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Abstract. Recepteur d'origine nantais (RON) is a receptor 
tyrosine kinase (RTK) normally expressed at low levels in 
epithelial cells. RON is a 180-kDa heterodimeric protein 
composed of a 40-kDa α-chain and a 150-kDa transmembrane 
β-chain with intrinsic tyrosine kinase activity. The extracel-
lular sequences of RON contain several domains including 
an N-terminal semaphorin (sema) domain, followed by the 
plexin, semaphorin, integrin (PSI) domain, and four immuno-
globulin, plexin, transcription factor (IPT) domains. Here, we 
identified RON genes from 14 vertebrate genomes and found 
that RON exists in all types of vertebrates including fish, 
amphibians, birds and mammals. We found that the human 
RON gene showed predominant expression in the liver, lymph 
node, thymus, intestine, lung, mammary gland, bone marrow, 
brain, heart, placenta, bladder, cortex, cervix, skin, kidney and 
prostate. When searched in the PrognoScan database, human 
RON was also found to be expressed in bladder, blood, breast, 
glioma, esophageal, colorectal, head and neck, ovarian, lung 
and skin cancer. The relationship between the expression of 
RON and prognosis was found to vary in different cancer 
types, even in the same cancer from different databases. This 
suggests that the function of RON in these tumors may be 
multidimensional, not just as a tumor suppressor or onco-
gene. Six available single-nucleotide polymorphisms (SNPs) 
disrupting existing exonic splicing enhancers were identified 
in RON. This may contribute to the generation of active RON 
variants by alternative splicing, which is frequently observed 
in primary tumors.

Introduction

Recepteur d'origine nantais (RON) is a receptor tyrosine 
kinase (RTK) normally expressed at low levels mostly in 

epithelial cells  (1,2). The human RON gene was originally 
cloned from keratinocytes  (1). It contains 20  exons and 
19 introns and is located on chromosome 3p21 (1-3), a region 
frequently altered in certain cancer types (4). The RON cDNA 
encodes 1,400 amino acids, which are synthesized first as 
a single-chain precursor (pro-RON) (1). Maturation occurs 
in the cell membrane resulting in a 180-kDa heterodimeric 
protein composed of a 40-kDa α-chain and a 150-kDa 
transmembrane β-chain with intrinsic tyrosine kinase 
activity (5,6). The extracellular sequences of RON contain 
several domains including an N-terminal semaphorin (sema) 
domain, followed by the plexin, semaphorin, integrin (PSI) 
domain, and four immunoglobulin, plexin, transcription factor 
(IPT) domains (7).

RON is activated in response to macrophage-stimulating 
protein (MSP), and then induces an invasive program (8) 
consisting of cell proliferation, migration, and invasion, all of 
which are important at multiple points during tumorigenesis. 
RON gene transcripts are present in the liver, lung, brain, 
kidney, bone, adrenal glands, testis and digestive tract  (2). 
RON was found to be primarily expressed in cells of epithe-
lial origin such as colon, breast and skin (9). Constitutively 
active RON variants may be generated by alternative splicing 
(RON∆165, RON∆160, and RON∆155) or by methylation-
dependent promoter usage [short form RON (sfRON)] (10,11). 
Among these RON variants, RON∆160 is located at the 
plasma membrane, whereas RON∆165 and RON∆155 are 
retained in the cytoplasm. sfRON lacks almost all of the 
extracellular domain and is incapable of ligand binding. 
Recent studies have indicated that altered RON expression 
contributes significantly to cancer progression and malig-
nancy. In primary tumors, such as colon and breast cancers, 
overexpression of RON exists in a large number of cases and 
is often accompanied by the generation of different splicing 
variants (12-14). However, a comprehensive investigation of 
whether RON is involved in the formation of various types of 
tumors has not been adequately carried out.

In the present study, we identified RON genes in the 
human, chimpanzee, macaque, orangutan, dog, cow, horse, 
mouse, rat, opossum, chicken, Xenopus tropicalis, zebrafish, 
and fugu by comparative genomic analyses. Conserved 
transcription factor-binding sites within promoter regions 
of human RON genes were then searched. The expression 
data, functional relevant single-nucleotide polymorphisms 
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(SNPs) and comparative proteomic analyses were conducted. 
Furthermore, meta-analysis of the prognostic value of RON 
genes in various cancers was also performed.

