heterozygous 
GATA4 mutations of p.G16C and p.H28D, were identified in 2 
unrelated families with AF, respectively, which co-segregated 
with AF in each family with complete penetrance. Functional 
analysis demonstrated that the mutations of GATA4 were asso-
ciated with a significantly decreased transcriptional activity. 
The findings expand the mutation spectrum of GATA4 linked 
to AF and provide novel insight into the molecular mecha-
nism involved in the pathogenesis of AF.

Introduction

Atrial fibrillation (AF) is the most common type of cardiac 
arrhythmia in the clinical setting. In the general population, 
the prevalence of AF is approximately 1%, and increases with 
age to almost 10% in octogenarians (1). For subjects over 
40 years of age, the estimated lifetime risk of developing AF 
is about 25% (2). This condition is responsible for substantial 
mortality and morbidity. Compared with individuals in normal 
rhythm, patients with AF have a six-fold increased risk of 

stroke and a 2-fold increased risk of death (3,4). Traditionally, 
AF has been ascribed to various cardiac and systemic disor-
ders that result in the electrical and structural remodeling of 
the atria and hence predispose atria to fibrillate, including 
coronary artery disease, rheumatic heart disease, myocarditis, 
pericarditis, cardiomyopathy, congenital heart defects, cardiac 
surgery, congestive heart failure, pulmonary embolism, type 
2 diabetes, hypertension, hyperthyroidism, electrolyte imbal-
ance, and even dyslipidemia (5,6). However, in 30 to 45% of the 
patients, AF occurs in the absence of structural cardiovascular 
diseases and systemic abnormalities (5), and growing epide-
miological studies substantiate the familial aggregation of AF 
and a significantly increased risk of AF in the close relatives 
of patients with AF, strongly suggesting a genetic basis for 
the disease (7-13). Furthermore, loci on chromosomes 10q22-
24, 6q14-16 and 5p13 have been linked to AF (14-16), and 
AF-associated mutations in multiple genes, including KCNQ1, 
KCNE2, SCN5A, KCNH2, KCNJ2, GJA5, KCNA5, KCNE3, 
KCNE5, NPPA, NUP155, SCN1B, SCN2B, SCN3B, and GJA1 
have been identified (17-31). Nevertheless, AF is a genetically 
heterogeneous disorder and the genetic determinants for AF in 
a majority of cases remain to be identified (32).

Recent studies have demonstrated the pivotal role for 
several cardiac transcription factors, including GATA4, in 
cardiogenesis (33-37). The human GATA4 gene maps to chro-
mosome 8p23.1-p22 and constitutively consists of 7 exons, 
encoding a zinc-finger transcription factor, a protein of 442 
amino acids (38). The transcription factor GATA4 is expressed 
throughout cardiac morphogenesis and is essential for normal 
cardiac development (39-41). Mutations in the GATA4 
gene have been identified in patients with a wide variety of 
congenital cardiovascular anomalies including cardiac septal 
defect, tetralogy of Fallot, endocardial cushion defect, patent 
ductus arteriosus, pulmonary stenosis, and hypoplastic right 
ventricle (42-47). Interestingly, GATA4 mutations have also 
been observed in patients with lone AF, implying a common 
genetic origin of AF with congenital cardiac malformations, 
although the functional effect of the mutations has not been 
characterized (48).

To evaluate the prevalence and spectrum of GATA4 muta-
tions in a cohort of 160 patients with lone AF and investigate 
the mechanism by which mutated GATA4 contributes to AF, 
the coding exons and exon/intron boundaries of GATA4 were 
sequenced and the functional characteristics of the mutant 
GATA4 were analyzed in contrast to its wild-type counterpart 
using a luciferase reporter assay system.

