
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  33:  649-653,  2013

Abstract. The dermis is composed of dermal fibroblasts 
and various synthesized extracellular matrices. Proliferation 
of these cells is important to skin structure homeostasis. 
Therefore, human dermal fibroblasts (HDFs) growth factors 
have been previously evaluated. In the present study, we exam-
ined whether phytosphingosine‑1‑phosphate (PhS1P) regulates 
gene expression, particularly cell cycle‑related genes. In addi-
tion, we investigated whether there was a synergistic effect 
of proliferation induced by PhS1P and epidermal growth 
factor (EGF) through PhS1P‑regulated genes. A microarray 
approach was utilized to identify gene expression changes 
in PhS1P‑treated HDFs and data were analyzed using gene 
ontology (GO). In addition, proliferative synergistic effects 
were measured using an MTT assay. The results showed that 
PhS1P regulates various genes, particularly cell cycle‑related 
genes. Microarray data, followed by GO, indicated that PhS1P 
affected the biological processes involved in the cell cycle 
(cyclins A2, B1 and B2). Furthermore, these genes syner-
gistically affected EGF‑dependent proliferation. The results 
obtained in this study demonstrated that PhS1P altered gene 
expression profiles, inducing EGF‑dependent cell prolifera-
tion. Therefore, PhS1p acts as a synergistic effector for EGF.

Introduction

Human dermal fibroblasts (HDFs) are mesenchymal cells 
specialized in extracellular matrix synthesis, including 
collagen, elastin and hyaluronic acid, in the dermis (1,2). 
Dermal fibroblast proliferation is important in wound healing 
and skin structure homeostasis (3). Therefore, a growth factor 
was used for proliferating HDFs in cosmetics (4).

Epidermal growth factor (EGF), one of various growth 
factors, is a small polypeptide first purified by Cohen from the 
submaxillary gland of adult male mice (5). EGF is important 
in cell proliferation, migration and differentiation (5). These 
roles are mediated via activation of the EGF receptor (EGFR), a 
transmembrane glycoprotein with tyrosine kinase activity (6). 
Activated EGFR regulates proliferation and migration via 
activation of intrinsic signaling molecules (7,8). EGF is added 
to serum-free media in in vitro cell culture systems as EGF 
is essential to cell growth (9). Furthermore, EGF exerts cyto-
protective effects from cell damage, such as senescence (10). 
Therefore, EGF is used as an inducer of dermal fibroblast 
proliferation in cosmetics and medicine (4).

Phytosphingosine‑1‑phosphate (PhS1P) is derived 
from fungi and plants, and is structurally similar to 
sphingosine‑1‑phosphate (S1P), an endogenous signal lipid 
in mammalian cells (11,12). PhS1P is an agonist for S1P 
receptors, with a particularly high affinity for S1P4 (13). S1P 
receptors include the isomers, S1P1, S1P2, S1P3 and S1P4, in 
mammalian cells (13). Since each receptor activates different 
downstream signals, the effects of these S1Ps are slightly 
different (14,15). Therefore, we aimed to evaluate the PhS1P 
function in HDFs. The results showed that PhS1P altered 
gene expression and induced EGF‑dependent proliferation as 
a synergistic effector.

Materials and methods

Cell culture and materials. HDFs were purchased from Lonza 
(Basel, Switzerland) and maintained in Dulbecco's modified 
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Eagle's medium (DMEM; Gibco, Life Technologies, Carlsbad, 
CA, USA) supplemented with 10% fetal bovine serum 
(Sigma‑Aldrich, St. Louis, MO, USA). The cells were incu-
bated at 37˚C in a humidified incubator containing 5% CO2. 
PhS1P was obtained from Phytos Co., Ltd. (Suwon, Korea).

