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Abstract. The Na+-H+-exchanger-1 (NHE-1) controls intracel-
lular pH and glycolytic enzyme activities, and its expression 
and activity are increased by diabetes and high glucose. 
NHE-1-dependent upregulation of the upper part of glycolysis, 
under conditions of inhibition (lens) or insufficient activation 
(retina) of glyceraldehyde 3-phosphate dehydrogenase, under-
lies diversion of the excessive glycolytic flux towards several 
pathways contributing to oxidative stress, a causative factor in 
diabetic cataractogenesis and retinopathy. This study evaluated 
the role for NHE-1 in diabetic cataract formation and retinal 
oxidative stress and apoptosis. Control and streptozotocin-
diabetic rats were maintained with or without treatment with 
the NHE-1 inhibitor cariporide (Sanofi-Aventis, 10 mgkg-1d-1) 
for 3.5 months. In in vitro studies, bovine retinal pericytes and 
endothelial cells were cultured in 5 or 30 mM glucose, with or 
without 10 µM cariporide, for 7 days. A several-fold increase 
of the by-product of glycolysis, α-glycerophosphate, indicative 
of activation of the upper part of glycolysis, was present in both 
rat lens and retina at an early (1-month) stage of streptozotocin-
diabetes. Cariporide did not affect diabetic hyperglycemia and 
counteracted lens oxidative-nitrative stress and p38 MAPK 
activation, without affecting glucose or sorbitol pathway 
intermediate accumulation. Cataract formation (indirect 
ophthalmoscopy and slit-lamp examination) was delayed, but 
not prevented. The number of TUNEL-positive cells per flat-
mounted retina was increased 4.4-fold in diabetic rats (101±17 
vs. 23±8 in controls , P<0.01), and this increase was attenuated 
by cariporide (45±12, P<0.01). Nitrotyrosine and poly(ADP-
ribose) fluorescence and percentage of TUNEL-positive cells 

were increased in pericytes and endothelial cells cultured 
in 30 mM glucose, and these changes were at least partially 
prevented by cariporide. In conclusion, NHE-1 contributes 
to diabetic cataract formation, and retinal oxidative-nitrative 
stress and apoptosis. The findings identify a new therapeutic 
target for diabetic ocular complications.

Introduction

Diabetic retinopathy (DR) and diabetic cataract (DC) are two 
chronic ocular complications of diabetes mellitus associated 
with vision loss. Vision-threatening DR is present is one 
out of twelve diabetic subjects in the age group of 40 years 
and older (1). The predominant cause of visual loss in DR 
is a clinically significant macular edema or proliferative DR 
associated with neovascularization which results in tractional 
retinal detachment or non-clearing vitreous hemorrhage (2,3). 
A cataract is a clouding of the natural lens, the part of the 
eye responsible for focusing light and producing clear, sharp 
images. Several large epidemiological studies revealed up to 
5-fold increased prevalence of cataracts with cortical and/or 
posterior subcapsular opacities in diabetic subjects compared 
with the non-diabetic population (4-8). In the Wisconsin 
Epidemiologic Study of Diabetic Retinopathy (9), cataract was 
identified as a significant cause of legal blindness, second only 
to proliferative diabetic retinopathy, in younger onset diabetic 
subjects, and the most frequent cause of visual loss in older 
onset diabetic subjects.

Multiple mechanisms including, but not limited to, 
increased sorbitol pathway activity (1,10), activation of the 
advanced glycation end-product (AGE)/receptor for the 
advanced glycation end-product (RAGE) axis (11,12) and 
poly(ADP-ribose) polymerase (13,14), and proinflammatory 
response (15-18), have been implicated in the pathogenesis of 
both DR and DC. Growing evidence suggests that both these 
and other [activation of protein kinase C (19,20), cyclooxy-
genase (21), 12/15-lipoxygenase (22), p38 mitogen-activated 
protein kinase (23)] metabolic imbalances contributing to 
diabetes-induced end-organ damage converge at the level of 
oxidative-nitrative stress. Clinical trials aimed at inhibiting 
several of the afore-mentioned mechanisms did not yield a 
pathogenetic treatment for DR or effective anti-cataract agent. 
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Identification of new therapeutic targets to effectively combat 
oxidative-nitrative stress and diabetic ocular complications is, 
therefore, highly warranted.

