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Abstract. Nuclear factor (erythroid derived 2)-like 2 (NRF2, 
gene name NFE2L2) gene mutations have been previously 
identified in lung cancers. The constitutive activation of NRF2 
resulting from gene mutations has been correlated with the 
poor prognosis of patients with squamous cell lung cancer. 
However, DNA sequencing using PCR methods described 
to date is time-consuming and requires significant quanti-
ties of DNA. Thus, this existing approach is not suitable for 
a routine pre-therapeutic screening program. We genotyped 
the NRF2 gene mutation status in 262 surgically treated lung 
cancer cases using LightCycler analysis. The presence of the 
NRF2 gene mutation was confirmed by direct sequencing. 
We detected 6 cases (2.3%) with NRF2 gene mutations in 
our cohort, particularly smokers (P=0.04) with squamous 
histology (P=0.0001). NRF2 gene mutations were present in 
10% (6/60) of the lung squamous cell carcinoma (SqCC) cases. 
The NRF2 gene mutation was exclusive of epidermal growth 
factor receptor mutations. The NRF2 gene mutation occurred 
with a tendency towards a higher frequency in male patients. 
Patients with the NRF2 gene mutation (n=22, 11 succumbed to 
disease) had a significantly worse prognosis when compared 
with the patients with the wild-type NRF2 gene (n=521, 
98 succumbed to disease) from a larger cohort study (log-rank 
test, P<0.0001) even upon multivariate analysis. In our study, 
NRF2 gene mutations played a role in the prognosis of patients 
with SqCC of the lung.

Introduction

Lung cancer is the leading cause of cancer-related death world-
wide, causing an estimated 1.4 million deaths in 2010 (1). The 
discovery of mutations in the epidermal growth factor receptor 
(EGFR) kinase, and fusions involving anaplastic lymphoma 

kinase (ALK), has improved the treatment of patients with lung 
adenocarcinoma, the most common type of lung cancer (2-4). 
The discovery of gene fusions involving ROS1 and RET 
may also facilitate the treatment of adenocarcinomas (5-7); 
however, targeted agents developed for lung adenocarcinoma 
are largely ineffective against the second most common type 
of lung cancer, lung squamous cell carcinoma (SqCC).

The comprehensive genomic characterization study of 
SqCC has identified several somatic mutations of nuclear 
factor (erythroid derived 2)-like 2 (NFE2L2) (8). NRF2 (gene 
name NFE2L2) is a master transcriptional activator of genes 
encoding numerous cytoprotective enzymes that are induced 
in response to environmental and endogenously derived oxida-
tive/electrophilic agents (9-11). In normal cells, NRF2 is a cap 
‘n’ collar basic leucine zipper transcription factor. NFE2L2-
deficient mice are highly susceptible to chemically induced 
carcinogenesis of multiple organs (12,13). A previous study 
showed that RNAi-mediated silencing of NRF2 gene expres-
sion in non-small cell lung cancer inhibited tumor growth (14). 
NRF2 gene promoter polymorphism has been identified and 
may be correlated with carcinogenesis (15). More recently, 
an NRF2 gene mutation was identified in lung cancer cell 
lines and carcinoma (16). Somatic mutations occurring in the 
coding region of the NRF2 gene were more common among 
patients with a history of smoking or suffering from SqCC and 
were correlated with poor prognosis (16,17).

The standard for experimental detection of mutations is 
direct sequencing of DNA samples from tissues. For known 
mutations, real-time polymerase chain reaction followed by 
melting curve analysis, using hybridization probes, is highly 
sensitive, rapid, and an efficient alternative approach to muta-
tion detection (18-20). To determine the NRF2 gene status in 
Japanese lung carcinoma patients for screening and diagnostic 
purpose, we investigated the NRF2 gene mutation status, an 
N-terminal domain, using real-time reverse transcription-PCR 
assay using LightCycler (20). With this method, 32 samples were 
genotyped within 1 h without the need of any post-PCR sample 
manipulation. The findings were compared to the clinico- 
pathologic features of the lung cancers.