Materials and methods

Identification of novel RON genes in vertebrate genomes 
and integrative genomic analyses. RON genes were searched 
in the genome sequences of the human (Homo sapiens), 
chimpanzee (Pan troglodytes), macaque (Macaca mulatta), 
orangutan (Pongo pygmaeus), dog (Canis familiaris), 
cow (Bos taurus), horse (Equus caballus), mouse (Mus 
musculus), rat (Rattus norvegicus), opossum (Monodelphis 
domestica), chicken (Gallus gallus), Xenopus tropicalis, 
zebrafish (Danio rerio), and fugu (Takifugu rubripes) by 
standard methods using the human RON gene (NM_002447) 
as a query. The assemblies used were human NCBI 36, 
chimpanzee CHIMP2.1, macaque MMUL 1.0, orangutan 
PPYG2, dog CanFam 2.0, cow Btau 4.0, horse Equ Cab 2, 
mouse NCBI  m37, rat RGSC  3.4, opossum monDom5, 
chicken WASHUC2, X. tropicalis JGI 4.1, zebrafish Zv8 and 
fugu FUGU 4.0. The identified putative Ikaros genes were 
BLASTed against the nr database of GenBank to confirm that 
the best hits were RON genes (15-17). Conserved transcription 
factor-binding sites within the promoter region of the human 
RON gene was obtained from SABiosciences proprietary 
database which combines Text Mining Application and data 
from the UCSC Genome Browser.

Comparative proteomic analyses of RON proteins. The amino 
acid sequences of RON were deduced from the identified 
RON genes and aligned using Clustal X 1.8 software (18). The 
phylogenetic tree of RON was obtained by using maximum 
likelihood (ML) (PHYML v2.4.4) (19) and neighbor-joining 
(NJ) (MEGA 3.0) (20) methods, and the reliability of the tree 
was evaluated by the bootstrap method with 1,000 replica-

tions. The program Codeml implemented in the PAML 3.14 b 
software package was used to investigate whether Ikaros 
proteins are under positive selection (21). Six models of codon 
substitution, M0 (one-ratio), M1a (nearly neutral), M2a (posi-
tive selection), M3 (discrete), M7 (β), and M8 (β and ω) were 
used in the analysis (22).

Functional relevant SNP evaluation of the human RON gene. 
Functional relevant SNPs of the human RON gene were iden-
tified as previously described (15). The SNPs were extracted 
from Ensembl (http://www.ensembl.org) and NCBI's SNPdb 
(http://www.ncbi.nlm.nih.gov). The SNPs that could disrupt 
exonic splicing enhancer/exonic splicing silencer (ESE/ESS) 
motifs and cause a missense mutation were also identified.

In silico expression analyses of the human RON gene. 
Expressed sequence tags (ESTs) derived from the human RON 
gene were searched using the BLAST programs as previously 
described (23-28). Human RON gene (NM_002447) was used 
as query sequences for the BLAST programs. The expres-
sion profiles for normal human tissues were obtained from 
GeneAnnot (29) and ArrayExpress (30). Northern analysis of 
NCBI's uniGene dataset was also extracted (15).

Meta-analysis of the prognostic value of the RON gene in 
cancer. A database named ‘PrognoScan’ has been devel-
oped (31). This is i) a large collection of publicly available 
cancer microarray datasets with clinical annotations, as well as 
ii) a tool for assessing the biological relationship between gene 
expression and prognosis. PrognoScan employs the minimum 
P-value approach for grouping patients for survival analysis. 
PrognoScan provides a powerful platform for evaluating 
potential tumor markers and therapeutic targets and is publicly 
accessible at http://gibk21.bio.kyutech.ac.jp/PrognoScan/index.
html. Human RON (MST1R) gene was input as a query and 
the data were collected for analysis.

Figure 1. Phylogenetic analysis of RON. RON genes were identified in the genome sequences of the human, chimpanzee, macaque, orangutan, dog, cow, 
horse, mouse, rat, opossum, chicken, Xenopus tropicalis, zebrafish and fugu. The phylogenetic tree of the RON gene was obtained using maximum likelihood 
and neighbor-joining methods. It appeared that primate RON was clustered into one group, different from other RON genes.
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Results

Comparative proteomics of RON proteins identified in verte-
brate genomes. RON genes were identified in the genome 
sequences of the human, chimpanzee, macaque, orangutan, 
dog, cow, horse, mouse, rat, opossum, chicken, Xenopus 
tropicalis, zebrafish and fugu. Refined phylogenetic trees 
using the identified RON protein amino acid sequences by 
ML and NJ methods were almost identical (Fig. 1). We were 
unable to identify any site under positive selection with any of 
the 6 models in RON proteins. Instead, the RON proteins were 
under purifying selection (data not shown).