Diabetes-induced upregulation of the upper part of 
glycolysis, under conditions of inhibition (lens) or insufficient 
activation (retina) of glyceraldehyde 3-phosphate dehydro-
genase, underlies diversion of the excessive glycolytic flux 
towards formation of methylglyoxal and α-glycerophosphate, 
with concomitant NAD+/NADH redox imbalances and AGE/
RAGE axis and NAD(P)H oxidase activation thus leading to 
enhanced oxidative-nitrative stress (24-26). The mechanisms 
underlying diabetes-associated activation of the upper part 
of glycolysis remain unidentified. The Na+/H+-exchanger-1 
(NHE-1), an isoform of NHE ubiquitously distributed in 
mammalian tissues, plays a pivotal role in the regulation of 
intracellular pH by removing intracellular protons in exchange 
for extracellular sodium (27). Upregulation of NHE-1 leads 
to cytosol alkalinization with resultant activation of glucose 
transport (28) and glycolytic enzymes including hexokinase 
(28), hexose phosphate isomerase (29), phosphofructokinase 
(30), and aldolase (31). Phosphofructokinase is particularly 
sensitive to NHE-mediated change in intracellular pH (32). 
Under normal conditions, a ~0.3 unit increase in intracellular 
pH caused one order of magnitude increase in the rate of 
glycolysis (33). Evidence for overexpression and activation of 
NHE-1 in cell and tissue targets for diabetic complications, 
including retina, is emerging (34-36). It has, therefore, been 
hypothesized that NHE-1 plays a major role in diabetes-
associated upregulation of the upper part of glycolysis in the 
lens and retina, and that NHE-1 inhibition will counteract 
oxidative-nitrative stress and both ocular complications. In 
the present study, this hypothesis has been tested in animal 
and cell culture experiments with the potent and specific 
NHE-1 inhibitor, cariporide.

Materials and methods

Reagents. Unless otherwise stated, all chemicals were of reagent-
grade quality, and were purchased from the Sigma Chemical 
Co. (St. Louis, MO). Cariporide [N-(diamino-methylidene)-
3-methanesulfonyl-4-(propan-2-yl)benzamide] was obtained 
from Sanofi-Aventis (Frankfurt, Germany). Rabbit polyclonal 
anti-nitrotyrosine (NT) antibody was purchased from Upstate 
(Lake Placid, NY), and mouse monoclonal anti-poly(ADP-
ribose) antibody from Trevigen, Inc. (Gaithersburg, MD). 
Rabbit polyclonal antibodies against phosphorylated p38 
mitogen-activated protein kinase (MAPK) and phosphorylated 
extracellular signal-regulated kinase (ERK) were obtained 
from Cell Signaling Technology, Boston, MA. Rabbit poly-
clonal antibody antibody against total p38 MAPK, and mouse 
monoclonal antibody against total ERK were purchased from 
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Secondary 
Alexa Fluor 488 goat anti-mouse and Alexa Fluor 488 goat 
anti-rabbit antibodies, Prolong Gold Antifade Reagent, and 
4',6-diamidino-2-phenylindole (DAPI) were purchased from 
Invitrogen (Eugene, OR). ApopTag® Plus Fluorescein In Situ 
Apoptosis Detection kit and ApopTag® Peroxidase In Situ 
Apoptosis Detection kit were purchased from Chemicon 
International, Inc. (Temecula, CA). Micromount mounting 
medium was purchased from Surgipath Medical Industries 

(Richmond, IL). Other reagents for immunohistochemistry 
were purchased from Dako Laboratories, Inc. (Santa Barbara, 
CA).

