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Abstract. Ionizing radiation can elicit harmful effects on the 
cardiovascular system at high doses. Endothelial cells are critical 
targets in radiation-induced cardiovascular damage. Astronauts 
performing a long-term deep space mission are exposed to 
consistently higher fluences of ionizing radiation that may 
accumulate to reach high effective doses. In addition, cosmic 
radiation contains high linear energy transfer (LET) radiation 
that is known to produce high values of relative biological 
effectiveness (RBE). The aim of this study was to broaden the 
understanding of the molecular response to high LET radiation 
by investigating the changes in gene expression in endothelial 
cells. For this purpose, a human endothelial cell line (EA.hy926) 
was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/
µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 
2 and 24 h following irradiation by γ-H2AX foci detection by 
fluorescence microscopy and gene expression changes were 
measured by microarrays at 8 and 24 h following irradiation. 
We found that exposure to accelerated nickel particles induced 
a persistent DNA damage response up to 24 h after treatment. 
This was accompanied by a downregulation in the expression of 
a multitude of genes involved in the regulation of the cell cycle 
and an upregulation in the expression of genes involved in cell 
cycle checkpoints. In addition, genes involved in DNA damage 
response, oxidative stress, apoptosis and cell-cell signaling 

(cytokines) were found to be upregulated. An in silico analysis of 
the involved genes suggested that the transcription factors, E2F 
and nuclear factor (NF)-κB, may be involved in these cellular 
responses.

Introduction

Cardiovascular disease is considered to be one of the most 
important non-cancer long-term effects of ionizing radiation, 
as evidenced by the epidemiological data of atomic bomb 
survivors exposed to doses of 0.5 to 2 Gy (1). In the context 
of space exploration, high linear energy transfer (LET) radia-
tion found in space produces high values of relative biological 
effectiveness (RBE), as compared to low LET radiation, such 
as X-rays or gamma‑rays, which can increase the health risks 
to astronauts (2). Indeed, during long-term missions, such as a 
journey to Mars, astronauts are bound to be exposed to cumu-
lative doses between 0.3 and 4 Sv, depending on the spacecraft 
shielding and on the intensity of solar particle events (3).

Heavy ion irradiation is also used for terrestrial applications, 
such as non-conventional radiotherapy (hadron therapy), which 
takes advantage of the depth distribution of the dose, which is 
maximal at the Bragg peak, and of the increased RBE, allowing 
the enhanced killing effect on tumor cells while sparing the 
healthy tissue (4,5). However, little is known of the molecular 
mechanisms involved in the enhanced killing properties of 
heavy ion irradiation. Improving our understanding of the 
effects of heavy ion radiation, particularly on the cardiovascular 
system that may be irradiated during treatment, is therefore 
of utmost importance for both long-term space missions and 
hadron therapy.

Endothelial cells are critical targets in radiation-induced 
cardiovascular damage (1,6,7). While high doses of low LET 
radiation induce pro-inflammatory responses in endothelial 
cells, the opposite has been observed upon exposure to low 
doses  (8-10). The mechanisms involved are not yet fully 
understood; however, they appear to be at least partly linked 
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to the transcription factor, nuclear factor (NF)-κB, and the 
nitric oxide signaling pathway, which in turn mediates various 
cellular responses, including the secretion of cytokines [such as 
transforming growth factor (TGF)-β1, interleukin (IL)-6, inter-
feron (IFN)-γ, IFN-β and tumor necrosis factor (TNF)-α] and 
chemokines (9-11). Another possible mechanism of radiation-
induced cardiovascular alteration, as shown upon low LET 
radiation (12-16), is the endothelial retraction and the impair-
ment of cellular adhesion. Matrix metalloproteinases (MMPs), 
Rho GTPases, calcium signaling and reactive oxygen species 
seem to be important factors that stimulate modifications in 
cell junctions and the cytoskeleton through adhesion molecules 
and actin (12-16). Although high LET radiation has been shown 
to reduce the length of a 3D human endothelial vessel model, 
both developing and mature (17), only a few studies have been 
conducted to identify the mechanisms involved in the endothe-
lial response to high LET radiation (18,19).

Thus, the aim of this study was to investigate the effects of 
moderate and high doses of high LET nickel ion (Ni) irradia-
tion on gene expression in endothelial cells in order to elucidate 
the molecular mechanisms responsible for radiation‑induced 
cardiovascular damage. For this purpose, the EA.hy926 cell line, 
which originates from human umbilical vein endothelial cells, 
was irradiated with nickel ions (LET, 183 keV/µm) at moderate 
(0.5 Gy) and high (2 and 5 Gy) doses after which gene expres-
sion was determined by whole‑genome microarray analysis.

Materials and methods

Cell culture. The human EA.hy926 endothelial cells were 
obtained from the American Type Culture Collection (ATCC; 
Manassas, VA, USA). They were cultured (37̊C-5% CO2) in 
Dulbecco's modified Eagle's medium supplemented with 10% 
fetal bovine serum and 1% penicillin/streptomycin (all from 
N.V. Invitrogen S.A., Merelbeke, Belgium). The cells were 
regularly examined for the absence of mycoplasma using the 
LookOut® Mycoplasma PCR Detection kit (Sigma-Aldrich, 
St. Louis, MO, USA).