Novel GATA4 mutations in lone atrial fibrillation
JIN-QI JIANG1,  FANG-FANG SHEN1,  WEI-YI FANG2,  XU LIU2  and  YI-QING YANG3

Departments of 1Emergency, 2Cardiology and 3Cardiovascular Research, Shanghai Chest Hospital, 
Medical College of Shanghai Jiaotong University, Shanghai 200030, P.R. China

Received June 25, 2011;  Accepted August 10, 2011

DOI: 10.3892/ijmm.2011.783

Correspondence to: Dr Yi-Qing Yang, Department of Cardio
vascular Research, Shanghai Chest Hospital, Medical College of 
Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai 
200030, P.R. China
E-mail: yang99yang66@hotmail.com

Key words: atrial fibrillation, transcription factor, genetics



JIANG et al:  NOVEL GATA4 MUTATIONS IN AF1026

Materials and methods

Study participants. A total of 160 unrelated patients with lone 
AF were identified among the Han Chinese population. The 
controls were 200 ethnically matched unrelated healthy indi-
viduals. Peripheral venous blood specimens were prepared and 
clinical data including medical records, electrocardiogram and 
echocardiography reports were collected. The study subjects 
were clinically classified using a consistently applied set of 
definitions (32). Briefly, diagnosis of AF was made by a stan-
dard 12-lead electrocardiogram demonstrating no P waves and 
irregular R-R intervals regardless of clinical symptoms. Lone 
AF was defined as AF occurring in individuals <60 years of age 
without other cardiac or systemic diseases by physical exami-
nation, electrocardiogram, transthoracic echocardiogram, and 
extensive laboratory tests. Relatives with AF occurring at any 
age in the setting of structural heart disease (hypertensive, 
ischemic, myocardial or valvular, but not congenital) were 
classified as ‘undetermined’ for having an inherited form of 
AF. The ‘undetermined’ classification was also used if docu-
mentation of AF on an electrocardiogram tracing was lacking 
in relatives with symptoms consistent with AF (palpitations, 
dyspnea and light-headedness), or if a screening electrocardio-
gram and echocardiogram were not performed, irrespective 
of the symptoms. Relatives were classified as ‘unaffected’ if 
they were ≥18 years of age, asymptomatic and had a normal 
electrocardiogram. Paroxysmal AF was defined as AF lasting 
more than 30 sec that terminated spontaneously. Persistent 
AF was defined as AF lasting more than 7 days and requiring 
either pharmacologic therapy or electrical cardioversion for 
termination. AF that was refractory to cardioversion or that 
was allowed to continue was classified as permanent. The study 
protocol was reviewed and approved by the local institutional 
Ethics Committee and written informed consent was obtained 
from all participants prior to investigation.

Genetic studies. Genomic DNA from all participants was 
extracted from blood lymphocytes with the Wizard Genomic 
DNA Purification kit (Promega, Madison, WI, USA). Initially, 
the whole coding region and splice junctions of the GATA4 
gene was screened in 160 unrelated patients with lone AF. 
Subsequently, genotyping GATA4 in the available relatives of 
the patients carrying identified mutations and 200 ethnically 
matched unrelated healthy control individuals was performed. 
The genomic DNA reference sequence of GATA4 was derived 
from GenBank (accession number: NC_000008). By the aid 

of the online Primer 3 software (http://frodo.wi.mit.edu), the 
primer pairs used to amplify the coding exons (exons 2-7) and 
intron-exon boundaries of GATA4 by polymerase chain reac-
tion (PCR) were designed and are shown in Table I. The PCR 
was carried out using HotStarTaq DNA polymerase (Qiagen, 
Hilden, Germany) on a PE9700 Thermal Cycler (Applied 
Biosystems, Foster, CA, USA) with standard conditions and 
concentrations of reagents. Amplified products were purified 
with the QIAquick Gel Extraction kit (Qiagen). Both strands of 
each PCR product were sequenced with a BigDye® Terminator 
v3.1 Cycle Sequencing kit (Applied Biosystems) under an 
ABI PRISM 3130XL DNA Analyzer (Applied Biosystems). 
The sequencing primers were those designed previously for 
specific region amplifications. DNA sequences were viewed 
and analyzed with the DNA Sequencing Analysis Software 
v5.1 (Applied Biosystems). The variant was validated by rese-
quencing of an independent PCR-generated amplicon from the 
subject and met our quality control thresholds with a call rate 
>99%.

Multiple sequence alignments. The multiple GATA4 protein 
sequences across various species were aligned using the 
MUSCLE program, version 3.6 (an online program at http://
www.ncbi.nlm.nih.gov/).