Animals. The experiments were performed in accordance 
with regulations specified by the Guide for the Care and 
Handling of Laboratory Animals (NIH Publication no. 85-23) 
and Pennington Biomedical Research Center Protocol for 
Animal Studies. Male Wistar rats (Charles River, Wilmington, 
MA), body weight 250-300 g, were fed a standard rat chow 
(PMI Nutrition International, Brentwood, MO) and had 
access to water ad libitum. Streptozotocin (STZ)-diabetes 
was induced as described (37). Blood samples for glucose 
measurements were taken from the tail vein ~48 h after the 
STZ injection and the day prior to the study termination. All 
rats with blood glucose levels >13.8 mM were considered 
diabetic. The experimental groups comprised control and 
diabetic rats treated with or without the NHE-1 inhibitor, 
cariporide, 10 mgkg-1d-1, for 3.5 months starting from induc-
tion of diabetes. Lens changes were evaluated by an indirect 
ophthalmoscope and a portable slit lamp (Kowa Co., Tokyo, 
Japan) weekly. Evaluations were preceded by mydriasis 
with topical 1% tropicamide hydrochloride. Cataracts were 
scored as follows: 1, no cataract (clear lenses); 2, equatorial 
vacuoles; 3, cortical opacities; and 4, mature cataract when 
the whole lens becomes opaque. The average cataract score 
was calculated for each rat weekly. Part of the control rats 
and rats with 1-month duration of STZ-diabetes were used 
for assessment of lens glucose, sorbitol pathway intermedi-
ates, α-glycerophosphate, 4-hydroxynonenal (HNE) protein 
adducts, nitrotyrosine (NT), total and phosphorylated p38 
mitogen-activated protein kinase (MAPK) and extracel-
lular-signal-regulated kinase (ERK), as well as retinal 
α-glycerophosphate.

Anesthesia, euthanasia and tissue sampling. The animals 
were sedated by CO2, and immediately sacrificed by cervical 
dislocation. One eye from several control rats and rats with 
3.5-month duration of diabetes was enucleated and fixed in 
normal buffered 4% formalin. Several retinal sections from 
the two aforementioned groups were used for obtaining 
representative pictures of apoptotic nuclei using the ApopTag® 
Plus Fluorescein In Situ Apoptosis Detection kit. The rest of 
the eyes were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS) for preparation of flat mounted retinas 
and quantitation of apoptosis.

Specific methods employed in animal studies
Immunohistochemical studies. All flat-mounted retinas were 
processed by a single investigator and evaluated blindly. The 
rate of apoptosis was quantified with the ApopTag® Peroxidase 
In Situ Apoptosis Detection kit as previously described (38,39) 
with a minor modification. Low power observations of retinal 
sections stained for TUNEL-positive cells with the ApopTag® 
Plus Fluorescein In Situ Apoptosis Detection kit were made 
using a Zeiss Axioplan 2 imaging microscope. Fluorescent 
images were captured with a Photometric CoolSNAP™ HQ 
CCD camera at a 1392x1040 resolution. Low power images 
were generated with a 40X acroplan objective using the RS 
Image™ 1.9.2 software.
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4-Hydroxynonenal protein adducts and nitrotyrosine ELISA 
assays. For assessment of HNE adducts, lenses were homog-
enized in 20 mM PBS, pH 7.4 (1:10, w/v), on ice, and centrifuged 
at 14,000 x g (4˚C, 20 min). Supernatants were used for HNE 
adducts measurements with the OxiSelect™ HNE-His Adduct 
ELISA kit (Cell Biolabs, Inc., San Diego, CA). For assessment 
of NT, lenses were homogenized on ice in RIPA buffer (1:10 
w/v) containing 50 mM Tris-HCl, pH 7.2; 150 mM NaCl; 0.1% 
sodium dodecyl sulfate; 1% NP-40; 5 mM EDTA; 1 mM EGTA; 
1% sodium deoxycholate and the protease/phosphatase inhibitors 
leupeptin (10 µg/ml), aprotinin (20 µg/ml), benzamidine (10 mM), 
phenylmethylsulfonyl fluoride (1 mM), sodium orthovanadate 
(1 mM). Homogenates were sonicated (3x5 sec) and centrifuged 
at 14,000 x g (4˚C, 20 min). Supernatants were used for measure-
ments of NT concentrations with the OxiSelect Nitrotyrosine 
ELISA kit (Cell Biolabs). All the ELISA measurements were 
performed in accordance with the manufacturer's instructions. 
Both HNE adduct and NT concentrations were normalized per 
mg protein. Protein was measured with the bicinchoninic acid 
protein assay (Pierce Biotechnology, Rockford, IL).

Glucose, sorbitol pathway intermediates, and α-glycero- 
phosphate. Lens glucose, sorbitol, fructose, and α-glycero-
phosphate concentrations, and retinal α-glycero-phosphate 
concentrations were assessed by spectrofluorometric 
enzymatic methods with hexokinase/glucose 6-phosphate 
dehydrogenase, sorbitol dehydrogenase, and fructose dehy-
drogenase as previously described (24,40,41).