Nickel irradiation. The cells were seeded at a density of 
105 cells in 12.5 cm² flasks. Twenty-four hours after plating, 
the flasks were placed in a transportable incubator (37̊C) and 
moved from the resident laboratory (Mol, Belgium) to the 
GSI Helmholtzzentrum für Schwerionenforschung GmbH 
(Darmstadt, Germany). Forty-eight hours after plating, the 
subconfluent cells were irradiated in flasks completely filled 
with culture medium with a 1 GeV/u Ni beam at the SIS facility 
at GSI with the intensity controlled raster scanning technique 
as described by Haberer et al  (20). The ion energy at the 
sample position was approximately 930 MeV/u with a LET of 
183 keV/µm (calculated with the program code ATIMA). The 
culture flasks were placed vertically and exposed perpendicu-
larly to the nickel ion beam at the following doses: 0.5, 2 and 
5 Gy. Non-irradiated control samples were treated similarly to 
the irradiated samples, but placed out of the beam. Following 
irradiation, the cells were incubated (37̊C, 5% CO2) in 2 ml of 
conditioned medium until fixation time points (2, 8 and 24 h).

DNA double-strand break detection (detection of γ-H2AX foci). 
The cells were fixed in 4% paraformaldehyde (Merck KGaA, 

Darmstadt, Germany) 2 and 24 h after irradiation. They were 
then treated with 0.25% Triton X for 5 min, blocked with 
3% bovine serum albumin (both from Sigma-Aldrich) for 
30 min and incubated overnight with mouse anti-γ-H2AX 
antibody (Abcam, Cambridge, MA, USA) at 4̊C. After a 
second blocking of 10 min, the cells were incubated for 1 h 
with anti‑mouse secondary antibody coupled to FITC (Sigma-
Aldrich) at 37̊C and then mounted in Vectashield mounting 
medium (Vector Laboratories, Burlingame, CA, USA) with 
DAPI. Between each of the previous steps, the slides were 
washed with phosphate‑buffered saline (PBS).

An automated inverted f luorescence microscope 
(TE2000-E; Nikon, Tokyo, Japan), equipped with a motorized 
XYZ stage, emission and excitation filter wheels, shutters and 
a triple dichroic mirror (436/514/604) was used for the image 
acquisition of the immunostained slides. Images were acquired 
with a 40X Plan Fluor oil objective (NA 1.3) and an Andor 
iXon EMCCD camera (Andor Technology, South Windsor, 
CT, USA). For each sample, at least 12 fields were acquired 
on 5 z-stack focusses (1 µm). The γ-H2AX spot number and 
spot occupancy were analyzed with the INSCYDE plugin 
for ImageJ as previously described (21). Spot occupancy was 
defined for each nucleus as the sum of the spot areas divided 
by the nucleus area (spot_occupancy  =  sum (spot_area)/
nuclear_area). A minimum number of 100 cells was analyzed in 
2 biological replicates per condition. For statistical analyses, the 
data were analyzed using the Mann-Whitney U test with SPSS 
version 17.0 software (IBM Corp., Chicago, IL, USA) and box 
plots were generated using the same software. P-values <0.05 
were considered to indicate statistically significant differences.

RNA extraction. At 2 time points after irradiation (8 and 24 h), 
the adherent cells were washed in PBS, lysed in 350 ml of 
AllPrep DNA/RNA/Protein Mini kit lysis buffer (Qiagen, 
Hilden, Germany) and frozen at -80̊C. RNA was extracted 
using the same kit and its concentration was measured using 
a NanoDrop spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA), while its quality (RNA integrity 
number, RIN) was determined using Agilent's lab-on-chip 
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, 
USA). All RNA samples had a RIN value >9.0.

Affymetrix microarrays and data analysis. RNA was processed 
using the GeneChip WT cDNA Synthesis and Amplification kit 
(Affymetrix, Santa Clara, CA, USA) according to the manu-
facturer's instructions. The resulting RNA was hybridized to 
Affymetrix Human Gene 1.0 ST arrays which contain an esti-
mated number of 28,869 genes based on the March 2006 [UCSC 
Hg 18; National Center for Biotechnology Information (NCBI) 
build 36] human genome assembly. Biological triplicates were 
collected for each condition.

Raw data (.cel-files) were imported at exon level in Partek 
Genomics Suite version  6.5 (Partek,  Inc., St.  Louis, MO, 
USA). Briefly, robust multi-array average (RMA) background 
correction was applied, data were normalized by quantile 
normalization and probeset summarization was performed by 
the median polish method. Gene summarization was performed 
using one-step Tukey's biweight method. The obtained data 
were analyzed with Partek Genomics Suite for single gene 
analysis. One- or two-way ANOVA, taking into consideration 
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the scan date (where applicable) and the dose as factors, were 
performed for each time point. In order to determine statistical 
significance, thresholds were set on the p-value <0.001 and on 
the fold‑change >1.5.

The enrichment of the transcription factor binding motifs 
was analyzed using Pscan Ver. 1.2 (22) and the JASPAR data-
base, scanning in a region from -950 to +50 base pairs from 
the transcription start site.

