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Abstract. The aim of this study was to identify mutations in
the TRPM1, GRM6, NYX and CACNAIF genes in patients
with congenital stationary night blindness (CSNB). Twenty-
four unrelated patients with CSNB were ascertained. Sanger
sequencing was used to analyze the coding exons and adjacent
intronic regions of TRPM1, GRM6, NYX and CACNAIF. Six
mutations were identified in six unrelated patients, including
five novel and one known. Of the six, three novel hemizygous
mutations, c.92G>A (p.Cys31Tyr), c.149G>C (p.Ary50Pro),
and c.[272T>A;1429G>C] (p.[Leu91GIn;Gly477Arg]),
were found in NYX in three patients, respectively. A novel
¢.[1984_1986delCTC;3001G>A] (p.[Leu662del;Glyl001Arg])
mutation was detected in CACNAIF in one patient. One
novel and one known heterozygous variation, ¢.1267T>C
(p-Cys423Arg) and c.1537G>A (p-Val513Met), were detected in
GRMB6 in two patients, respectively. No variations were found
in TRPMI. The results expand the mutation spectrum of NYX,
CACNALIF and GRM6. They also suggest that NY X mutations
are a common cause of CSNB.

Introduction

Congenital stationary night blindness (CSNB) is a clinically
and genetically heterogeneous group of inherited retinal disor-
ders characterized by nonprogressive impaired night vision and
sometimes accompanied with other ocular symptoms, including
myopia, nystagmus and strabismus (1). Electroretinogram
(ERG) recordings can classify CSNB into two groups, complete
CSNB (cCSNB or CSNB1) which show the complete absence
of rod pathway function and incomplete CSNB (icCSNB or
CSNB2) which is caused by abnormal rod and cone pathway
function (2). CSNB can be transmitted as autosomal domi-
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nant (adCSNB), autosomal recessive (arCSNB), or X-linked
recessive traits (xICSNB). To date, 12 genes have been
reported to be implicated in CSNB (RetNet, http://www.sph.
uth.tmc.edu/retnet/), including RHO (MIM 180380), GNAT1
(MIM 139330), PDE6B (MIM 180072), GRM6 (MIM 604096),
TRPM1 (MIM 603576), SLC24A1 (MIM 603617),
CABP4 (MIM 608965), CACNA2D4 (MIM 608171), SAG
(MIM 181031), GRK1 (MIM 180381), NYX (MIM 300278)
and CACNA1F (MIM 300110) (3-27).

Four of the 12 genes, TRPM1, GRM6,NY X and CACNALF,
are involved in the signaling cascade from photoreceptors to
adjacent bipolar cells (1). L-type voltage-dependent calcium
channel a-1F subunit (encoded by CACNAIF), locating in the
rod synaptic terminal, regulates the intracellular influx Ca*
concentration, which influence the glutamate release from
rods to bipolar cells (28). Metabotropic glutamate receptor 6,
encoded by GRM6 (MGIuR6), locating in a bipolar cell,
receives the glutamate released from rods and activates an
intracellular cascade that terminates in closure of TRPM1
(encoded by TRPM1) (4,29). Nyctalopin (encoded by NYX)
may interact with TRPMI1 but the exact function is yet to be
identified (30-32). Any abnormality in the cascade will lead to
the signal transduction defect with clinical phenotype of CSNB.

Mutations in the TRPM1, GRM6, NYX and CACNAI1F
genes have been frequently studied in Caucasian or Japanese
populations (1,33). Mutation analysis of all these 4 genes at
the same time are rare, especially in Chinese. In this study,
Sanger sequencing were used to analyze the coding exons and
their adjacent regions of the 4 genes in 24 unrelated Chinese
patients with CSNB.

Materials and methods

Patients. Twenty-four unrelated patients with CSNB were
collected from our Pediatric and Genetic Eye Clinic of the
Zhongshan Ophthalmic Center. Written informed consent
conforming to the tenets of the Declaration of Helsinki was
obtained from each participant or their guardians prior to
the study. The Institutional Review Board of Zhongshan
Ophthalmic Center approved this study. Genomic DNA was
prepared from leukocytes of venous blood samples as pre-
viously described (34).