Western blot analysis. Western blot analyses of lens total 
and phosphorylated p38 MAPK and ERK were performed 
as previously described (14). Protein bands were visualized 
with the Amersham ECL western blotting detection reagents 
and analysis system (GE Healthcare, Buckinghamshire, UK). 
Membranes were then stripped and reprobed with β-actin 
antibody to verify equal protein loading. The data were quanti-
fied by densitometry (Quantity One 4.5.0 software, Bio-Rad 
Laboratories, Richmond, CA).

Cell culture studies
Cell preparation. Primary bovine retinal pericyte and endo-
thelial cell cultures were established from fresh cow eyes as 

previously described (14,42). Passages 4-6 were used for all 
experiments. Purity of cultures was confirmed by character-
istic pericyte and endothelial cell morphology and by the use 
of specific pericyte (α smooth muscle actin) and endothelial 
cell (von Willebrand factor) markers. In average, in pericyte 
experiments, 98.8±1.4% of the isolated cells were identified 
as pericytes. In endothelial cell experiments, 99.5±1.1% of the 
isolated cells were identified as endothelial cells.

To dissect effects of glucose and cariporide, pericytes 
and endothelial cells were cultured in the DMEM-medium 
containing 20% serum, 100  U/ml penicillin, 100  mg/ml 
streptomycin, and, for endothelial cells only, 50 µg/ml of 
endothelial growth supplement. At 50% confluency, pericyte 
and endothelial cell cultures were transferred to the media i) 
with 5 mM glucose and without cariporide; ii) with 30 mM 
glucose and without cariporide, or iii) with 30 mM glucose 
and with 10 µM cariporide, and cultured for another seven 
days. At least, three 6-well plates were used per experimental 
condition. At the end of experiment, the cells were placed on 
round glass coverslips and coated with gelatin or fibronectin 
(for pericytes end endothelial cells, respectively).

Assessment of apoptosis, nitrotyrosine, and poly(ADP-ribose). 
At the end of the exposure, the rate of cell death was evalu-
ated with the ApopTag® Plus Fluorescein In Situ Apoptosis 
Detection kit according to manufacturer's instructions. Seven 
to ten images were quantified per experimental condition. The 
data were calculated as percentage of control i.e., the average 
value in the cells cultured in 5 mM glucose without cariporide. 
For assessment of NT and poly(ADP-ribose) by fluorescence 
immunohistochemistry, coverslips with pericyte or endothelial 
cells were washed in PBS and fixed in 4% paraformaldehyde 
for 10 min. Fixed cells were washed in PBS and preincubated 
with 0.2% Triton X-100 in PBS for 15 min. Coverslips were 
blocked with 1% BSA containing 10% goat serum for 1 h. 
Then the cells were treated with either mouse monoclonal anti 
poly(ADP-ribose) antibody (1:100 dilution) or rabbit polyclonal 
anti-NT antibody (1:200 dilution). Secondary Alexa Fluor 488 
goat anti-mouse or Alexa Fluor 488 goat anti-rabbit antibodies 
were applied in working dilutions 1:200. The primary anti-
body was omitted in the negative controls. Coverslips were 
mounted in Prolong Gold Antifade Reagent and placed on a 

Table I. Non-fasting blood glucose concentrations (mmol/l) in control and diabetic rats maintained with or without cariporide 
treatment.

	 Groups
	 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Variables	 Control	 Control + Ca	 Diabetic	 Diabetic + Ca

1-month study
  Initial	 6.73±0.17	 6.60±0.11	 23.0±0.81a	 22.9±0.81a

  Final	 6.44±0.5	 6.22±0.5	 23.8±1.2a	 25.7±0.83a

3.5-month study
  Initial	 6.51±0.15	 6.42±0.14	 21.2±0.61a	 20.9±0.75a

  Final	 6.64±0.18	 6.81±0.19	 22.5±0.92a	  23.5±0.97a

Data are expressed as mean ± SEM, n=10-15/group. Ca, cariporide. aP<0.01 vs. non-diabetic controls.
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slide. Images of immunostained cells were captured with a 
Photometric CoolSNAP™ HQ CCD camera at 1392x1040 
resolutions. Fluorescence was quantified using the ImageJ 1.32 
software (National Institutes of Health, Bethesda, MD). Seven 
to ten images were quantified per experimental condition, and 
the average fluorescence per cell was calculated.