Patients and methods

Patients. The study group included 262 lung cancer patients 
who had undergone surgery at the Department of Surgery, 
Nagoya City University Hospital between 2005 and 2012. The 
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lung tumors were classified according to the General Rule for 
Clinical and Pathological Record of Lung Cancer (7th edition) 
in Japan. All tumor samples were immediately frozen and 
stored at -80˚C until assayed.

The clinical and pathological characteristics of the 
262 lung cancer patients were as follows: 176 cases at stage I, 
47 at stage II, and 39 at stage III-IV. The mean patient age was 
68.2 years (range, 22-86). Among the 262 lung cancer patients, 
164 (61.8%) were males and 156 (59.5%) were nonsmokers. 
Sixty were diagnosed as having SqCC.

PCR analysis of the NRF2 gene. Total RNA was extracted from 
lung cancer tissues using the Isogen kit (Nippon Gene, Tokyo, 
Japan) according to the manufacturer's instructions. The RNA 
concentration was determined by a spectrophotometer and 
adjusted to a concentration of 200  ng/ml. Approximately 
10 cases were excluded for each assay since tumor cells were 
too few to sufficiently extract tumor RNA. RNA (1 µg) was 
reverse transcribed by SuperScript II enzyme (Gibco-BRL, 
Gaithersburg, MD, USA) with 0.5 µg oligo(dT)12-16 (Amersham 
Pharmacia Biotech Inc., Piscataway, NJ, USA). The reaction 
mixture was incubated at 42˚C for 50 min and then at 72˚C 
for 15 min. We then used 1 µl of each DNA for PCR analyses. 
Initially, 281 (between 1997-2006) samples were sequenced as 
reported in our previous study (16). These sets of RNA were 
used as a positive and negative control for genotyping.

The primer sequences for the NRF2 gene in the DLG motif 
were as follows: the forward primer, 5'-GGACATGGATTTGA 
TTGACATAC-3' and the reverse primer, 5'-CTCCTTTTGG 
AGTTGTTCTTGT-3' (151 bp). For DLG motif genotyping, 
sensor (LC Red 640-TCTCGACTTACTCCAAGATCTAT) 
and anchor (CAGCTCATACTCTTTCCGTCGCTGACTGA 
AGTCAAATAC-Fluorescein) probes were used. The cycling 
conditions were as follows: initial denaturation at 95˚C for 
10 min, followed by 45 cycles at 95˚C for 1 sec, 59˚C for 10 sec, 
and 72˚C for 7 sec. The primer sequences for the NRF2 gene 
in the ETGE motif were as follows: the forward primer, 
5'-CCAAAAGGAGCAAGAGAAAGC-3' and the reverse 
primer, 5'-GCAGTCATCAAAGTACAAAGCAT-3' (172 bp). 
For ETGE motif genotyping, sensor (LC Red AAATTCACC 
TGTCTCTTCATCTAG) and anchor (GATGTGCTGGGCT 
GGCTGAATTGGGA-Fluorescein) probes were used. The 
cycling conditions were as follows: initial denaturation at 95˚C 
for 10 min, followed by 45 cycles at 95˚C for 1 sec, 62˚C for 
10 sec, and 72˚C for 7 sec. The positive products were purified 
using the Qiagen PCR purification kit (Qiagen, Valencia, CA, 
USA). The positive samples were sequenced by ABI PRISM 
3100 analyzer (Applied Biosystems Japan Ltd., Tokyo, Japan) 
and analyzed by BLAST and chromatograms by manual 
review.

Statistical analysis. Statistical analyses were performed 
using the Mann-Whitney U-test for unpaired samples and 
Wilcoxon's signed rank test for paired samples. Linear rela-
tionships between variables were determined by means of 
simple linear regression. Correlation coefficients were deter-
mined by rank correlation using Spearman's test and χ2 test. 
The overall survival of lung cancer patients was examined by 
the Kaplan-Meier methods, and differences were examined 
by the log-rank test. All analysies were conducted using the 

StatView software package (Abacus Concepts Inc., Berkeley, 
CA, USA), and a P‑value <0.05 was considered to indicate a 
statistically significant result.

