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Abstract. Burns are common accidental injuries. The main 
clinical manifestations of severe burn injury are insulin 
resistance and high metabolism. Insulin resistance results in 
hyperglycemia, which may lead to skeletal muscle wasting and 
suspended wound healing. It also elevates the risk of infection 
and sepsis. Studies have indicated that insulin receptor (IR) 
and insulin receptor substrate 1 (IRS1) are essential factors 
involved in the regulation of blood glucose levels. Moreover, 
the suppression of the IR/IRS1 signaling pathway results in 
insulin resistance. Recent studies have also indicated that 
miRNAs, which are small non-coding RNAs consisting of 
20-23 nucleotides, target the 3'-untranslated region (3'-UTR) 
of IRS1 mRNA and attenuate protein translation. miRNAs 
also play an important role in the development of type  II 
diabetes (T2D) and obesity-induced insulin resistance. In the 
present review, we discuss the involvement of miRNAs in 
burn-induced insulin resistance through the targeting of the 
IR/IRS1 signaling pathway. We also discuss the possibility 
of miRNAs a novel therapeutic target in insulin resistance in 
burn patients.
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1. Introduction

Mature miRNAs are small non-coding RNAs that consist of 
19-23 nucleotides. The first miRNAs were characterized in 
C. elegans in 1993 (1). Subsequently, an increasing number of 
miRNAs were identified in plants and animals. To date, over 
1,000 miRNAs have been identified in humans, which regu-
late approximately 60% of mammalian gene expression (2,3). 
miRNA genes are transcribed as primary miRNAs by RNA 
polymerase  II  (4). Following transcription, the precursor 
miRNA (stem-loop with approximately 80 nucleotides) is 
generated by Drosha (5). Subsequently, the precursor miRNA 
is exported from the nucleus to the cytoplasm and digested 
into a mature miRNA by Dicer, an RNA polymerase  III 
enzyme  (6). The main function of miRNAs is to regulate 
gene expression at the translational level. miRNAs can bind 
to the 3'-untranslated region (3'-UTR) of a target mRNA and 
suppress its translation  (1). Recent studies have indicated 
that miRNAs play an essential role in a variety of diseases, 
including cancer (7), type I (8) and type II diabetes (T2D) (9), 
autoimmunity disease (10), and cardiovascular diseases (11). 
Thus, miRNAs have a potential effect on clinical diagnosis, 
prognosis and therapy.

Burn injury is a complex trauma which is caused by 
factors such as heat, electricity, chemicals and radiation (12). 
Inflammation is one of the host responses to injury, and 
following burn injury, the levels of inflammatory mediators, 
such as tumor necrosis factor α (TNF-α) (13), transformation 
growth factor β (TGF-β) (14), interleukin (IL)-2 and IL-6 (15), 
are markedly increased. Burn injury also leads to cardiovas-
cular damage and enhances vascular permeability, which 
results in the loss of body fluid (16). Clinical studies have 
demonstrated that burn injury may induce insulin resistance 
and affect glucose and fat metabolism (17,18). Insulin resis-
tance contributes to the attenuation of wound healing, which 
enhances the risk of infection (19). As previously demonstrated, 
a topical insulin injection can accelerate wound healing in 
diabetes through the activation of the Akt and Erk signaling 
pathways (20).

Previous studies have indicated that miRNAs play a 
critical role in regulating insulin resistance induced by mito-
chondrial dysfunction or diabetes through the inhibition of 
insulin receptor substrate 1 (IRS1) protein translation (21,22). 
The suppression of the insulin receptor (IR)/IRS1 signaling 
pathway is the key mechanism responsible for burn-induced 
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insulin resistance; therefore, miRNAs may also be implicated 
in burn-induced insulin resistance. The identification of the 
specific miRNAs which are involved in burn-induced insulin 
resistance may lead to the development of novel therapeutic 
targets for clinical therapy.

2. Insulin resistance is a direct consequence of burn injury 

A previous study using a rat model demonstrated that no differ-
ence in insulin secretion was detected between the sham and 
burn groups; however, the sensitivity of insulin was signifi-
cantly suppressed in the burn group (23). Insulin resistance and 
hyperglycemia are crucial risk factors for increased mortality 
in patients with severe burn injuries (24). In another study on 
burned children, it was demonstrated that insulin resistance 
can last up to 3 years (25). Intensive insulin therapy is an effi-
cient manner to control the blood glucose of severely burned 
patients, as it can decrease the risk of infection and sepsis, 
improve hepatic and rental function, and suppress acute inflam-
mation (24).