Results

DNA damage. To assess DNA damage induction by nickel ion 
irradiation and evaluate the cell capacity required to repair 
this damage, we performed a high content cytometric assay 
of γ-H2AX, 2 and 24 h after exposure. As measured by the 
number of γ-H2AX foci, DNA damage was significantly 
increased 2 h after nickel ion irradiation (2 Gy), with an average 
number of 15 foci per nucleus vs. 2 foci per nucleus in the 
control samples (Fig. 1A). Twenty-four hours after irradiation, 

the number of foci decreased to 9 per nucleus, which was 
significantly higher than the values of controls, indicating that 
part of the DNA damage persisted for at least 24 h. Similar 
trends were observed for the spot occupancy, which is the frac-
tion of the projected area of the nucleus occupied by the signal 
from the γ-H2AX foci (Fig. 1B).

Effects of nickel irradiation on gene expression. In order to 
evaluate gene expression, we performed microarrays 8 and 24 h 
after irradiation. A 0.5 Gy irradiation, both after 8 and 24 h, 
elicited a subtle effect on gene expression in the EA.hy926 cells. 
Six annotated genes were differentially regulated with fold 
changes (FC) between 1.5 and 1.8 after 8 h, and 18 genes were 
differentially regulated with an FC between 1.5 and 2.3 after 
24 h. A more drastic effect was observed at 5 Gy, 24 h after 
irradiation. At this time point, we detected the upregulation 
of 77 annotated genes (Fig. 2 and Table I; maximum FC, 3.4). 
Among these genes, cytokines and chemokines (CXCL5, TGFA, 
TRIM22, TNFSF9, EBI3, IL-6, IL-11 and CD70) were identified, 
as well as genes involved in DNA damage response (SPATA18, 
POLL, APOBEC3H and SESN1), cell cycle arrest (ZMAT3, 
MXD4, TP53INP1, HSPB8, TGFA, SESN2, BTG2, DTX3, 
TOB1, HBP1, CDKN1A and PLK3) and apoptosis (TP53INP1, 
HSPB8, TGFA, TP53I3, MOAP1, CYFIP2, TRADD, DTX3 and 
FAS). In addition, we observed the upregulation of genes coding 
for ion channels (SLC22A4, KCNJ2, ORAI3 and CLIC3), cell 
adhesion (CEACAM1 and NEU1) and oxidative stress response 
proteins (FMO4, FDXR, SIRT2 and SESN1).

A total of 145 annotated genes was downregulated 24 h 
after nickel ion irradiation (5 Gy) (Fig. 3 and Table I). The 
majority (62 genes) is known to be involved in various aspects 
of cell division, such as DNA replication, replication forks and 
chromosome assembly and segregation (Table II and Fig. 4). 
Other downregulated genes found have been implicated 
in post-replicative DNA repair (UNG, UPF3A, MSH2 and 
MSH6), nucleotide biosynthesis (DHFR and RRM2), DNA 
repair (FANCA, MMS22L, NFKBIL2, RAD51, EXO1 and 
HMGB2), positive (YAP1) and negative regulation of apoptosis 
(DHRS2, DHCR24 and MTBP), Rho signaling (ARHGAP19, 
ARHGAP11B and RACGAP1) and cell adhesion (PVRL1 and 
DLGAP5).

Figure 1. Box plots of the γ-H2AX (A) spot number per nucleus and (B) spot occupancy in human endothelial cells 2 and 24 h after irradiation with nickel 
ions (Ni). Dots represent outliers and stars represent extreme values. In both graphs, the spot number in the samples subjected to 2 Gy irradation (gray boxes) 
was significantly higher than the controls (0 Gy, white boxes), as shown by the Mann-Whitney U test.

Figure 2. Number of upregulated genes in specific cellular processes 24 h after 
nickel ion irradiation (5 Gy). The referred processes were determined by search 
on the National Center for Biotechnology Information (NCBI) database.
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Table I. List of the differentially expressed genes at 8 and 24 h after 0.5 and 5 Gy of nickel ion irradiation. 

	 Downregulated genes	 Upregulated genes
	--------------------------------------------------------------------------------------------------------------------------------------------	 -----------------------------------------------------------------------------------------------------------------------------------------------
Gene symbol	 GenBank	 p-value	 FC	 Gene symbol	 GenBank	 p-value	 FC

List of differentially expressed genes 8 h after 0.5 Gy nickel ion irradiation
CRYBB2	 NM_000496	 1,02E-03	 -1,800	 HSP90AA6P	 NR_036751	 6,55E-03	 1,630
GNAT1	 NM_144499	 5,54E-03	 -1,601	 RFT1	 NM_052859	 6,83E-03	 1,572
DNAJB13	 NM_153614	 3,79E-03	 -1,521	 DEFB123	 NM_153324	 8,50E-03	 1,518

List of differentially expressed genes 24 h after 0.5 Gy nickel-ion irradiation
UPF3A	 NM_023011	 1,53E-03	 -1,932	 C1orf113	 ENST00000312808	 8,96E-03	 2,224
E2F8a	 NM_024680	 5,38E-03	 -1,716	 SNORD53	 NR_002741	 6,78E-03	 2,182
LIMA1	 NM_001113546	 9,63E-03	 -1,670	 SLC45A4	 BC033223	 8,10E-03	 2,049
C16orf55	 AK303024	 7,00E-04	 -1,600	 HIST1H2BD	 NM_021063	 9,01E-03	 2,028
HLA-DRB4	 AK293020	 3,18E-03	 -1,583	 ZNF16	 NM_001029976	 3,65E-03	 1,952
MCM10a	 NM_182751	 9,77E-03	 -1,530	 RNF207	 NM_207396	 7,07E-03	 1,677
PROK2	 NM_001126128	 8,29E-03	 -1,518	 LCE1Eb	 NM_178353	 4,89E-03	 1,619
				    C10orf72	 NM_001031746	 6,04E-04	 1,592
				    PMCH	 NM_002674	 7,49E-03	 1,591
				    RUNDC3B	 NM_138290	 1,98E-03	 1,571
				    ORAI3b	 NM_152288	 7,01E-03	 1,515