Statistical analysis. The results are expressed as mean ± SEM. 
Data were subjected to equality of variance F-test, and then to 
log transformation, if necessary, before one-way analysis of 
variance. Where overall significance (P<0.05) was attained, 
individual between group comparisons were made using the 
Student-Newman-Keuls multiple range test. Significance was 
defined at P≤0.05. When between-group variance differences 
could not be normalized by log transformation (datasets for 
body weights and plasma glucose), the data were analyzed by 
the nonparametric Kruskal-Wallis one-way analysis of vari-
ance, followed by the Bonferroni/Dunn or Fisher's PLSD tests 
for multiple comparisons.

Results

In the 1-month study, the initial (after STZ administration) 
non-fasting blood glucose concentrations were increased ~3.4-
fold in untreated and cariporide-treated diabetic rats compared 

with the non-diabetic controls (Table I). Final blood glucose 
concentrations were 3.7- and 4.1-fold greater in untreated 
and cariporide-treated diabetic rats than in the non-diabetic 
control group. Similar levels of glycemia were detected at the 
initial and final time points in the 3.5-month study, with no 
differences between diabetic untreated and cariporide-treated 
groups. NHE-1 inhibition did not affect blood glucose concen-
trations in non-diabetic rats.

All the rats had clear lenses during the first two weeks of 
the study after which cataracts started to form in both diabetic 
groups (Fig.  1). During the next three weeks, cariporide-
treated diabetic rats had lower cataract scores compared with 
the untreated diabetic group (0.133±0.091 vs. 0.667±0.130; 
0.267±0.118 vs. 0.867±0.115; and 0.333±0.126 vs. 0.967±0.102, 
P<0.01 for all the comparisons). This indicates that NHE-1 
inhibition delays, although does not completely prevent, 
diabetic cataract formation. This trend was maintained during 
the next three weeks, but the cataract scores did not differ 
significantly between the untreated and cariporide-treated 
diabetic groups. Throughout the study, no cataractous changes 
were recorded in cariporide-treated non-diabetic rats.

Concentrations of α-glycerophosphate were increased in 
both lens (1.58±0.21 vs. 0.252±0.035 µmol/g lens in controls, 
P<0.01) and retina (0.324±0.042 vs. 0.135±0.024 nmol/mg 
prot in controls, P<0.01) in rats with 1-month duration of 
diabetes, indicative of the early diabetes-induced activation 
of the upper part of glycolysis as well as of the diversion of 
the excessive glycolytic flux towards formation of glycolysis 
by-products in both ocular tissues.

Lens glucose, sorbitol, and fructose concentrations were 
dramatically increased in rats with 1-month duration of 
diabetes, compared with the corresponding non-diabetic group 
(Fig. 2). Cariporide treatment did not affect the lens glucose or 
sorbitol pathway intermediate concentrations in either control 
or diabetic rats.

Lens HNE adducts and NT concentrations were increased 
by 55 and 53%, respectively, in rats with 1-month duration of 
diabetes, compared with the non-diabetic controls (Fig. 3). 
Diabetes-induced HNE adduct and NT accumulation was 
essentially prevented by cariporide treatment. Cariporide did 
not reduce either HNE adduct or NT concentrations in the 
non-diabetic rats.

Figure 1. Cataract severities in control and diabetic rats maintained with or 
without cariporide treatment. C, control group; D, diabetic group; Ca, caripo-
ride. Mean ± SEM, n=10-15/group. **P<0.01 vs. the controls; ##P<0.01 vs. the 
untreated diabetic group.

Figure 2. Lens glucose and sorbitol pathway intermediate concentrations in control and diabetic rats maintained with or without cariporide treatment. C, 
control group; D, diabetic group; Ca, cariporide. Mean ± SEM, n=6/group. **P<0.01 vs. the controls.
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Lens phosphorylated p38 MAPK level was increased 
in rats with 1-month duration of diabetes, compared with 
the non-diabetic controls (Fig. 4A and B). Lens total p38 
MAPK levels were indistinguishable between the two groups 
(Fig.  4A  and  C). Cariporide prevented diabetes-induced 
increase in the p38 MAPK levels in diabetic rats, without 
affecting p38 MAPK phopshorylation in the corresponding 
non-diabetic group. Cariporide did not affect total p38 MAPK 
levels in either non-diabetic or diabetic rats.

Lens total and phosphorylated ERK levels were similar in 
the non-diabetic rats and rats with 1-mo duration of diabetes 
(Fig. 4D-F). Cariporide did not affect total ERK level or ERK 
phosphorylation in either non-diabetic or diabetic rats.