Expression profile of the human RON gene. By EST sequence 
searching, the human RON gene was expressed in prostate, 
colon, stomach, an adenocarcinoma cell line, kidney, B-cells 
of chronic lymphatic leukemia, squamous cell carcinoma, 
testis, thalamus, thymus, uterus, transitional cell papilloma, 

brain, liver, coronary artery smooth cells, human retinal 
pigment epithelium and epithelial. The investigation of avail-
able microarray experiments and ‘virtual northern blotting’ 
showed a predominant expression of RON in the liver, lymph 
node, thymus, intestine, lung, mammary gland, bone marrow, 
brain, heart, placenta, bladder, cortex, cervix, skin, kidney 
and prostate. When searched in PrognoScan database, human 
RON was also found to be expressed in bladder cancer, blood 
cancer, breast cancer, glioma, esophageal cancer, colorectal 
cancer, head and neck cancer, ovarian cancer, lung cancer and 
skin cancer tissues.

Comparative genomics of the human RON gene. NF-κB, 
signal transducer and activator of transcription 5A (STAT5A), 
signal transducer and activator of transcription 3 (STAT3), 
C/EBPα, ZID, peroxisome proliferator-activated receptor 
(PPAR)‑γ,  serum response factor (SRF), POU domain, class 2, 
transcription factor 1 (POU2F1) regulatory transcription factor 

Table I. Evaluation of the functionally relevant SNPs of the human RON gene.

SNP ID	 Chr 3 position	 Sequence	 Type

rs1062633	 49924940(-)	 CCTTCA/GGAGTA	 Missense
rs2230590	 49936102(-)	 TATCCA/C/G/TAGGCC	 Missense
rs2230593	 49940078(-)	 GCTGCA/C/G/TGGTGG	 Missense
rs13078735	 49933274(+)	 CCGCAC/TCACTC	 Missense
rs2230591	 49936626(-)	 CTTCTC/TACGTG	 Missense
rs2230592	 49936608(-)	 ATTCAA/C/G/TTGGGC	 Missense
rs34350470	 49936338(+)	 AAGACA/GACTGA	 Missense
rs7433231	 49928691(+)	 CATGCC/TGCGGG	 Missense
rs35986685	 49935526(+)	 GACTTG/TGGCCC	 Missense
rs34564898	 49936533(+)	 TTGTGC/TCCATG	 Missense
rs35887539	 49940820(+)	 ATTGCG/TTATGG	 Missense
rs56330223	 49924864(+)	 TCATGC/TAGGTT	 Missense
rs56091918	 49933492(+)	 ACCCAC/TGGTCA	 Missense
rs55633379	 49940490(+)	 TACACA/GGGTGC	 Missense
rs3733136	 49940706(+)	 AGGGCC/TGTGGG	 Missense
rs61729096	 49933469(+)	 AACTCC/TTGCTG	 Missense
rs55908300	 49940760(+)	 AGCAGG/TGCCCG	 Missense
rs56066753	 49924837(+)	 TCTCAC/TGCGAG	 Missense
rs35924402	 49939976(+)	 GACCAC/TCATCC	 Missense
rs34740617	 49928852(+)	 ATGAA-/ACTGGA	 Frameshift
rs34211295	 49936120(+)	 GAAAA-/TCCTGT	 Frameshift
rs66570013	 49933436(+)	 GGGGC-/GAGGGG	 Frameshift
rs66589847	 49933500(+)	 TCACG-/TTGATA	 Frameshift
rs67360293	 49934262(+)	 CTAAG-/GGGGGA	 Frameshift
rs67811243	 49932778(+)	 GTGGT-/GGAATC	 Frameshift
rs1062633	 49924940(-)	 CCTTCA/GGAGTA	 Exonic splicing enhancer
rs2230591	 49936626(-)	 CTTCTC/TACGTG	 Exonic splicing enhancer
rs2230592	 49936608(-)	 ATTCAA/GTGGGC	 Exonic splicing enhancer
rs2230593	 49940078(-)	 GCTGCG/AGGTGG	 Exonic splicing enhancer
rs3733136	 49940706(+)	 AGGGCC/TGTGGG	 Exonic splicing enhancer
rs13318943	 49940499(+)	 GCCCAA/GTGGGC	 Exonic splicing enhancer

A total of 380 available SNPs were identified in the human RON gene. Among these, 33 SNPs were functionally relevant, including 5 available 
alleles disrupting an existing exonic splicing enhancer, 21 SNPs causing a missense mutation and 6 frame shift SNPs. 
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binding sites were identified in the MST1R gene upstream 
(promoter) region.