List of differentially expressed genes 24 h after 5 Gy nickel-ion irradiation
FAM111Ba	 NM_198947	 5,65E-03	 -5,894	 ACTA2b	 NM_001141945	 2,01E-05	 3,424
PCBP1a	 NM_006196	 6,05E-04	 -3,611	 TP53INP1	 NM_033285	 1,02E-04	 2,976
DHRS2	 NM_182908	 6,48E-05	 -3,090	 CD70b	 NM_001252	 9,56E-03	 2,702
MCM6a	 NM_005915	 1,81E-05	 -3,069	 PHOSPHO1	 NM_001143804	 9,47E-04	 2,629
HIST1H1T	 NM_005323	 6,99E-03	 -2,762	 CDKN1A	 NR_037151	 8,27E-03	 2,221
ZNF367a	 NM_153695	 1,61E-04	 -2,669	 CEACAM1	 NM_001712	 5,56E-04	 2,184
KIF20A	 NM_005733	 4,17E-04	 -2,595	 BTG2b	 NM_006763	 1,08E-03	 2,170
LMNB1	 NM_005573	 9,94E-04	 -2,561	 APOBEC3Hb	 NM_001166003	 4,32E-03	 2,070
HIST1H1D	 NM_005320	 4,45E-03	 -2,478	 TRIM22b	 NM_006074	 4,27E-04	 2,063
E2F8a	 NM_024680	 3,88E-04	 -2,469	 KCNJ2b	 NM_000891	 1,88E-03	 2,055
HAUS8	 NM_033417	 1,71E-05	 -2,444	 SPATA18b	 NM_145263	 1,16E-06	 2,026
MYBL2	 NM_002466	 7,56E-04	 -2,369	 ZNF223b	 NM_013361	 4,56E-03	 1,997
UHRF1a	 NM_001048201	 5,93E-03	 -2,363	 LCE1Eb	 NM_178353	 8,26E-04	 1,986
SRP19	 ENST00000512790	 6,66E-03	 -2,337	 FDXR	 NM_024417	 1,72E-03	 1,972
UPF3A	 NM_023011	 4,54E-04	 -2,292	 TUBA4A	 NM_006000	 1,36E-03	 1,932
DLGAP5a	 NM_014750	 9,85E-03	 -2,264	 PSTPIP2	 NM_024430	 5,51E-04	 1,924
ATAD2a	 NM_014109	 7,92E-03	 -2,239	 ACY3b	 NM_080658	 8,81E-03	 1,922
UNGa	 NM_003362	 2,21E-05	 -2,220	 SLC40A1b	 NM_014585	 2,55E-03	 1,921
HELLSa	 NM_018063	 8,16E-03	 -2,194	 TMEM150A	 NM_001031738	 5,23E-04	 1,904
MCM3a	 NM_002388	 1,81E-03	 -2,189	 MXD4	 NM_006454	 1,09E-04	 1,903
FIGNL1	 NM_001042762	 6,39E-03	 -2,184	 IL-6b	 NM_000600	 2,89E-03	 1,883
KIF11	 NM_004523	 9,41E-03	 -2,164	 NCRNA00219	 NR_015370	 8,85E-03	 1,864
FBXO5	 NM_012177	 1,38E-05	 -2,150	 KBTBD8b	 NM_032505	 8,57E-03	 1,833
E2F2a	 NM_004091	 3,11E-04	 -2,126	 NIPAL3b	 NM_020448	 1,16E-06	 1,819
WDR76	 NM_024908	 4,11E-04	 -2,108	 RAB4B	 NM_016154	 3,30E-03	 1,811
HIST1H2BGa	 NM_003518	 1,90E-03	 -2,106	 SAT1b	 NR_027783	 7,52E-03	 1,810
LOC1720	 NR_033423	 1,54E-03	 -2,101	 SLC22A4	 NM_003059	 7,67E-04	 1,796
CAMK2N1	 NM_018584	 1,24E-03	 -2,091	 NEU1	 NM_000434	 2,68E-03	 1,778
DLEU2a	 NR_002612	 6,87E-03	 -2,088	 CYFIP2b	 NM_001037332	 5,48E-03	 1,770
MCM5a	 NM_006739	 2,95E-04	 -2,084	 TNFSF9	 NM_003811	 7,09E-04	 1,736
ANKRD36B	 NM_025190	 3,63E-03	 -2,082	 TMEM217b	 NM_145316	 7,60E-03	 1,730
POLA1a	 NM_016937	 2,54E-03	 -2,073	 IL-11	 NM_000641	 3,38E-03	 1,721
BUB1B	 NM_001211	 1,55E-03	 -1,995	 ATP6V0A4	 NM_020632	 7,57E-03	 1,712
GPSM2	 NM_013296	 2,43E-04	 -1,988	 FMO4	 NM_002022	 1,05E-03	 1,707
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Table I. Continued. 