Plasmids and site-directed mutagenesis. The recombinant 
expression plasmids pSSRa-GATA4 and atrial natriuretic 
peptide-luciferase reporter gene, which contains the 2600 bp 
5'-flanking region of the atrial natriuretic peptide gene, namely 
ANP(-2600)-Luc, were kindly provided by Dr Ichiro Shiojima 
from Chiba University School of Medicine, Japan. The identi-
fied mutation was introduced into the wild-type GATA4 using a 
QuikChange II XL Site-Directed Mutagenesis kit (Stratagene, 
La Jolla, CA, USA) with a complementary pair of primers. The 
mutant was sequenced to confirm the desired mutation and to 
exclude any other sequence variations.

Reporter gene assays. COS-7 cells were cultured in Dulbecco's 
modified Eagle's medium supplemented with 10% fetal calf 
serum. The ANP(-2600)-Luc reporter construct and an internal 
control reporter plasmid pGL4.75 (hRluc/CMV, Promega) were 
used in transient transfection assays to examine the transcrip-
tional activation function of the GATA4 mutant. COS-7 cells 
were transfected with 0.2 µg of wild-type or mutant pSSRa-
GATA4 expression vector, 0.2 µg of ANP(-2600)-Luc reporter 
construct, and 0.04 µg of pGL4.75 control reporter vector using 

Table I. The intronic primers to amplify the coding exons and exon-intron boundaries of GATA4.

Exon	 Forward primer (5' to 3')	 Reverse primer (5' to 3')	 Amplicon size (bp)

2-a	 GAT CTT CGC GAC AGT TCC TC	 GTC CCC GGG AAG GAG AAG	 458
2-b	 GCT GGG CCT GTC CTA CCT	 AAA AAC AAG AGG CCC TCG AC	 554
3	 GGG CTG AAG TCA GAG TGA GG	 GAT GCA CAC CCT CAA GTT CC	 437
4	 GAG ATC TCA TGC AGG GTC GT	 GCC CCT TCC AAA TCT AAG TC	 390
5	 TCT TTC TCG CTG AGT TCC AG	 GGG ATG TCC GAT GCT GTC	 379
6	 GCC ATC CCT GTG AGA ACT GT	 GAG GGT AGC TCA CTG CTT GC	 444
7	 AAG TGC TCC TTG GTC CCT TC	 TTC CCC TAA CCA GAT TGT CG	 479
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the PolyFect Transfection Reagent (Qiagen). For co-transfec-
tion experiments, 0.1 µg of wild-type pSSRa-GATA4, 0.1 µg of 
mutant pSSRa-GATA4, 0.2 µg of ANP(-2600)-Luc, and 0.04 µg 
of pGL4.75 were used. Firefly luciferase and Renilla luciferase 
activities were measured with the Dual-Glo luciferase assay 
system (Promega) 48 h after transfection. Three independent 
experiments were performed at a minimum for wild-type and 
mutant GATA4.

Statistical analysis. Data are expressed as means  ±  SD. 
Continuous variables were tested for normality of distribution and 
the Student's unpaired t-test was used for comparison of numeric 
variables between two groups. Comparison of the categorical 
variables between two groups was performed using the Pearson's 
χ2 test or the Fisher's exact test when appropriate. A 2-tailed 
P-value <0.05 was considered to be statistically significant.

Results

Characteristics of the study subjects. A cohort of 160 unre-
lated patients with lone AF was recruited and clinically 
evaluated in contrast to a total of 200 ethnically matched unre-
lated healthy individuals used as controls. None of them had 
overt traditional risk factors for AF. There were no significant 
differences between patient and control groups in baseline 

characteristics including age, gender, body mass index, blood 
pressure, fasting blood glucose, serum lipid, left atrial dimen-
sion, left ventricular ejection fraction, heart rate at rest, as well 
as life style. The baseline clinical characteristics of the 160 
patients with lone AF are summarized in Table II.