Representative pictures of TUNEL-positive cells (TUNEL 
fluorescence) in the retinal sections of control and diabetic rats 
are shown in Fig. 5A. The number of TUNEL-positive nuclei 
per flat-mounted retina was increased 4.4-fold in rats with 
3.5-month duration of diabetes, compared with the non-diabetic 

Figure 3. Lens 4-hydroxynonenal adducts and nitrotyrosine concentrations in control and diabetic rats maintained with or without cariporide treatment. C, 
control group; D, diabetic group; Ca, cariporide; 4-HNE, 4-hydroxynonenal. Mean ± SEM, n=6/group. *P<0.05 and **P<0.01 vs. the controls; #P<0.05 and 
##P<0.01 vs. the untreated diabetic group.

Figure 4. Representative western blot analyses of (A) phosphorylated and total p38 mitogen-activated protein kinase and (D) phosphorylated and total extracel-
lular signal-regulated kinase, and protein contents (densitometry) of (B and C) phosphorylated and total p38 mitogen-activated protein kinase and (E and F) 
phosphorylated and total extracellular signal-regulated kinase in the lens of control and diabetic rats maintained with or without cariporide treatment. C, 
control group; D, diabetic group; Ca, cariporide; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase. Mean ± SEM, n=6/
group. *P<0.05 vs. the controls; #P<0.05 vs. the untreated diabetic group.
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controls (Fig. 5B). This increase was partially, but significantly, 
prevented by cariporide treatment (P<0.01 vs. untreated diabetic 
group); however, TUNEL positivity was ~2-fold greater in cari-
poride-treated diabetic rats, than in the non-diabetic controls.

A 7-day exposure to high glucose was associated with 
augmented cell death in retinal microvascular cells, manifested 
by more than 4-fold increase in the numbers of TUNEL-
positive pericytes (Fig.  6A  and  B) and endothelial cells 
(Fig. 6C and D). NHE-1 inhibition essentially (pericytes) or 
completely (endothelial cells) prevented high glucose-induced 
increase in TUNEL-positivity.

Nitrotyrosine fluorescence was increased in high glucose-
exposed cultured retinal pericytes (Fig.  7A  and  B) and 
endothelial cells (Fig. 7C and D). High glucose-induced nitra-
tive stress was essentially prevented by cariporide in both cell 
types.

Poly(ADP-ribosyl)ated protein fluorescence was increased 
in retinal pericytes (Fig.  8A and B) and endothelial cells 
(Fig. 8C and D) cultured in 30 mM glucose compared with 

those cultured in 5  mM glucose. Cariporide essentially 
prevented high glucose-induced accumulation of poly(ADP-
ribosyl)ated proteins in both cell types.

Discussion

In the present study, the NHE-1 inhibitor cariporide delayed, 
but did not prevent, cataract formation and reduced premature 
retinal cell death in STZ-diabetic rats. It also counteracted 
high glucose-induced oxidative-nitrative stress, PARP activa-
tion, and apoptosis in cultured retinal pericytes and endothelial 
cells. These findings have a number of important implications 
for understanding the mechanisms contributing to diabetic 
cataractogenesis and early retinopathy as well as the develop-
ment of new therapeutic approaches.

First, the beneficial effect of NHE-1 inhibition on the lens 
and retina was not due to alleviation of diabetic hyperglycemia. 
This is a very important observation because the quality of 
glycemic control is the most important risk factor for both 

Figure 5. (A) Representative microphotographs of TUNEL-positive cells (TUNEL fluorescence is shown by arrows) in the retinal sections of control and 
diabetic rats. Magnification, x40. (B) TUNEL-positive cell counts per flat-mounted retina in control and diabetic rats maintained with and without cariporide 
treatment. C, control group; D, diabetic group; Ca, cariporide. Mean ± SEM, n=10/group. **P<0.01 vs. the controls; ##P<0.01 vs. the untreated diabetic group.