	 Downregulated genes	 Upregulated genes
	--------------------------------------------------------------------------------------------------------------------------------------------	 ----------------------------------------------------------------------------------------------------------------------------------------------------------
Gene symbol	 GenBank	 p-value	 FC	 Gene symbol	 GenBank	 p-value	 FC

HMGB2	 NM_001130688	 3,20E-03	 -1,979	 WIPI1	 NM_017983	 7,41E-04	 1,705
DHCR24	 NM_014762	 3,24E-04	 -1,970	 HBP1	 NM_012257	 7,81E-03	 1,684
MCM7a	 NM_005916	 2,60E-05	 -1,956	 UCN2	 NM_033199	 4,81E-03	 1,683
ANLN	 NM_018685	 7,33E-03	 -1,953	 bEBI3	 NM_005755	 1,99E-03	 1,676
NDC80	 NM_006101	 2,04E-04	 -1,953	 bFAS	 NM_000043	 9,18E-03	 1,673
MCM2a	 NM_004526	 2,05E-04	 -1,927	 CLIC3b	 NM_004669	 8,25E-03	 1,666
CDKN3	 NM_005192	 9,25E-03	 -1,917	 TGFA	 NM_003236	 1,70E-04	 1,662
EMP2	 NM_001424	 1,87E-03	 -1,915	 NCF2b	 NM_000433	 6,46E-03	 1,656
TACC3	 NM_006342	 2,72E-03	 -1,906	 NADSYN1	 NM_018161	 4,99E-04	 1,651
LHX2	 NM_004789	 8,33E-03	 -1,883	 CXCL5b	 NM_002994	 2,65E-05	 1,643
NCAPG2	 NM_017760	 1,59E-03	 -1,881	 SESN2b	 NM_031459	 8,22E-04	 1,642
DHFR	 NM_000791	 1,91E-05	 -1,878	 HSPB8	 NM_014365	 1,53E-04	 1,634
PER3a	 NM_016831	 8,02E-03	 -1,867	 FAM84Ab	 NM_145175	 3,91E-04	 1,623
SEMA3D	 NM_152754	 7,14E-03	 -1,867	 ORAI3b	 NM_152288	 3,54E-03	 1,616
KIFC1	 NM_002263	 1,96E-04	 -1,860	 C9orf150b	 NM_203403	 2,10E-03	 1,614
DEPDC1B	 NM_018369	 5,71E-03	 -1,853	 C2orf80	 NM_001099334	 5,67E-04	 1,613
USP1	 NM_003368	 1,74E-03	 -1,848	 PLK3	 NM_004073	 8,79E-03	 1,611
CCNE2	 NM_057749	 1,34E-03	 -1,841	 MAGED4b	 NM_001098800	 1,62E-03	 1,611
PRC1	 NM_003981	 1,06E-03	 -1,838	 LRRC29	 NM_012163	 2,25E-06	 1,589
DEPDC1	 NM_001114120	 1,89E-04	 -1,819	 POLL	 NM_001174084	 2,96E-03	 1,583
ORC1	 NM_004153	 2,50E-03	 -1,811	 DFNA5	 NM_004403	 6,35E-04	 1,578
CDCA7a	 NM_031942	 1,42E-04	 -1,807	 CRYAB	 NM_001885	 3,49E-04	 1,577
MCM10a	 NM_182751	 2,11E-03	 -1,801	 WBP5	 NM_016303	 2,50E-04	 1,569
CDT1a	 NM_030928	 5,55E-03	 -1,800	 SESN1	 NM_014454	 6,34E-03	 1,565
FAM111Aa	 NM_022074	 5,61E-04	 -1,798	 RDH10b	 NM_172037	 8,25E-03	 1,556
STX11a	 NM_003764	 1,61E-03	 -1,795	 BHLHE40b	 NM_003670	 9,87E-03	 1,553
MSH2a	 NM_000251	 7,76E-04	 -1,794	 FAM113A	 AK293638	 7,81E-04	 1,550
MKKS	 NM_018848	 6,55E-04	 -1,794	 LOC100130581	 NR_027413	 6,57E-03	 1,546
CEP78	 NM_001098802	 9,07E-03	 -1,790	 MOAP1	 NM_022151	 2,89E-04	 1,543
RFC4	 NM_002916	 3,92E-03	 -1,789	 TP53I3b	 NM_004881	 1,71E-04	 1,543
KIF23	 NM_138555	 3,79E-03	 -1,789	 OR51B6	 NM_001004750	 5,49E-03	 1,542
MLF1IPa	 NM_024629	 2,81E-04	 -1,785	 NIPSNAP1b	 NM_003634	 3,88E-04	 1,541
CEP55	 NM_018131	 4,87E-04	 -1,782	 HHATb	 NM_001170580	 2,41E-03	 1,536
TCF19a	 NM_007109	 6,78E-04	 -1,781	 ARR3	 NM_004312	 7,01E-04	 1,535
BUB1	 NM_004336	 6,08E-04	 -1,780	 SIRT2b	 NM_012237	 4,30E-03	 1,533
CHAF1B	 NM_005441	 1,22E-03	 -1,773	 C15orf33b	 NM_152647	 1,43E-03	 1,526
EZH2a	 NM_004456	 5,38E-04	 -1,772	 RBKSb	 NM_022128	 5,82E-03	 1,523
PLK4	 NM_014264	 2,16E-04	 -1,757	 DTX3b	 NM_178502	 4,95E-03	 1,519
E2F1a	 NM_005225	 1,61E-03	 -1,755	 TOB1	 NM_005749	 6,18E-03	 1,517
H1F0a	 NM_005318	 1,51E-04	 -1,740	 ADCY4b	 NM_001198592	 5,24E-03	 1,514
CEP57L1	 NM_001083535	 5,12E-03	 -1,739	 ARL15	 NM_019087	 1,98E-03	 1,512
NUSAP1a	 NM_016359	 8,15E-05	 -1,730	 TRADDb	 NM_003789	 2,41E-03	 1,509
ESPL1	 NM_012291	 9,12E-03	 -1,724	 ZMAT3b	 NM_022470	 5,71E-05	 1,502
KIF2C	 NM_006845	 7,54E-04	 -1,718
DEPDC4	 NM_152317	 3,25E-03	 -1,714
MSH6	 NM_000179	 6,14E-03	 -1,712
CDC6a	 NM_001254	 2,07E-03	 -1,710
PM20D2a	 NM_001010853	 7,65E-04	 -1,706
PVRL1	 NM_002855	 9,24E-03	 -1,693
C16orf55	 AK303024	 3,86E-04	 -1,691
RRM2a	 NM_001165931	 7,98E-03	 -1,687
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Enrichment of transcription factor binding motifs. In order 
to identify the transcription factors potentially responsible for 
the differential gene expression upon irradiation, we scanned 
sequences close to the transcription start sites of these genes using 
Pscan (22). We found motifs for E2F1 among the transcription 
factor binding motifs enriched in the downregulated gene list, 
(p-value <10-19). On the other hand, we found two members of 
the REL family (RelA and NF-κB) with significantly enriched 
binding motifs in the list of upregulated genes (p-values <0.05).