GATA4 mutations. Direct sequencing of the GATA4 gene 
was conducted after PCR amplification of genomic DNA 
from the 160 unrelated patients. Two heterozygous missense 
mutations in GATA4 were identified in 2 out of 160 patients, 
respectively. The total population prevalence of the GATA4 
mutations was 1.25%. A substitution of T for G in the first 
nucleotide of codon 16 (c.46G>T), predicting the transition 
of glycine (G) into cysteine (C) at amino acid 16 (p.G16C) 
was detected in the patient from family  1. The mutation 
c.82C>G, corresponding to the mutation p.H28D, was found 
in the patient from family 2. The sequence chromatograms 
showing the observed heterozygous GATA4 mutations of 
c.46G>T and c.82C>G compared with control sequences are 
shown in Fig. 1. A schematic diagram of GATA4 depicting 
the structural domains and locations of mutations identified 
in AF patients is presented in Fig. 2. The two newly identi-
fied mutations were not reported in the SNP database (http://
www.ncbi.nlm.nih.gov/SNP) and no mutations were found in 
the 200 control individuals by sequencing of the six coding 

Table II. The baseline clinical characteristics of the 160 unrelated patients with lone atrial fibrillation (AF).

Features	 Number or quantity	 Percentage or range

Male/female	 100/60	 63/38
Age at first diagnosis of AF (years)	 46.39	 26-58
Type of AF at presentation
  Paroxysmal	 120	 75
  Persistent	 29	 18
  Permanent	 11	 7
Positive family history of AF	 32	 20
History of cardioversion	 46	 29
History of pacemaker	 6	 4
Resting heart rate (bpm)	 73.13	 56-172
Systolic blood pressure (mmHg)	 124.77	 92-136
Diastolic blood pressure (mmHg)	 82.16	 62-88
Body mass index (kg/m2)	 22.93	 21-25
Left atrial diameter (mm)	 37.84	 31-50
Left ventricular ejection fraction (%)	 65	 54-75
Fasting blood glucose (mmol/l)	 4.38	 4-6
Total cholesterol (mmol/l)	 3.80	 3-5
Triglycerides (mmol/l)	 1.26	 1-2
Medications
  Aspirin	 56	 35
  Warfarin	 35	 22
  β-blocker	 42	 26
  Calcium channel blocker	 24	 15
  Digoxin	 48	 30
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exons of GATA4. The genetic scan of the two unrelated fami-
lies exhibited that in each family the mutation was present in 
all affected living family members, but absent in unaffected 

Figure 1. Sequence chromatograms of GATA4 in index patients and con-
trol subjects. The heterozygous GATA4 mutations of (A) c.46G>T and (B) 
c.82C>G compared with control sequences. The arrow indicates the hetero-
zygous nucleotides of (A) G/T and (B) C/G in the probands from families 1 
and 2 (mutant), respectively or the homozygous nucleotides of (A) G/G and 
(B) C/C in the corresponding control individuals (wild-type). The square 
denotes the nucleotides comprising a codon of GATA4.
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Figure 2. Diagram of GATA4 showing the locations of exonic germline 
mutations linked to atrial fibrillation. All mutations found in patients with 
atrial fibrillation are shown above the diagram of the GATA4 protein. The 
mutations evaluated by family are represented in bold letters and those also 
by functional analyses are marked with an asterisk. NH2, amino-terminus; 
TAD, transcriptional activation domain; ZF, zinc finger; NLS, nuclear local-
ization signal; COOH, carboxyl-terminus.
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family members tested. Analysis of the pedigrees demon-
strated that each mutation co-segregated with AF transmitted 
as an autosomal dominant trait in the family with a complete 
penetrance. The pedigree structures of the 2 families are illus-
trated in Fig. 3. The phenotypic characteristics and results of 
genetic screening of the affected family members are listed in 
Table III. Additionally, all the affected individuals harboring 
identified mutations presented with isolated AF and without 
evidence of echocardiogram documented cardiac deformities 
except for patient II-1 from family 2, who had a catheter-based 
repair of congenital atrial septal defect at the age of 38 years. 
Since some congenital cardiac structural defects may close 
spontaneously, we cannot rule out the possibility that some of 
the mutation carriers had smaller cardiac septal defects that 
closed shortly after birth on their own.

Alignment of multiple GATA4 protein sequences across species. 
A cross-species alignment of GATA4 protein sequences 
showed that the altered amino acids were highly conserved 
evolutionarily, as presented in Fig. 4, suggesting that the amino 
acids are functionally important.