Functional relevant SNP evaluation of the human RON gene. 
Three hundred and eighty available SNPs were identified in 
human RON gene. Among these, 33 SNPs were function-
ally relevant, including five available alleles disrupted an 
existing exonic splicing enhancer and 21 SNPs causing 
missense mutation. Moreover, six frame shift SNPs were also 
found (Table I).

Meta-analysis of the prognostic value of the human RON gene 
in cancer. PrognoScan displays a summary in table format of 
tests for the specific gene with columns for dataset, cancer 
type, subtype, endpoint, cohort, contributor, array type, probe 
ID, number of patients, optimal cut-off point, Pmin and Pcor. 
Among the databases which detected the expression of the 
RON gene, 14 out of 97 tests showed an association between 
microarray expression in the RON gene and cancer prognosis 
(bladder cancer 2/3, blood cancer 0/9, breast cancer 5/31, 
colorectal cancer 0/9, esophageal cancer 0/1, eye cancer 1/1, 
brain cancer 1/5, head and neck cancer 0/2, lung cancer 4/21, 
ovarian cancer 1/10, prostate cancer 0/1, skin cancer 0/1 and 
soft tissue cancer 0/1) with a 5% significance level (Table II). 
Of the 6 breast cancer cases, higher expression of the RON 
gene was found to relate to poor survival in 4 cases (GSE9195, 
GSE12093, GSE9893 and GSE4922). However, low expres-
sion of the RON gene was related to poor survival in 2 cases 
of breast cancer (GSE7390). Regarding lung cases, we found a 
higher expression of the RON gene to be associated with poor 
survival in all 4 lung cancer cases including adenocarcinoma 
and NSCLC. In the other cancer cases, a low expression of 
the RON gene was associated with poor survival in 2 cases of 
bladder cancer, 1 case of brain cancer, eye cancer and ovarian 
cancer.

Discussion

RON is a RTK containing 20 exons and 19  introns. It is 
located on chromosome 3p21 (1-3) in the human genome, a 
region frequently altered in certain cancers (4). In the present 
study, we identified other RON genes from an additional 
13 vertebrate genomes and found that RON exists in all 
types of vertebrates including fish, amphibians, birds and 
mammals. Moreover, all identified RON proteins contain 
the semaphorin (sema) domain, followed by the PSI domain, 
and four IPT domains. The phylogenetic tree showed that 
RON is separated according to the order fish, amphibians, 
birds and mammals. Primate RONs are almost identical and 
clustered together. From the alignment and phylogenetic tree, 
mammalian RONs are conserved among vertebrate genomes, 
suggesting that the function of RON is essential for all 
vertebrates during the long evolutionary process. Moreover, 
this process was under purifying selection.

In adult tissues, RON expression has been found in brain, 
adrenal glands, epithelium of the gastrointestinal tract, 
testis, kidneys and ovaries (2). Systematic analysis of RON 
expression in normal tissues and cancer samples has not been 
adequately carried out. In general, RON has been detected 
in certain types of normal cells such as epithelial cells and 
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tissue macrophages. We found that the human RON gene was 
expressed in many tissue or organs. It showed predominant 
expression in the liver, lymph node, thymus, intestine, lung, 
mammary gland, bone marrow, brain, heart, placenta, bladder, 
cortex, cervix, skin, kidney and prostate.

Ligand-dependent or -independent activation of RON 
results in cell proliferation, migration, and matrix invasion, 
collectively known as invasive growth (32,33). These activi-
ties facilitate epithelial cell transformation and malignant 
progression. Elevated RON expression has been found in 
breast, colon, lung, bladder and ovarian cancer  (34-40). In 
the present study, we found predominant expression of RON 
in the liver, lymph node, thymus, intestine, lung, mammary 
gland, bone marrow, brain, heart, placenta, bladder, cortex, 
cervix, skin, kidney and prostate by the investigation of avail-
able microarray experiments and ‘virtual northern blotting’ as 
shown. When searched in the PrognoScan database, human 
RON was also found to be expressed in bladder cancer, blood 
cancer, breast cancer, glioma, esophageal cancer, colorectal 
cancer, head and neck cancer, ovarian cancer, lung cancer and 
skin cancer tissues.