Discussion

DNA damage persists 24 h after irradiation. We measured 
a significant increase in the number of γ-H2AX foci 2  h 
following nickel ion irradiation. This number was lower than 
the 30 spots per nucleus that we measured on average upon 

Table I. Continued.

	 Downregulated genes	 Downregulated genes

Gene Symbol	 GenBank	 p-value	 FC	 Gene Symbol	 GenBank	 p-value	 FC

HIST1H3Fa	 NM_021018	 8,20E-03	 -1,682	 DDX12	 NR_033399	 3,55E-03	 -1,570
ZNF716	 NM_001159279	 2,70E-04	 -1,682	 FLJ30064	 AK054626	 2,40E-03	 -1,562
KIAA1524	 NM_020890	 1,99E-04	 -1,680	 USP37a	 NM_020935	 3,15E-04	 -1,566
FANCAa	 NM_000135	 6,54E-06	 -1,680	 PLS1	 NM_001172312	 9,23E-04	 -1,559
KLHL23	 NM_144711	 8,07E-03	 -1,679	 MT4	 NM_032935	 7,81E-03	 -1,558
CDCA2	 NM_152562	 3,22E-03	 -1,677	 GTSE1	 NM_016426	 6,65E-03	 -1,556
WHSC1	 NM_133330	 7,07E-04	 -1,677	 KCTD12a	 NM_138444	 7,18E-03	 -1,555
MMS22L	 NM_198468	 2,44E-04	 -1,675	 ZNF749a	 NM_001023561	 3,89E-03	 -1,553
FAM72D	 AB096683	 2,28E-03	 -1,674	 CENPHa	 NM_022909	 1,88E-03	 -1,547
KIAA0101a	 NM_014736	 2,64E-03	 -1,663	 DDX11	 NM_030653	 7,35E-04	 -1,545
AREG	 NM_001657	 8,49E-03	 -1,658	 SNX5	 NM_152227	 4,96E-03	 -1,543
GINS2a	 NM_016095	 7,86E-03	 -1,657	 MTBPa	 NM_022045	 4,20E-03	 -1,539
ARHGAP11Ba	 NM_001039841	 1,80E-03	 -1,657	 GAR1	 NM_018983	 8,34E-03	 -1,539
LYAR	 NM_017816	 9,45E-03	 -1,656	 NUF2	 NM_145697	 2,74E-04	 -1,531
YAP1	 NM_001130145	 1,60E-03	 -1,655	 CCNFa	 NM_001761	 8,64E-04	 -1,529
PKP4	 NM_003628	 4,89E-03	 -1,653	 PBKa	 NM_018492	 3,92E-03	 -1,528
FGF12	 NM_021032	 2,85E-03	 -1,649	 NCAPH	 NM_015341	 3,03E-05	 -1,521
NFKBIL2	 NM_013432	 2,44E-03	 -1,632	 EXO1a	 NM_130398	 3,35E-03	 -1,521
FOXD4L3a	 NM_199135	 3,14E-03	 -1,631	 NOS1AP	 NM_014697	 7,34E-03	 -1,520
CALML4	 NM_033429	 6,12E-03	 -1,609	 RACGAP1	 NM_013277	 6,33E-03	 -1,517
DSCC1	 NM_024094	 2,26E-03	 -1,602	 CLCNKA	 NM_004070	 2,68E-03	 -1,517
PRIM1	 NM_000946	 2,41E-05	 -1,593	 FAM133B	 NM_001040057	 7,16E-03	 -1,515
DTLa	 NM_016448	 2,55E-04	 -1,591	 DUX4L4a	 NM_001177376	 8,97E-03	 -1,514
WDHD1	 NM_007086	 5,97E-04	 -1,590	 GABRA6	 NM_000811	 3,58E-03	 -1,513
SUN2	 NM_015374	 2,49E-03	 -1,586	 L2HGDH	 NM_024884	 3,44E-03	 -1,512
PHF10a	 NM_018288	 2,15E-03	 -1,583	 CDKN2C	 NM_001262	 1,50E-03	 -1,511
SKA1	 NM_001039535	 4,42E-04	 -1,576	 ARHGAP19	 NM_032900	 1,78E-03	 -1,510
CNTNAP3a	 NM_033655	 2,76E-04	 -1,576	 SLFN11	 NM_001104587	 5,13E-03	 -1,508
RAD51a	 NM_002875	 2,80E-03	 -1,575	 C14orf80	 NM_001134875	 1,09E-03	 -1,506
CDCA8	 NM_018101	 4,13E-04	 -1,573	 NCAPG	 NM_022346	 3,17E-03	 -1,501