Results

Genotyping of the NRF2 gene mutation at the DLG and 
ETGE motif in lung cancer. Using the primer sets for the 
DLG motif, the anchor probe was matched for wild-type. 
For the DLG motif in exon 2, the homozygous wild-type 
PCR product showed a single peak at 63˚C, whereas the 
heterozygous products (mutant) showed an additional peak 
at a lower temperature (Fig. 1). Of the 262 lung cancer cases, 
4 had an NRF2 gene mutation. All were male nonsmokers 
with SqCC. For the ETGE motif genotyping, the anchor 
probe was matched for wild-type. The homozygous wild-
type PCR product showed a single peak at 63˚C, whereas the 
heterozygous products (mutant) showed an additional peak at 
a lower temperature (Fig. 2). Two patients had mutations. In 
total, 6 of the 262 patients had a mutation (Table I). Five were 
known mutations (D29H, G31A, R34G and E79K) and 1 was 
a novel mutation (G81S and G241A) (Fig. 3). The NRF2 gene 
mutations were clustered in exon 2 and coded for amino acid 

Figure 1. Genotyping for the DLG motif in exon 2. The homozygous 
wild‑type PCR product showed a single peak at 63˚C, whereas the hetero-
zygous products (mutant) showed an additional peak at a lower temperature.

Figure 2. Genotyping for the ETGE motif. The homozygous wild-type PCR 
product showed a single peak at 63˚C, whereas the heterozygous products 
(mutant) showed an additional peak at a lower temperature.
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changes in either the DLG or ETGE motifs of the regulatory 
Neh2 domain (21). All were male smokers with SqCC. NRF2 
gene mutations were paricularly noted in smokers (P=0.04) 
and cases of squamous histology (P=0.0001). In addition, the 
NRF2 mutation displayed a tendency towards having a higher 
frequency in males (P=0.0868). In this analysis, 88 patients 
had an EGFR mutation, 3 had an erbB2 mutation (22), 2 had 
ALK translocations and 2 had RET translocations (23). The 
NRF2 gene mutation was completely exclusive of these 
mutations.

The overall survival of the 543 lung cancer patients from 
Nagoya City University Hospital, with follow-up through 
October 31, 2012, was studied in reference to the NRF2 gene 
mutation status. Patients with an NRF2 gene mutation in the 
coding region (n=22, 11 succumbed to disease; mean survival, 
54.94 months) had a significantly worse prognosis than the 
patient with the wild‑type NRF2 gene (n=521, 98 succumbed 
to disease; mean survival, 80.67 months) (log‑rank test, 
P<0.0001, Breslow-Gehan-Wilcoxon test; P=0.0001) (Fig. 4). 
The multivariate analyses revealed that pathological stage 
(P<0.0001; hazard ratio, 3.888; 2.585‑5.849) and NRF2 gene 
mutation (P=0.0028; hazard ratio, 2.600; 1.389-4.867) were 
significant prognostic factors.

Discussion

Our findings revealed that the NRF2 gene mutation status was 
correlated with squamous histology and smoking status. This 
was in agreement with previous studies (17,24). Previous studies 
have documented that genetic alterations in lung cancer are 
frequent in smokers, such as mutations of the TP53 and Kras 
genes (25). The cause of these somatic mutations in cancer cells 
is shaped by multiple factors, such as exposure to mutagens, 
selective pressures in the tissue microenvironment and genomic 
stability (26), while tobacco smoking results in deposits of many 
hundreds of chemicals in the airways and lung.

Continuous chronic exposure of tissues of the respiratory 
tract to cigarette smoke generally activates cellular defense 
systems and the deposits trigger a pleiotropic adaptive 
response, aimed at restoring tissue homeostasis. A previous 
study suggests that a hallmark of this defense system is the 
activation of the transcription factor NRF2, consequent to its 
established role as master regulator of the cellular antioxidant 
response  (27). NRF2 regulates the expression of several 
genes encoding antioxidant and detoxification proteins (9). 
In addition, constitutive expression in a tumorigenic situation 
could provide a survival advantage to invasive and metastatic 

Figure 3. Direct sequencing results of the novel NRF2 mutation. Glycine 81 
was changed to serine; guanine 241 was changed to adenine.