3. Involvement of the insulin signaling pathway in glucose 
metabolism

Glucose is one of the most important energy sources for the 
human organism. It is usually stored in the liver and muscle 
cells in the form of glycogen (26). After eating, elevated blood 
glucose is converted into glycogen (27). During the conver-
sion, blood glucose is firstly transported into cells by the 
plasma membrane protein glucose transporter (GLUT), and 
its four isoforms, GLUT1, GLUT2, GLUT3 and GLUT4, have 
been well‑characterized (28). GLUT4 is primarily expressed 
in muscle and fat cells. The insulin signaling pathway plays an 
important role in regulating its translocation (Fig. 1). Insulin 
binds to the IR and induces the autophosphorylation of the 
receptor at tyrosine residues (29). Following autophosphory-
lation, the receptor further recruits the IRS and promotes its 
phosphorylation at tyrosine residues  (30). Phosphorylated 
IRS subsequently binds to the regulatory subunit, p85, of the 
phosphoinositide-3 kinase (PI3K) and activates its catalytic 
subunit p110, which is responsible for stimulating the phos-
phoinositide-dependent kinase (PDK) (31). As the upstream 
kinase of Akt, activated PDK promotes the phosphorylation 
of Akt at Thr308 and Ser473 (32), and phosphorylated Akt 
mediates the translocation of GLUT from the cytoplasm 
to the membrane (33) (Fig. 1). Apart from its role in GLUT 
translocation, Akt has also been implicated in regulating 
glycogen synthesis. Glycogen synthase (GS) is a key enzyme 
involved in converting glucose into glycogen, and there are 
two isoforms in mammals, the muscle isoform (34) and the 
liver isoform (35). Both isoforms are inactivated due to phos-
phorylation at the NH2- or COOH-terminal residues mediated 
by glycogen synthesis kinase 3 (GSK3) (36). Insulin dephos-
phorylates and restores the function of GS through Akt- or 
protein kinase A-mediated phoshorylation and the inactivation 
of GSK3 (37,38). In skeletal muscle, insulin enhances glycogen 
synthesis in the absence of GSK3 phosphorylation  (39). 
Glucose-6 phosphate induces glycogen synthesis through the 
activation of GS in a cyclic AMP-stimulated protein kinase-
dependent manner (40).

4. Suppression of the insulin signaling pathway by burn 
injuries

After a burn injury is sustained, the activation of the insulin 
signaling pathway is significantly suppressed, and blood 
glucose levels are markedly increased (41). The results from 
experiments carried out in our, as well as other laboratories 
have indicated that the levels of lipopolysaccharides (LPS), 
TNF-α and interleukins are increased following burn 
injury (13,15). These factors are involved in the regulation of 
the phosphorylation and degradation of IRS1 which, in turn, 
results in insulin resistance (Fig. 2). LPS, the stimulator of 
inducible nitric oxide synthase (iNOS), plays an essential role 
in inducing hyperglycemia and insulin resistance, which can 
be restored by the iNOS inhibitor (42,43). iNOS also enhances 
the ubiquitination and degradation of IRS1 (44). The deficiency 
of iNOS attenuates the burn-induced skeletal muscle insulin 
resistance (45). Glucose uptake is decreased following expo-
sure to TNF-α (46). TNF-α inhibits the autophosphorylation of 
IR and its substrate IRS1 tyrosine phosphorylation (46). It can 
also suppress the function of IRS1 by triggering phosphoryla-
tion at Ser307 which induces the degradation of IRS1 (47-49). 
IL-6 has been shown to induce insulin resistance in HepG2 
cells (50) and 3T3-L1 adipocytes (51), which can promote IRS1 
degradation by upregulating the expression of the suppressor 
of cytokine signaling 3 (SOCS3) (52). IL-1β induces adipocyte 
insulin resistance through the downregulation of IRS1 (53). 
Due to the burn-induced IRS1 degradation, the interaction 
between IRS1 and PI3K is repressed, and insulin stimulates 
PKB/Akt activation, which is impaired after burn injury (54). 
Subsequently, the phosphorylation of GSK3β at Ser9 mediated 
by activated Akt is decreased; the enhanced activity of GSK3β 
has been detected in the skeletal muscle of rats following 
burn injury (55). Thus, the phosphorylation of GS mediated 
by GSK3 is augmented, and the conversion of glucose into 
glycogen is significantly attenuated (Fig. 2). Taken together, 
these data indicate that the TNF-α-, LPS- or IL-induced IRS1 
protein degradation is involved in promoting burn‑induced 
insulin resistance and hyperglycemia.