The genes containing a potential binding motif for E2F1 or NF-κB are respectively marked by ‘a’ and ‘b’. The score of all marked genes was calculated by Pscan 
to be higher than the average matching score for all the promoters of the genome.

Figure 3. Number of downregulated genes in specific cellular processes 24 h 
after nickel ion irradiation (5 Gy). Almost half of the genes are involved in the 
positive regulation of the cell cycle. The referred processes were determined 
by search on the National Center for Biotechnology Information (NCBI) 
database.
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X-irradiation with the same dose (data not shown). However, 
it is not so surprising since high LET irradiation deposits high 
amounts of energy along well-separated tracks. For nickel ions 
with a LET of 183 keV/µm and at a dose of 2 Gy, we calculated 
an average of 6.8 direct particle hits per nucleus (100 µm2), 
which follows a Poisson distribution. However, we observed 
an average of 15 spots per nucleus. This may be due to the 
secondary radiation from the ion track and the basal level of 
endogenous γ-H2AX foci as observed in the controls.

Considering that the imaging of γ-H2AX foci was performed 
at the same angle as ion tracks produced by the irradiation beam, 
the complexity of the damage along these tracks could not be 
taken into account. However, the DNA damage complexity is 
known to be important in high LET irradiation (23-26). Although 
significantly increased, the γ-H2AX spot occupancy did not 
seem to be able to account for the complexity of DNA damage 
and showed similar results to the spot number measurement. 
This complex DNA damage is associated with slower repair (27) 

and therefore leads to a more pronounced delayed cellular 
damage (26). Our results revealed a significant level of γ-H2AX 
foci 24  h following nickel ion irradiation, as compared to 
controls; this suggests the presence of complex DNA damage.

Effects of high LET irradiation on the cell cycle. Nickel ion 
irradiation at a dose of 0.5 Gy elicited a lower gene expres-
sion response as compared to a dose of 5 Gy, in terms of the 
number of regulated genes and FC. At 24 h post-irradiation 
(5 Gy), we observed an upregulation of 12 genes involved in 
cell cycle arrest and a downregulation of 62 genes involved 
in cell cycle progression, among which were 3 members of 
the E2F transcription factor family (E2F1, E2F2 and E2F8). 
Moreover, the transcription factor binding motifs for E2F1 
were found to be highly enriched in the list of downregulated 
genes. E2F is a family of transcription factors known to control 
G1- to S-phase transition (28), and to regulate the expression 
of a large variety of genes involved in DNA replication, DNA 
repair and apoptosis (29). Among the E2F transcription factors, 
E2F1 is known to be stabilized upon DNA damage through 
its phosphorylation by ataxia telangiectasia-mutated (ATM) 
kinase, ATM and Rad3-related (ATR) kinase and checkpoint 
kinase 2 (CHK2), as well as through its acetylation (29). Our 
results suggest a major role of E2F transcription factors in the 
response of EA.hy926 cells to high LET irradiation.

Six components of the minichromosome maintenance 
(MCM) complex, a heterohexamer helicase essential for the 
initiation and elongation step of DNA replication (30), were 
downregulated. This helicase may be a target for replica-
tion checkpoints (31), and is thought to be regulated mostly 
through post-transcriptional modifications (32). However, our 
results indicate a possible transcriptional regulation of several 
members of the MCM complex. Apart from MCM, many of the 
observed downregulated genes are involved in DNA replication 
and in chromosome formation, maintenance and segregation, 

Table II. List of the downregulated genes involved in cell cycle progression 24 h after 5 Gy of nickel ion irradiation.

DNA	 Replication				     	  	 Chromosome
replication	 forks	 Spindle	 Kinetochore	 Centromeres	 formation/stability

PRIM1	 MCM6a	 HAUS8	 NDC80	 PLK4	 NCAPH
CDC6a	 MCM7a	 KIFC1	 NUF2	 MLF1IP	 DDX11
DSCC1	 MCM2a	 NUSAP1a	 SKA1	 CEP55	 PHF10a

ORC1	 MCM5a	 CDCA8		  CENPHa	 NCAPG2
POLA1a	 MCM3a	 KIF20A		  CEP57L1	 NCAPG
GINS2a	 MCM10a	 SKA1		  CEP78	 CDCA2
CDT1a	 NFKBIL2	 BUB1
	 RFC4	 KIF2C
		  PRC1
		  BUB1B
		  KIF23
		  ESPL1
		  KIF11

The genes containing a potential binding motif for E2F1 or NF-κB are marked by ‘a’. The score of all marked genes was calculated by Pscan to be higher than 
the average matching score for all the promoters of the genome.