Mutation screening. Eighty-six coding exons and their adjacent
intronic regions in the TRPM1, GRM6, NYX and CACNAI1F
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Table I. Genomic information of the four genes studied.
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Gene Location Genomic DNA mRNA Protein Total number Number of
of coding exons exons analyzed

TRPM1 15q13.3 NC_000015.9 NM_002420.4 NP_002411.3 26

GRM6 5q35 NC_000005.9 NM_000843.3 NP_000834.2 10

NYX Xpll 4 NC_000023.10 NM_022567.2 NP_072089.1 2

CACNAIF Xpl1.23 NC_000023.10 NM_005183.2 NP_005174.2 48

The genomic DNA information was based on NCBI human genome build 37.2.
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Figure 1. Mutations identified in NYX, CACNAIF and GRM6. The pedigrees are listed on the left. Circles and squares denote females and males, respectively.
Filled circle or square indicates patients. Arrow marks proband analyzed in mutational screening. Sequence chromatography with variation from each proband
is shown next to the patient number. The right column shows the corresponding normal sequences.
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Homo sapines CARACPAACA VRCDRAGLLR SLRRLSLRHN QHVVFGLQMD
Pan troglodytes = CARACPAACA VRCDRAGLLR SLRRLSLRHN QHVVFGLQMD
Mus musculus CLRACPAACT VRCDRAGLQR SLRRLSLRHN QYVVVGLQRE
Rattus norvegicus CLRACPAACT VRCDRAGLQR SLRCLSLRHN QYVVLGPQRD
Canis familiaris CTRTCPTACA VRCDRAGLLR SLRRLSLRHN --VVFVLSMD
Gallus CVRSCPANCV VLCDRAGLGQ SLKSLSLNHN LTVVIFQSK
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Danio rerio CTRSCPPTCT VLCDHVNMMD SLKTLSLKYN AQFDSI NAS
CACNA1F p. L65|2del p.G1001R GRM6 p.04%3R p-V5|1 3M

|
Homo Sapiens SLLLLLFLFI IRTIGNIMIV  Homo sapiens HQALCPGHTG DPHEVPSSLC
Macaca mulatta SLLLLLFLFI IRTIGNIMIV Pantroglodytes HQALCPGHTG DPHEVPSSLC
Mus musculus SLLLLLFLFI IRTIGNIMIV Pongo abelii HQELCPGHTG DPHEVPSSLC
Rattus norvegicus SLLLLLFLFI IRTIGNIMIV  Musmusculus HQALCPGHTG DPHEVPPSQC
Callithrix jacchus  SLLLLLFLFI IRTIGNIMIV Rattus norvegicus HQALCPGHTG DPHEVPPSQC
Bos taurus SLLLLLFLFI IRTIGNIMIV Callithrix jacchus HQALCPGHTG DPHEVPSSLC
Canis familiaris SLLLLLFLFI IRTIGNIMIV Bostaurus HQALCPGHTG DPREVPESLC
Danio rerio SLLLLLFLFL IRTIGNIMIV Canis familiaris HQALCPGLTG ELREVPRSQC

Figure 2. Conservation analysis of mutations in different species. The regions with the mutations are comparatively conserved.

genes were analyzed by using Sanger dideoxy sequencing.
Bioinformation of these 4 genes (Table I) obtained from the
National Center for Biotechnology Information (NCBI, http://
www.ncbi.nlm.nih.gov/). DNA fragments encompassing
individual exon was amplified by polymerase chain reaction
(PCR). The amplicons were analyzed with the ABI BigDye
Terminator cycle sequencing kit version 3.1 (Applied
Biosystems, Foster City, CA) using an ABI 3100 Genetic
Analyzer (Applied Biosystems). Sequencing results from the
patients and the consensus sequences from the NCBI Human
Genome Database were compared using the CLC Main
Workbench program (http://www.clcbio.com/) (35). Each
variation was initially confirmed by bi-directional sequencing
and then evaluated in 96 normal individuals. The description
of the mutations follows the recommendations of the Human
Genomic Variation Society (HGVS, http://www.hgvs.org/).
The potential functional effect of an amino acid substitution
due to a mutation was predicted using the PolyPhen-2 online
tool (v2.0.23, http://genetics.bwh.harvard.edu/pph2/). Sorting
of the intolerant from tolerant (SIFT) was also used to predict
whether an amino acid substitution affects protein function
based on sequence homology and the physical properties of
amino acids (http://sift.jcvi.org/).

Results

Mutations in the 4 genes were detected in six of the 24 families
with CSNB (Table II and Fig. 1), including 3 novel mutations
in NYX, 1 novel mutation in CACNAIF, and 2 heterozygous
mutations (one novel and one known) in GRM6. One muta-
tion in NYX and one mutation in CACNAI1F were compound
hemizygous mutations. The mutations in each patient involve
codons in which the encoded residues were well conserved
(Fig. 2). These mutations were not detected in the 96 normal
individuals. No mutation was detected in TRPM1. Clinical
information of the patients with mutations are listed in
Table III.