5. Involvement of miRNAs in the regulation of insulin 
resistance

As small non-coding RNAs, miRNAs play a pivotal role 
in post‑transcriptional regulation. miRNAs can bind to 
and promote the deadenylation and degradation of target 
mRNAs (56,57). Translational repression is another impor-
tant function of miRNAs. It can directly bind to the 3'-UTR 
of target mRNAs and inhibit the translational initiation (58).  
Studies have demonstrated that miRNAs are involved 
in the regulation of multiple insulin resistance-induced 
diseases (Fig. 3). In T2D, miR-144 has been shown to promote 
insulin resistance by directly targeting IRS1 mRNA  (22). 
The suppression of IRS1 mediated by miR-126 has also been 
shown to result in mitochondrial dysfunction and insulin 
resistance (21). The sitmulation of Akt activation by insulin is 
critical for glycometabolism, and the obesity‑induced miR-143 
overexpression has been shown to lead to hyperglycemia by 
inactivating the Akt signaling pathway (59). A study using let-7 
family transgenic mice demonstrated that let-7 overexpression 
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may contribute to the development of T2D (60). Protein tyro-
sine phosphatase 1B (PTP1B) impairs the insulin signaling 

pathway through the dephosphorylation of IR at tyrosine resi-
dues. The 3'-UTR of PTP1B mRNA is the target of miR-122, 

Figure 1. Schematic diagram of the inolvement of hte insulin signaling pathway in the regulation of glucose transport and glycogen synthesis. Insulin binds to its 
transmembrane receptor, insulin receptor (IR), and promotes its autophosphorylation at tyrosine residues (p-IR). Activated p-IR recruits IR substrate (IRS) and 
enhances its activation by mediating its phosphorylation (p-IRS). p-IRS subsequently binds to p85, the regulatory subunit of phosphoinositide-3 kinase (PI3K), 
and elevates the activation of its catalytic subunit p110, which subsequently activates phosphoinositide-dependent kinase (PDK). As the upstream kinase of 
Akt, PDK promotes the phosphorylation of Akt (p-Akt) at Thr308 and Ser473. Activated Akt regulates glucose metabolism in two pathways. One is promoting 
glucose transporter GLUT translocation from the cytoplasm to the membrane, which mediates glucose uptake; another one is repressing the function of glycogen 
synthesis kinase 3 (GSK3) by enhancing its phosphorylation at Ser9, and then enhancing the activation of GS and promoting glycogen synthesis.