RNA extraction and microarray. Total RNA was isolated using 
RiboEX (GeneAll, Seoul, Korea) and quantified based on the 
optical density ratio (280/260 nm) using a Bioanalyzer 2100 
(28S RNA/18S RNA ratio; Agilent Technologies, Santa Clara, 
CA, USA). Equal amounts of RNA were used to synthesize 
cDNA and label it with biotin using an RNA amplification kit 
(Ambion, Austin, TX, USA). After labeling, the microarray 
was hybridized with biotin‑labeled RNA and streptav-
idin‑Cy3 (Invitrogen Life Technologies, Carlsbad, CA, USA). 
Following hybridization, the microarray was washed using 
wash E1BC buffer and scanned using the iScan system (both 
from Illumina, Hayward, CA, USA).

Microarray analyses. Microarray data were analyzed using 
Genespring GX software version 11 (Agilent Technologies). 
mRNAs flagged ‘present’ in at least one sample were analyzed 
using fold‑change. The threshold cut‑off was 1.3‑fold for fold‑
change between non‑treated HDFs and PhS1P‑treated HDFs. 
Significantly altered mRNAs were sorted using the gene 
ontology (GO) tool.

Quantitative polymerase chain reaction (qPCR). cDNA was 
synthesized using MMLV‑reverse transcriptase (Invitrogen 
Life Technologies) according to the manufacturer's instruc-
tions. Synthesized cDNA was used for qPCR (Line gene K; 
Bioer Technology, Co., Ltd., China) using specific primers 
for cyclin A1, B1 and B2. Primers were designed by primer 3 
(http://frodo.wi.mit.edu) (Table I). Expression was normalized 
to β-actin.

MTT assay. Cell viability was assessed using 3‑(4,5‑dimeth-
ylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. 
HDFs were cultured for 24 h in 96‑well plates with PhS1P and 
EGF. MTT tetrazolium salt (0.5 mg/ml; Sigma) was added 
to cells for 4 h. After incubation, the medium was replaced 
with dimethyl sulfoxide in each well. The absorbance of each 
sample was measured at 595 nm using a plate reader (Bio‑Rad 
Laboratories, Hercules, CA, USA).

Results

PhS1P cytotoxicity in HDFs. To assess the effect of PhS1P 
on cell viability, HDFs were treated with various concentra-
tions of PhS1P (0, 0.25, 0.5 and 1 µM) for 24 h (Fig. 1). We 
determined that PhS1P at concentrations of ≤1 µM had no 
cytotoxicity.

PhS1P alters the mRNA expression profile. To identify 
genes that may play a PhS1P‑dependent role, we compared 
the expression profiles of non‑treated and 1 µM PhS1P‑
treated HDFs using the Illumina bead chip HumanHT‑12. In 
47,207 whole genes, we first filtered 35,973 genes that were 
flagged ‘present’ with a frequency higher than the sensitivity 
of detection in a minimum of one array. Fold‑change was 

then analyzed in these flag‑filtered genes. Genes that changed 
by 1.3‑fold between non‑treated and PhS1P‑treated HDFs 
were presented on the heat map (Fig. 2A). The analyses iden-
tified 193 upregulated genes and 495 downregulated genes 
(Fig. 2B).

Using the GO analytical tool, the genes were sorted based 
on their roles in biological processes (Fig. 3). Genes upregu-
lated in PhS1P‑treated HDFs appeared to be involved in cell 
processes such as cell cycle, cell division, microtubule-based 
processes, chromosome segregation, cell communication, 
cellular responses to stimuli, and cellular component organi-
zation or biogenesis. In particular, cell cycle‑related ontology 
(cell cycle, cell division and chromosome segregation) was 
significantly enriched by PhS1P.

Cyclins A2, B1 and B2 were regulated by PhS1P. Cyclins 
are well‑known regulators in cells (16). Therefore, the analyses 
revealed that PhS1P affected cell proliferation by altering 
specific mRNAs. In addition, we confirmed the mRNA expres-
sion change of cyclin A2, B1 and B2 using qPCR (Fig. 4).

We also examined the synergistic effect of PhS1P and EGF 
on HDF viability. Compared with PhS1P‑treated HDFs in the 
absence of EGF, the viability of PhS1P‑treated HDFs with 
EGF was markedly increased (Fig. 4D). These data indicate 
that PhS1P is a co‑effector in the induction of EGF‑dependent 
cell proliferation.