Figure 6. Left, representative microphotographs of TUNEL-positive cells in (A) retinal pericyte and (C) endothelial cell cultures maintained for 7 days i) 
with 5 mM glucose and without 10 µM cariporide; ii) with 30 mM glucose and without 10 µM cariporide; and iii) with 30 mM glucose and 10 µM cariporide. 
Magnification, x100. Blue fluorescence corresponds to 4',6-diamidino-2-phenylindole-stained nuclei. Right, percentage of TUNEL-positive cells among 
(B) retinal pericyte and (D) endothelial cell cultured as described above. C, control group (5 mM glucose); G, 30 mM glucose; Ca, cariporide. n=5-8/group. 
**P<0.01 vs. the cells cultured in 5 mM glucose; ##P<0.01 vs. the cells cultured in 30 mM glucose without 10 µM cariporide.
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Figure 7. Left, representative microphotographs of nitrotyrosine fluorescence (green) in (A) retinal pericytes and (C) endothelial cell cultures maintained for 
7 days i) with 5 mM glucose and without 10 µM cariporide; ii) with 30 mM glucose and without 10 µM cariporide; and iii) with 30 mM glucose and 10 µM 
cariporide. Magnification, x100. Blue fluorescence corresponds to 4',6-diamidino-2-phenylindole-stained nuclei. Right, nitrotyrosine fluorescence (relative 
fluorescence units/cell) in (B) retinal pericyte and (D) endothelial cell cultures maintained as described above. C, control group (5 mM glucose); G, 30 mM 
glucose; Ca, cariporide; RFU, relative fluorescence units. n=5-8/group. **P<0.01 vs. cells cultured in 5 mM glucose; ##P<0.01 vs. cells cultured in 30 mM 
glucose without 10 µM cariporide. 

Figure 8. Left, representative microphotographs of poly(ADP-ribose) fluorescence (green) in (A) retinal pericytes and (C) endothelial cell cultures maintained 
for 7 days i) with 5 mM glucose and without 10 µM cariporide; ii) with 30 mM glucose and without 10 µM cariporide; and iii) with 30 mM glucose and 
10 µM cariporide. Magnification, x100. Blue fluorescence corresponds to 4',6-diamidino-2-phenylindole-stained nuclei. Right, poly(ADP-ribose) fluorescence 
(relative fluorescence units/cell) in (B) retinal pericyte and (D) endothelial cell cultures maintained as described above. C, control group (5 mM glucose); G, 
30 mM glucose; Ca, cariporide; RFU, relative fluorescence units. n=5-8/group. *P<0.05 and **P<0.01 vs. cells cultured in 5 mM glucose; #P<0.05 and ##P<0.01 
vs. cells cultured in 30 mM glucose without 10 µM cariporide.
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diabetic ocular complications (43). An early intensification 
of insulin treatment was associated with about 5-fold reduc-
tion of cataract risk in children and adolescents with type 1 
diabetes (44). In the UK Prospective Diabetes Study (UKPDS), 
the tight glycemic control reduced the risk of cataracts in 
subjects with adult-onset type 2 diabetes (45). Both DCCT/the 
Epidemiology of Diabetes Interventions and Complications 
(EDIC) and UKPDS trials identified chronic hyperglycemia 
as a leading causative factor in the pathogenesis of diabetic 
retinopathy (46,47). Thus, any agent ameliorating hypergly-
cemia can be expected to counteract diabetes-induced changes 
in the lens and retina.

Second, the findings of the present study are consistent 
with our primary hypothesis that NHE-1 is an important 
contributor to diabetes- and high glucose-induced oxidative-
nitrative stress in the two ocular tissues. Oxidative-nitrative 
stress resulting from an imbalance between free radical and 
oxidant production and insufficient upregulation or down-
regulation of antioxidative defense is present in the lens 
early during the course of diabetes, and is manifested by 
accumulation of lipid peroxidation products, malondialde-
hyde and 4-hydroxyalkenals, depletion of the main biological 
antioxidant, reduced glutathione, increase in the oxidized-
to-reduced glutathione ratio, depletion of other important 
non-enzymatic antioxidants, ascorbate and taurine, as well as 
upregulation of antioxidative defense enzyme i.e., superoxide 
dismutase, glutathione peroxidase, glutathione reductase and 
glutathione transferase, activities (40,48-52). Consistent with 
these earlier observations, the present study revealed accumu-
lation of HNE protein adducts and nitrotyrosine in the lens 
in rats with 1-month duration of STZ-diabetes. A prevention 
of diabetes-induced increase in both variables by the NHE-1 
inhibitor cariporide is in agreement with the multifactorial 
origin of oxidative-nitrative stress in tissues-sites for diabetic 
complications including lens [reviewed in (11)]. Increased AR 
activity and osmotic stress as well as non-enzymatic glycation 
and glycoxidation have previously been shown to contribute to 
lenticular oxidative injury through disruption of antioxidative 
defense mechanisms, activation of NAD(P)H oxidase, as well 
as generation of free radicals during interactions of advanced 
glycation end-products with their receptors (11,53,54). Note, 
that alleviation of oxidative-nitrative stress in cariporide-
treated diabetic rats in the present study was not due to 
reduction in lens glucose and sorbitol pathway intermediate 
concentrations. Also note, that the role for NHE-1-mediated 
excessive p38 MAPK phosphorylation in diabetes-induced 
lens oxidative injury is unclear. A bidirectional relationship 
was identified between oxidative stress and p38 MAPK phos-
phorylation in tissue sites for diabetic peripheral neuropathy 
(21,55). Such studies were never conducted in the lens, 
although increased p38 and other MAPK phosphorylation was 
documented previously (56).