Figure 2. Schematic diagram of burn-induced insulin resistance through the suppression of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway medi-
ated by insulin receptor substrate 1 (IRS1) degradation. After burn injury, the blood concentration of tumor necrosis factor  (TNF)-α, interleukin (IL) and 
lipopolysacchride (LPS) is significantly increased. TNF-α binds to its receptor and induces inducible nitric oxide synthase (iNOS) production. ILs, IL-6 in 
particular, bind to corresponding receptors and promote the expression of suppressor of cytokine signaling-3 (SOCS3). LPS binds to CD14 with the help of 
the LPS binding protein (LBP) and activates the intracellular signaling pathway. All the cytokines induce IRS1 protein degradation, which suppresses the 
PI3K/Akt signaling pathway, and subsequently suppresses glucose transporter (GLUT) translocation and glycogen synthesis, which results in burn‑induced 
insulin resistance and hyperglycemia.
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and decreased miR-122 expression has been shown to result 
in hepatic insulin resistance (61). In mouse models of obesity, 
miR-103/107 is upregulated. The blockage of miR-103/107 
has been shown to promote insulin sensitivity by elevating 
caveolin-1-mediated IR activation  (62). Phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN), the direct 
target of miR-21 (63), is the key phosphotase of Akt which 
can negatively regulate the Akt signaling pathway. In insulin-
resistant adipocytes, the suppressed expression of miR-21 and 
impaired Akt signaling pathway has been observed (64). The 
transport of glucose is also regulated by miRNAs, and the 
transmembrane protein GLUTs play an essential role in glucose 
transport. Elevated miR-133 levels have been shown to reduce 
the insulin-stimulated glucose uptake by downregulating 
GLUT4 expression (65). In cardiomyocytes, miR-223 has been 
shown to promote GLUT4 expression and increase glucose 
uptake (66). Insulin resistance is the intrinsic complication of 
polycystic ovary syndrome (PCOS), and overexpressed miR-93 
in patients with PCOS binds to the 3'-UTR of GLUT4 mRNA 
and reduces its protein translation (67). Microarray analysis 
has further indicated that the expression of several miRNAs is 
altered following burn injury. In comparison with normal skin 
tissue, a total of 32 upregluated and 34 downregulated miRNAs 
were identified in the skin tissue of patients who sustained 
burn injuries (68). The expression levels of miR-144 in the 
skin tissue of the burned patients, which can directly target the 
3'-UTR of IRS1 mRNA (22), were 16-fold higher than those 
in normal skin tissue (68). This suggests that miRNAs, such 
as miR-144, play an essential role in promoting burn-induced 
insulin resistance by suppressing the activation of the IR/IRS 
signaling pathway.

6. Potential role of miRNAs in clinical therapy

Although miRNAs were only discovered 20 years ago, their 
molecular mechanisms of action involving the repression 
of target gene expression have been elucidated. Moreover, 
evidence indicates that miRNAs are associated with the devel-
opment of a number of human diseases. The process from the 
time of discovery of an miRNA to the development of clinical 
therapeutic drug targets is rapidly approaching. miR-34a has 
been shown to suppress the development of prostate and lung 
cancer (69,70), and the use of a miR-34a mimic is currently in 
the developmental stage for cancer therapy (www. iptonline.
com, The Therapeutic Potential of microRNAs). Another 
miRNA, miR-208, which is involved in promoting chronic 
heart failure (71), is also undergoing investigation in preclinical 
trials (www. iptonline.com, The Therapeutic Potential of 
microRNAs). Its antagonist is expected to be used in the therapy 
of heart disease. miR-122 has been shown to be associated with 
hepatitis C virus infection (72), and its antagonist, miravirsen, 
has undergone phase II clinical trials for the therapy of patients 
with hepatitis C virus (73). Miravirsen may be the first miRNA-
related drug for clinical therapy. Taken together, the mimics 
or antagonists of miRNAs are expected to be widely used in 
clinical therapy.

7. Conclusions

In the response to burn injury, the expression of several miRNAs, 
including insulin resistance-associated miRNAs, is altered. 
This change may play a pivotal role in mediating burn-induced 
insulin resistance, which results in hyperglycemia and reduces 

Figure 3. The miRNAs involved in regulating the insulin signaling pathway and glucose metabolism. miRNAs play an important role in the regulation of insulin 
signaling. Protein tyrosine phosphatase 1B (PTP1B) is the phosphatase of the insulin receptor (IR), and miR-122 inhibits the production of PTP1B and promotes 
the activation of the insulin signaling pathway. miR-103/107 also elevates the caveolin-mediated IR activation and enhances insulin sensitivity. miR‑126 and 
miR-144 directly bind to the 3'-untranslated region (3'-UTR) of insulin receptor substrate 1 (IRS1) mRNA and suppress its translation, which abrogates the 
connection with phosphoinositide-3 kinase (PI-3K) and induces insulin resistance. In obesity-induced insulin resistance, upregulated miR-143 impairs the 
insulin-induced Akt activation. In adipocytes, The repressed expression of miR-21, which directly targets the phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN), the key phosphotase of Akt, results in Akt inactivation and impairs insulin-mediated glucose metabolism.
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wound healing. Further research focusing on the involvement 
of miRNAs in the regulation of burn-induced insulin resistance 
may lead to the development of novel therapeutic targets for the 
treatment of burn injuries.
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