Wang et al (41) reported that the roles of RON in cancer 
pathogenesis are as follows. First, aberrant splicing, resulting 
in the formation of oncogenic RON variants, is frequently 
observed in primary tumors such as colon and breast cancers. 
Second, RON overexpression exists in various types of 
primary and metastatic tumors, indicating that RON overex-
pression is involved in tumorigenic progression. Third, RON 
activation promotes a malignant phenotype in cancer cells. 
Fourth, altered RON expression results in increased survival 
and pro-apoptotic activity of tumor cells, which sustains 
tumor growth under hostile conditions such as hypoxia. Fifth, 
abnormality in RON expression contributes to the acquired 
resistance to conventional chemoagents. Therefore, various 
strategies have been reported to block the c-MET/RON path-
ways for targeted cancer treatment  (42-45). Aberrant RON 
expression is featured by generation of biologically active 
RON variants (46). Currently, seven RON variants including 
RON∆170, RON∆165, RON∆160, RON∆155, RON∆p110, 
RON∆85 and RON∆52 have been identified in primary 
cancer samples and in established cell lines (46). The switch 
from constitutive to alternative pre-mRNA splicing is the 
major event in producing RON variants in cancer cells. 
These RON variants have the ability to activate multiple 
signaling cascades, and consequently regulate cell migration, 
invasion and proliferation, which contribute to the invasive 
phenotype and promote malignant progression (12). We iden-
tified 5 available SNPs disrupting an existing exonic splicing 
enhancer, which may affect the alternative splicing of the 
RON gene. The effects of these SNPs on RON physiological 
and pathological function warrant further investigation. We 
also identified 21 SNPs causing a missense mutation and 6 
frame shift SNPs. Although RON gene mutations were not 
found in primary cancer samples, these mutations of RON 
warrant further observation.

In the present study, in regards to the 5 breast cancers, 
high expression of the RON gene was associated with poor 
survival in 4 cases. However, low expression of the RON 
gene was related to poor survival in 1 cases of breast cancer. 
Concerning lung case, high expression of the RON gene 

was associated with poor survival in all 4 lung cancer cases 
including adenocarcinoma and NSCLC. In the other cancer 
cases, low expression of the RON gene was associated with 
poor survival in 2 cases of bladder cancer, 1 case of brain 
cancer, eye cancer and ovarian cancer. This suggests that the 
expression of RON is related to the prognosis of many solid 
tumors. The mechanism of RON involved in the process of 
these tumors requires further investigation. It is important 
to note that the relationship between the expression of RON 
and prognosis varied in different types of cancers, even in the 
same cancer from different databases. This implies that the 
function of RON in these tumors may be multidimensional, 
not just as a tumor suppressor or oncogene.

NF-κB, STAT5A, STAT3, PPAR-γ, SRF, POU2F1 regula-
tory transcription factor binding sites were identified in 
the MST1R gene upstream (promoter) region. NF-κB is 
widely used by eukaryotic cells as a regulator of genes that 
control cell proliferation and cell survival. As such, many 
different types of human tumors have misregulated NF-κB: 
that is, NF-κB is constitutively active. Active NF-κB turns 
on the expression of genes that maintains cell proliferation 
and protects the cell from conditions that would otherwise 
cause it to die via apoptosis (47-50). Constitutively activated 
STAT proteins, in particular STAT3 and STAT5, have been 
demonstrated to directly contribute to oncogenesis, in part, by 
stimulating proliferation and preventing apoptosis in various 
types of tumor cells (51-53). SRF is a member of the MADS 
box family of transcription factors. It was recently shown 
that SRF is involved in the epithelial-mesenchymal transition 
(EMT) of various types of cancer and it regulates migration 
and invasion of these cells with subsequent acquisition of 
the mesenchymal phenotype (54-56). PPAR-γ belongs to the 
family of nuclear hormone receptors (NHRs), which directly 
regulate transcription of target genes. PPAR-γ activation by 
specific agonists leads to growth inhibition, apoptosis and 
differentiation of tumor cells (57-59). These two tumor-related 
transcriptional factors may be involved in the effect of RON 
on tumors.
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