Figure 4. Overall survival of 543 lung cancer patients from Nagoya City 
University Hospital, with follow-up through October 31, 2012, was studied in 
reference to the NFE2L2 mutation status. The patient with NRF2 gene muta-
tions in the coding region (n=22, 11 succumbed to disease; mean survival, 
54.94 months) had a significantly worse prognosis than the patients with the 
wild-type NRF2 gene (n=521, 98 succumbed to disease; mean survival, 80.67 
months) (log-rank test, P<0.0001, Breslow-Gehan-Wilcoxon test; P=0.0001).

Table I. Clinicopathological data of the 262 lung cancer patients.

	 NRF2 gene status
	 ------------------------------------------------------------------
Characteristics	 Wild-type	 Mutant	 P-value
	 patients	 patients

Total no. of patients 	 256	 6

Mean age, 68.2±9.4 years

Age, n (%), in years
  >65	   80 (31.3)	 2 (33.3)	 0.9999
  ≥65	 176 (68.8)	 4 (66.7)

Gender, n (%)
  Male	 158 (61.7)	 6 (100)	 0.0868
  Female	   98 (38.3)	 0 (0)

Stage, n (%)
  I	 172 (67.2)	 4 (66.7)	 0.9999
  II-IV	   84 (22.8)	 2 (33.3)

Lymph node metastasis, n (%)
  N0	 193 (75.4)	 4 (66.7)	 0.6399
  N+	   63 (24.6)	 2 (33.3)

Smoking, n (%)
  Never smoker	 156 (60.9)	 0 (0)	 0.04
  Smoker	 100 (39.1)	 6 (100)

EGFR mutation, n (%)
  Wild-type	 168 (65.6)	 6 (100)	 0.1834
  Mutation	   88 (34.4)	 0 (0)

Pathological subtypes, n (%)
  SqCC	   54 (21.1)	 6 (100)	 0.0001
  Non-SqCC	 202 (78.9)	 0 (0)

NRF2, nuclear factor (erythroid derived 2)-like 2; N+, positive for lymph node 
metastasis; SqCC; squamous cell carcinoma; EGFR, epidermal growth factor 
receptor.
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cancer cells. A previous study found that the RNAi-mediated 
silencing of NRF2 gene expression in lung cancer inhibited 
tumor growth (14). NRF2 gene promoter polymorphism was 
identified and was suggested to correlate with carcinogen-
esis (15). The adaptation to the microenvironment and the 
development of chemoresistance in cancer cells are also known 
to occur in tumors under hypoxia (28,29). These influence a 
worse prognosis in NRF2 mutant patients. The expression of 
multidrug resistance-associated proteins (MRPs), drug efflux 
proteins, was also found to be significantly reduced in NRF2 
gene‑silenced A549 cells (30). A recent report showed that 
MRP3 gene expression was correlated with NRF2 gene muta-
tions in lung SqCC (31). Oxidative stress-regulated lentiviral 
gene therapy may overcome the resistance of lung cancer to 
treatment (32).

Real-time PCR assay allows for easy identification of new 
mutations and provides the best means for pre-therapeutic 
genotyping in a clinical setting at present. Therefore, we 
developed two different PCRs to detect NRF2 gene mutations. 
The rapid PCR method and elimination of additional steps to 
analyze PCR products saves time. Handling is facilitated and 
potentially toxic reagents, such as ethidium bromide stain, 
are avoided. Using the LightCycler reverse transcription-PCR 
assay described here, determination of the NRF2 gene muta-
tion status may be of clinical importance in predicting the 
prognosis or determining additional therapy for lung cancer 
patients. Using this method, 32 samples were genotyped within 
1 h without the need of any post-PCR sample manipulation.
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