Figure 4. Pie chart representing proportions of genes downregulated 24 h after 
5 Gy of nickel ion irradiation and involved in various processes of the cell 
cycle. Twenty-one percent of these genes play a role in DNA replication or 
in the replication forks and 41% play a role in the chromosome assembly and 
segregation (kinetochore, centromeres, spindle and chromosome).
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indicating their key role in cell cycle regulation in response to 
high LET radiation. Of note, we also reported the downregula-
tion of 4 genes involved in post-replication DNA repair (UNG, 
UPF3A, MSH2 and MSH6), which may be silenced in the 
absence of active replication.

During this study, irradiation was performed on prolif-
erating endothelial cells. The results gathered on cell cycle 
gene expression are therefore of moderate interest for mature 
blood vessels where proliferation is limited. However, as far as 
hadron therapy is concerned, our data indicate that high LET 
radiation may have a significant impact on the cellular prolif-
eration of newly formed vascular vessels in the vicinity of the 
targeted tumor.

DNA damage response, oxidative stress and apoptosis. The 
expression of several genes involved in the DNA damage 
response, oxidative stress response and apoptosis was induced 
24 h after 5 Gy of nickel ion irradiation, with a concomitant 
reduction of genes involved in DNA repair. However, these 
effects were not significant at a dose of 0.5 Gy, at either time 
points (8 and 24 h). These results suggest that a high dose of 
nickel ion irradiation induces a global DNA damage response, 
accompanied by cell cycle arrest and an increase in pro-
apoptotic gene expression 24 h after irradiation.

Impact of radiation on genes related to cell adhesion. The 
impermeability of the endothelium is essential for the vascu-
lature integrity and is determined by the cooperation of cell 
junctions and the cytoskeleton (33,34). In turn, adhesion mole-
cules regulate cell homeostasis, growth and apoptosis (33). 
A number of cellular pathways are known to regulate cell 
adhesion in endothelial cells. These include growth factors, 
Rho GTPases, protein kinases and calcium signaling (34,35). 
The alteration of these pathways or of adhesion molecules may 
trigger the radiation-induced retraction observed by others in 
endothelial cells (13,14). Our study identified the differential 
expression of a number of genes known to be involved in cell 
adhesion (CEACAM1 and NEU1), cytoskeleton architecture 
(TUBA4A, LIMA1 and PLS1), Rho signaling (ARHGAP19, 
ARHGAP11B and RACGAP1) and calcium metabolism 
(ORAI3, CAMK2N1 and CALML4) 24 h after 5 Gy of nickel 
ion irradiation, which are potentially involved in endothelial 
cell retraction.

Expression of cytokines and chemokines. Inflammatory 
responses mediated by endothelial cells are believed to be 
involved in radiation-induced cardiovascular disease (7). Our 
study revealed the upregulation of 8 cytokines or chemokines 
that may be linked to inflammation (CXCL5, TGFA, TRIM22, 
TNFSF9, EBI3, IL-6, IL-11 and CD70). Of note, a search 
for transcription factor binding motifs that are significantly 
enriched in the list of upregulated genes upon 5 Gy of irradia-
tion, revealed 2 members of the REL family (RelA and NF-κB). 
This family of transcription factors induces the expression of 
a multitude of genes, such as cytokines, proliferation, pro-
survival and anti-apoptotic genes (36). For instance, we found 
IL-6 to be upregulated after 5 Gy of nickel ion irradiation. 
IL-6 expression was also shown to be upregulated by low-
dose radiation therapy (10). IL-6 is known to be activated by 
NF-κB (36,37) and is thought to play a role in radiation-induced 

cardiovascular disease (1,7). The secretion of cytokines may 
also affect non-irradiated cells by a bystander effect. Indeed, 
in human fibroblasts, the external addition of IL-6 has been 
shown to increase γH2AX spot occupancy (38). The activa-
tion of NF-κB may be linked to the transcription factor, signal 
transducer and activator of transcription 3 (STAT3) (37), of 
which we also found significant binding motif enrichment.

In conclusion, we observed a downregulation of multiple 
genes involved in cell division, particularly at 24 h after nickel 
ion irradiation. Our results suggest an important role for E2F 
transcription factors in this process. The endothelial function 
being based on a plethora of intercellular interactions within a 
dynamic structure involving cell movements and turnover, cell 
cycle arrest may play a role in the radiation-induced cardiovas-
cular disease. On the other hand, we observed an upregulation 
of various cytokines which may be induced by NF-κB. Other 
studies have also suggested that these cytokines may be linked 
to radiation-induced cardiovascular disease (10). The effects 
on gene expression were observed upon high doses of acute 
irradiation and are less relevant to space exploration. However, 
during hadron therapy, healthy tissues surrounding tumors, 
such as endothelial cells, may be subjected to high doses, 
which may lead to complications. In this study, we identified 
a multitude of potential molecular targets for further mecha-
nistic studies out of which the gene expression changes upon 
high doses of nickel ion irradiation may be important for 
patients treated with hadron-therapy.
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