Transcriptional activity of the GATA4 mutants. The tran-
scriptional activation characterization of the mutated GATA4 
in COS-7 cells was explored using one of its direct cardiac 
downstream target genes, ANP, as a luciferase reporter, 
and the activity of the ANP promoter was presented as fold-
activation of Firefly luciferase relative to Renilla luciferase. 

The same amounts of wild-type (0.2 µg), G16C-mutant, and 
H28D-mutant GATA4 (0.2 µg) activated the ANP promoter 
by ~11-fold, ~6-fold, and ~3-fold, respectively. When the 
same amount of wild-type GATA4 (0.1 µg) was co-transfected 
with G16C-mutant GATA4 (0.1 µg), or with H28D-mutant 
GATA4 (0.1 µg), the induced activation of the ANP promoter 
was ~8-fold or ~6-fold. These results suggest that each of the 
two GATA4 mutations has a significantly reduced activation 
activity compared with wild-type counterpart (Fig. 5).

Discussion

In the current study, two heterozygous missense GATA4 muta-
tions of p.G16C and p.H28D identified in 2 out of 160 unrelated 
patients with lone AF are described. In each family, the previ-
ously unrecognized mutation of GATA4 co-segregated with 
AF and was absent in the 400 normal chromosomes from a 
matched control population. Multiple alignments of GATA4 
protein sequences across species displayed that the mutations 
affected the amino acids which are highly conserved evolu-
tionarily. Functional analysis demonstrated that the p.G16C 
and p.H28D mutations of GATA4 were consistently associ-
ated with a significantly decreased transcriptional activity. 
Therefore, the GATA4 mutations found in these two families 
may be responsible for AF. To our knowledge, this is the 
first description of the relationship between GATA4 loss-of-
function mutation and susceptibility to lone AF.

GATA is a large family of transcription factors character-
ized by their ability to bind to the consensus DNA sequence 
‘GATA’. In vertebrates, six members of the GATA family have 
been identified, of which GATA4, GATA5 and GATA6 are 
expressed mainly in the developing heart (49). Functionally 
GATA4 comprises 2 transcriptional activation domains 
(TAD1, amino acids 1-74; TAD2, amino acids 130-177), 2 zinc 
finger domains (ZF1, amino acids 215-240; ZF2, amino acids 

Figure 3. Pedigree structures of families with atrial fibrillation, designated as 
families 1 and 2, respectively. Family members are identified by generations 
and numbers; squares indicate male family members; circles, female mem-
bers; symbols with a slash, the deceased members; closed symbols, affected 
members; open symbols, unaffected members; stippled symbols, members 
with phenotype undetermined; arrow, proband; +, carriers of the heterozy-
gous mutation; and -, non-carriers.

Figure 4. Alignment of multiple GATA4 protein sequences across species. The 
altered amino acids of G16 and H28 are highly conserved evolutionarily.

Figure 5. Transcriptional activity of the mutant GATA4 on the ANP promoter. 
COS-7 cells were transfected with 0.2 µg of wild-type or mutant pSSRa-
GATA4 expression vector, 0.2 µg of ANP(-2600)-Luc reporter construct, and 
0.04 µg of pGL4.75 control reporter vector. For co-transfection experiments, 
0.1 µg of wild-type pSSRa-GATA4, 0.1 µg of mutant pSSRa-GATA4, 0.2 µg 
of ANP(-2600)-Luc, and 0.04 µg of pGL4.75 were used. The activity of the 
ANP promoter was presented as fold-activation of Firefly luciferase relative 
to Renilla luciferase. Values are the mean ± SD of data from three indepen-
dent experiments performed in triplicate. *P<0.05 and **P<0.01, respectively, 
when compared with the wild-type GATA4.
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270-294), and 1 nuclear localization signal (NLS, amino acids 
254-324) (50). The two TADs are both essential for the tran-
scriptional activity of GATA4. The C-terminal ZF1 is required 
for DNA sequence recognition and binding to the consensus 
motif, while the N-terminal ZF2 is responsible for sequence 
specificity and stability of protein-DNA binding. The NLS 
sequence is associated with the subcellular trafficking and 
distribution of GATA4. The GATA4 mutations of p.G16C and 
p.H28D are both located in TAD1, thus may be expected to 
exert direct influence on the transcriptional activity of GATA4.