Third, the current results generate new knowledge about 
the role for oxidative-nitrative stress in diabetic cataract 
formation. In previous studies, natural antioxidants such 
ascorbate, α-tocopherol, β-carotene, pantethine, the super-
oxide mimetic tempol, the free radical scavengers amino 
phosphorothioate (WR-77913) and amifostine (WR2721), 
the lipid-soluble antioxidant butylated hydroxytoluene and 
the pyridoindole antioxidant stobadine delayed, but did not 

completely prevent, diabetic cataract formation (11,13,57,58). 
Therefore, antioxidants were less effective than aldose 
reductase inhibitors, the only class of compounds, which 
completely prevents diabetes-induced cataractogenesis (11). 
Note, however, that none of the afore-mentioned antioxidant 
studies presented unequivocable evidence of the complete 
correction of diabetes-induced lenticular oxidative stress with 
antioxidant treatment. In the experiments reported herein, 
cariporide essentially blunted lenticular oxidative-nitrative 
stress, but, despite this, only delayed diabetic cataract forma-
tion. Thus, compared to sorbitol pathway activation and 
osmotic stress, oxidative-nitrative stress plays a secondary 
role in diabetes-associated cataractogenesis.

Fourth, previous studies implicated NHE-1 in retinal 
endothelin production and vasoconstriction at an early stage 
of diabetes (34). The current findings support and complement 
these observations suggesting an important contribution of 
NHE-1 to early diabetic retinopathy. Oxidative-nitrosative 
stress, manifest in increased lipid peroxidation, accumulation 
of nitrated and poly(ADP-ribosyl)ated proteins, excessive 
superoxide production, and downregulation of several antioxi-
dative defense enzymes i.e., superoxide dismutase, glutathione 
peroxidase, and glutathione reductase, is present in the rat 
retina early after induction of STZ-diabetes (14,37,59-62). 
Furthermore, increased generation of reactive oxygen species 
and accumulation of nitrated and poly(ADP-ribosyl)ated 
proteins were documented in cultured retinal pericytes shortly 
after exposure to high glucose (42,63). Oxidative-nitrative stress 
and PARP activation were identified as the major mechanisms 
leading to diabetes-induced retinal cell apoptosis, and, at a later 
stage, to background diabetic retinopathy (13,14,64,65). In the 
present study, NHE-1 inhibition with cariporide was associ-
ated with a significant reduction of premature retinal cell death 
in STZ-diabetic rats. These in vivo findings are in agreement 
with alleviation of high glucose-induced oxidative-nitrative 
stress and reduced poly(ADP)-ribosylation and apoptosis in 
high glucose-exposed pericytes and endothelial cells. Thus, the 
present animal and in vitro data support previous observations 
(13,14,65), including ours (14), suggesting that diabetes-asso-
ciated oxidative-nitrative stress and PARP activation play an 
important role in premature cell death in the whole retina and 
retinal microvascular cells. Note, that the important role for 
peroxynitrite injury and poly(ADP)-ribosylation in apoptosis 
has been demonstrated in animal and cell culture models of 
several diabetic complications (66-70).

In conclusion, this study is the first to demonstrate the role 
for NHE-1 in diabetes-induced oxidative-nitrative stress in lens 
and retina, cataractogenesis, and premature apoptosis in retina 
and retinal microvascular cells. The findings suggest that NHE-1 
may be a therapeutic target for diabetic ocular complications.
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