The ¢c.92G>A (p.Cys31Tyr), ¢.149G>C (p.Ary50Pro) and
c.[272T>A;1429G>C] (p.[Leu91Gln;Gly477Arg]) mutations in
NYX were detected in an isolated case and 2 families with

possible X-linked pattern of inheritance (Fig. 1), respectively.
These variations are predicted to affect the function of the
encoded protein. Segregation analysis of the compound
c.[272T>A;1429G>C] (p.[Leu91Gln;Gly477Arg]) mutation in
family QT411 confirmed the hemizygous mutation in other
two affected patients (III7 and II19) and the heterozygous
status in the unaffected mother (Fig. 1). Patients with the three
NYX mutations had a complete form of CSNB.

The ¢.[1984_1986delCTC;3001G>A] (p.[Leu662del;
Gly1001Arg]) mutation in CACNA1F was detected in a patient,
who had incomplete form of CSNB and a family history of
the disease showing X-linked recessive pattern of inheritance
(Fig. 1). This mutation is predicted to be probably damaging
by PolyPhen-2.

Two heterozygous mutations in GRM6, c.1267T>C
(p-Cys423Arg) and c.1537G>A (p.Val513Met), were detected
in two isolated male patients with a complete form of CSNB
(Fig. 1), respectively. The c.1267T>C (p.Cys423Arg) muta-
tion is novel and predicted to be probably damaging (Table II).
The ¢.1537G>A (p.Val513Met) mutation is predicted to be
benign and has been previously detected in a Chinese patient
with high myopia (36). These two mutations are located in
the extracellular N-terminal domain that is vital in glutamate
binding and the activation or inactivation of mGluR6 (37,38).
However, mutations in another allele of these 2 patients have
not been identified.

Discussion

In this study, analysis of the TRPM1, GRM6, NYX and
CACNALIF genes in probands from 24 Chinese families with
CSNB detected 6 mutations in 6 unrelated patients, including
five novel and one known mutations. Three of the 6 mutations
in NYX and 1 mutation in CACNALF are likely to be the cause
responsible for CSNB in those 4 families. However, additional
study is needed to reveal how a heterozygous GRM6 mutation
could associate with CSNB as mutations in GRM6 have been
demonstrated to cause autosomal recessive CSNB.

TRPM1 is identified as the mGluR6-coupled cation channel
in retinal ON-bipolar cells (39). Several studies have reported
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that TRPM1 mutations are associated with arCSNB in Caucasian
or Japanese populations (9-11,33). No mutation was detected in
the Chinese patients in this study although mutations in TRPM1
have been found in about half of the cases with CSNB1 (29).

The ¢.1267T>C (p.Cys423Arg) mutation in GRM6 is
located in the ligand-binding domains of mGluR6 and prob-
ably will affect the folding of the protein (40). The c¢.1537G>A
(p.Val513Met) in GRM6 was previously reported in high
myopia patient without CSNB (36). We found this mutation in
a CSNB patient with high myopia. The valine at codon 513 is
located in the second conserved cysteine-rich domain (CRD)
of the mGluR6 receptor, which is important in the intermo-
lecular signal transmission (41). It is unclear why the same
mutation is associated with high myopia alone in one patient
but with CSNB and high myopia in another patient.

The ¢.92G>A (p.Cys31Try) and ¢.149G>C (p.Ary50Pro)
mutations in NYX locate in the N-terminal cysteine-rich LRRs
(leucine-rich repeats, LRPs). For the former, it is worth noting
that a different mutation affecting the same codon, ¢.92G>C,
has been reported before (21). The c.[272T>A;1429G>C]
(p.[Leu91GIn;Gly477Arg]) would affect the second LRRs
(total 11 LRRs) and the GPI-anchor region, respectively, and
therefore may impair the structure or function of the encoded
protein.

The (c.[1984_1986delCTC;3001G>A] (p.[Leu662del;
Gly1001Arg]) mutation in CACNAIF is present in a patient
with incomplete CSNB who has a family history of this disease
showing X-linked recessive pattern. The deletion in this muta-
tion would affect the domain II S5 region that is evolutionarily
conserved. The missense change of this mutation involving the
domain IIT S5 region is predicted to be probably damaging,
which may disrupt the channel function (42).

In this study, 3 mutations in NYX, 1 mutation in
CACNALIF, 2 mutations in GRM6 were identified in 6 of 24
Chinese patients with CSNB. The results expand the mutation
spectrum of these genes. Further analysis of additional genes
may enrich our understanding of the molecular basis of CSNB
in those patients without mutation.
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