Previous investigations have substantiated that GATA4 
is an upstream regulator of several genes expressed during 
cardiac development including the ANP gene (49). GATA4 
may bind to target DNA in conjunction with other partners 
including transcription factor TBX5 and NKX2-5, and the 
synergistic transcriptional activation mediated by TBX5 and 
NKX2-5 has been ascertained (42,51). Hence, the functional 
characteristics of the GATA4 mutations may be characterized 
by analysis of the transcriptional activity of the ANP promoter. 
In this study, the functional effect of the novel p.G16C and 
p.H28D mutations of GATA4 were explored by transcrip-
tional activity assays and the results displayed a significantly 
decreased transcriptional activity on a downstream gene, 
consistent with the loss-of function effects of other GATA4 
mutations underlying congenital cardiovascular anomalies on 
the transcriptional activity of the ANP promoter (42,51). These 
findings imply that haploinsufficiency resulting from GATA4 
mutations is potentially an important pathophysiological 
mechanism involved in AF.

The fact that functionally compromised GATA4 predisposes 
to AF may be partially ascribed to the anomalous development 
of the pulmonary vein myocardium (51-53). The pulmonary 
venous vessels are ensheathed by a myocardial layer known 
as the pulmonary myocardial sleeve, which has been shown to 
be involved in the initiation and perpetuation of AF by several 
possible pathological mechanisms including intrinsic pace-
maker activity and properties in favor of re-entrance (54,55). 
Genetic-labeling lineage tracing studies have demonstrated 
that Nkx2-5 is expressed in all atrial and ventricular myocytes, 
atrioventricular conduction system, as well as pulmonary 
myocardium and is essential for embryonic development of 
the localized formation of the sinoatrial node. Nkx2-5 func-
tions in dose-dependent manner as a repressor of the sinoatrial 
node lineage gene program, thus limiting pacemaker activity 
to the sinus node and the atrioventricular node. When the 
Nkx2-5 protein levels were low in a hypomorphic model, the 
pulmonary cardiomyocytes switched to connexin 40-nega-
tive, HCN4-positive cells, a pacemaker-like phenotype (52). 
In Nkx2-5-null mouse embryos, HCN4 was expressed in the 
entire embryonic heart tube, whereas connexin 40 expression 
was strongly reduced or absent and ectopic expression of pace-
maker cells was observed throughout the heart tube (56). In 
humans, AF was reported as an isolated phenotype or a part of 
compound phenotype in patients harboring Nkx2-5 mutations 
(57-59). Therefore, as a transcriptionally cooperative partner of 
Nkx2-5, GATA4, when a loss-of-function mutation occurs, may 
contribute to formation of the pulmonary myocardium sleeve 
and shift of the pulmonary myocardium to a pacemaker-like 
phenotype by reducing the level of Nkx2-5, hence providing 
an atrial electrophysiological substrate facilitating AF.

There is a great number of downstream genes activated by 
GATA4, and mutations in several target molecules have been 
associated with AF, including β myosin heavy chain, atrial 
natriuretic peptide, and connexin 40 (22,23,27,49,60). Therefore, 
mutated GATA4 likely confers susceptibility to AF by reducing 
expression of target genes.

It is interesting that a congenital atrial septal defect was 
observed in an AF patient carrying the p.H28D mutation of 
GATA4. Also, Posch et al (48) sequenced the entire coding 
region of GATA4 in 96 lone AF patients of Caucasian origin 
and identified a novel mutation of p.M247T and a previously 
reported mutation of p.A411V, with a mutation prevalence of 
2.08%. Similarly to our findings, atrial septal aneurysm was 
found in an AF patient carrying the p.M247T mutation and the 
AF-associated mutation of p.A411V was previously implicated 
in congenital septal defects and cardiac hypertrophy. These 
results indicate that AF may share a common genetic origin 
with congenital heart disease.

In conclusion, this study expands the mutation spectrum 
of GATA4 linked to AF and provides new insight into the 
molecular mechanism involved in the pathogenesis of AF, 
suggesting the potential implications in the genetic diagnosis 
and gene-specific therapy of this common arrhythmia.
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