Figure 1. Phytosphingosine‑1‑phosphate (PhS1P) affects human dermal fibro-
blasts (HDFs) viability. Dose‑dependent effect of PhS1P on HDF viability. 
HDFs (5x104 cells/well) were plated in 24‑well plates and cultured for 24 h 
in serum‑free DMEM with the indicated concentrations of PhS1P and epi-
dermal growth factor (EGF). Cell viability was determined using MTT assay 
and absorbance was measured at 490 nm. Mean values were calculated from 
three independent experiments. Results are expressed as the mean ± SD.

Table I. Quantitative PCR primer sequences.

Gene Primer sequences

Cyclin A2 Forward 5'‑TTATTGCTGGAGCTGCCTTT‑3'
 Reverse 5'‑CTCTGGTGGGTTGAGGAGAG‑3'
Cyclin B1 Forward 5'‑CGGGAAGTCACTGGAAACAT‑3'
 Reverse 5'‑AAACATGGCAGTGACACCAA‑3'
Cyclin B2 Forward 5'‑TTGCAGTCCATAAACCCACA‑3'
 Reverse 5'‑GAAGCCAAGAGCAGAGCAGT‑3'
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Figure 2. Phytosphingosine‑1‑phosphate (PhS1P) regulates the gene expression profile in human dermal fibroblasts (HDFs). HDFs were treated with 
PhS1P (1 µM) for 24 h, and total RNA was extracted as described in Materials and methods. Changes in gene expression were determined by cDNA microarray 
gene profiling using the Illumina Human Bead‑Chip array. A fold‑change of >1.3‑fold was considered differential expression. (A) Heat map of upregulated and 
downregulated genes. Red and blue colors show relative expression intensity. (B) Number of mRNA altered by 1 µM PhS1P in HDFs.

Figure 3. Gene ontology (GO) analyses of phytosphingosine‑1‑phosphate (PhS1P)‑related genes in human dermal fibroblasts (HDFs). Enriched GO categories 
(P<0.01) were determined by counting ontology of up‑ and downregulated genes in biological processes. Gene classification was performed according to gene 
ontology terms: i) biological function, ii) cellular component and iii) molecular function. However, molecular function was not analyzed in the GO analyses.
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Discussion

The aim of the study was to evaluate the effect of PhS1P 
on EGF‑induced proliferation in HDFs. PhS1P is phyto-
chemically derived from fungi, plants, and even mammalian 
cells (12). In a previous study, it was shown that PhS1P protects 
against hydrogen peroxide‑dependent growth arrest (17). 
Recent data from Lee et al (17) suggested that PhS1P had no 
significant effect on the proliferation at concentrations <1 µM 
in HDFs (Fig. 1). However, PhS1P (1 µM) regulates various 
cell cycle‑related genes in HDFs (Fig. 2). In particular, the 
cyclins (cyclin A2, B1 and B2), master regulators of the 
cell cycle, were upregulated by PhS1P. Cyclin A2 regulates 
S‑phase progression and entry into mitosis (18,19). During 
S phase, cyclin A2 initiates DNA synthesis (20). During the 
G/M phase, cyclin A2 triggers entry into mitosis by activating 
cyclin B1‑Cdk1 (21).

In the progressing cell cycle, a sustained high expres-
sion of cyclins is essential (16). However, overexpression of 
cyclins is insufficient to induce cell cycle progression (22,23). 
As shown in Fig. 2, PhS1P upregulated mRNA expression of 
cyclin A2, B1 and B2 although there was no change in cell 
viability (Figs. 1 and 2).

Combining the present data with our previous data (17), 
we determined that <1 µM PhS1P increases cyclin expression, 

but does not affect viability. Moreover, EGF triggered prolif-
eration in PhS1P‑treated HDFs (Fig. 4D). Therefore, together 
with the results from Ikezawa et al (22), our data suggest 
that a cyclin‑enriched condition results in synergistic growth 
following treatment with growth factors, such as EGF (24).

In summary, results of the present study have shown 
that PhS1P regulates cell cycle‑related genes. In addi-
tion, the changes in gene expression synergistically trigger 
EGF‑induced proliferation.
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