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Abstract. The aim of this study was to provide functional 
insight into the identification of hub subnetworks by aggre-
gating the behavior of genes connected in a protein-protein 
interaction (PPI) network. We applied a protein network-based 
approach to identify subnetworks which may provide new 
insight into the functions of pathways involved in breast cancer 
rather than individual genes. Five groups of breast cancer data 
were downloaded and analyzed from the Gene Expression 
Omnibus (GEO) database of high-throughput gene expression 
data to identify gene signatures using the genome-wide global 
significance (GWGS) method. A PPI network was constructed 
using Cytoscape and clusters that focused on highly connected 
nodes were obtained using the molecular complex detec-
tion (MCODE) clustering algorithm. Pathway analysis was 
performed to assess the functional relevance of selected gene 
signatures based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. Topological centrality was used 
to characterize the biological importance of gene signatures, 
pathways and clusters. The results revealed that, cluster1, 
as well as the cell cycle and oocyte meiosis pathways were 
significant subnetworks in the analysis of degree and other 
centralities, in which hub nodes mostly distributed. The most 
important hub nodes, with top ranked centrality, were also 
similar with the common genes from the above three subnet-
work intersections, which was viewed as a hub subnetwork 
with more reproducible than individual critical genes selected 
without network information. This hub subnetwork attributed 
to the same biological process which was essential in the func-
tion of cell growth and death. This increased the accuracy of 

identifying gene interactions that took place within the same 
functional process and was potentially useful for the develop-
ment of biomarkers and networks for breast cancer. 

Introduction

The occurrence of cancer generally results from the accumula-
tion of inherited and somatic mutations in oncogenes and tumor 
suppressor genes. Breast cancer is characterized by a distinct 
metastatic pattern involving regional lymph nodes, the bone 
marrow, lungs and liver (1). It is thought that the incidence of 
breast cancer is the result of the abnormal expression of many 
genes (2), including cancer markers, identified after scoring the 
expression pattern of each gene. Although there has been exten-
sive research on the gene markers of breast cancer, the results 
have not been uniform and share only a small number of genes 
in common (3,4). Some genes associated with breast cancer 
mutations are also typically not detected through the analysis 
of differential expression, even though they are essential in 
the network by interconnecting many differentially expressed 
genes. The importance of these genes will thus not be disclosed 
in the detection of individual marker genes. 

Based on the shortcoming, a more effective means has 
adopted by combining gene expression measurements over 
groups of genes that fall within common pathways. This involves 
the identification of cancer markers by scoring known pathways 
and evaluating the coherency of changes in gene expression (5). 
However, the problem that remains is that a large number of 
human genes have not yet been assigned to a definitive pathway 
based on pathway analysis. Network-based approaches offer an 
effective means to at least partially solve this issue by providing 
potential cancer diagnostic molecular markers and connecting 
them.

With the development of bioinformatics analysis, network-
based approaches have become more powerful and informative 
for the study of disease mechanisms (6). A number of researchers 
have suggested the detection of disease-related networks, for 
instance, the co-expression network (7), protein-protein inter-
action (PPI) network (8), protein phosphorylation networks (9) 
and the DNA methylation network (10). The study of these 
networks, particularly the study of the PPI network provides 
valuable information on biological systems. PPI networks 
are prevalent in cancer research and nonetheless studies have 
revealed interesting topological properties of PPI networks (11) 
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with respect to gene essentiality. Studies (12,13) have identified 
subnetworks of higher accuracy as cancer markers based on 
the coherent expression patterns of the genes associated with 
a PPI network. Functional pathways or clusters may be viewed 
with the required subnetworks which integrate the most highly 
connected proteins/genes through their interactions. 

In this study, we constructed a PPI network by linking causal 
breast cancer genes with the selected gene signatures using the 
genome-wide global significance (GWGS) method. Pathways 
and clusters were selected with enriched gene signatures 
using Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis and the molecular complex 
detection (MCODE) clustering algorithm, respectively. Four 
types of centralities of gene signatures, pathways and clusters 
were analyzed to obtain the hub nodes and three significant 
subnetworks. The hub subnetwork was formed by connecting 
the common hub genes with the intersection of the above three 
significant subnetworks. Thus, taking into consideration the 
genes that participated in a subnetwork whose overall activity 
was discriminative, this would implicate genes with a low 
discriminative potential (i.e., those that were not significantly 
differentially expressed) to increase the accuracy of identifying 
genetic alterations and predicting the likelihood of cancer func-
tions with a network-based method.

Materials and methods

Subject samples. Microarray expression profile breast cancer 
biological data (E-GEOD-29431), (E-GEOD-3744) (4), (E- 
GEOD-42568) (14), (E-GEOD-50567) (3) and (E-GEOD-7904) 
were downloaded from different experimental origins using the 
Gene Expression Omnibus (GEO) database. A total of 281 breast 
cancer samples and 69 normal samples were included. Following 
the analysis of these data by RAM, quantiles, median polish 
summarization methods and unqualified chips were eliminated 
leaving only qualified data into the next step through quality 
control. The gene expression values of all data were transformed 
to a comparable level, a digital expression profile for further 
analysis. 

Detection of gene signatures. The gene signatures were 
screened using a novel model: genome-wide relative signifi-
cance (GWRS) and GWGS with some modifications (15). 
The value of GWGS was applied to integrate and analyze the 
independent microarray studies. A gene with a large GWGS 
value was considered to be globally significant across multiple 
independent studies. GWGS was used to identify the gene 
signatures in breast cancer with some modifications. Briefly, 
gene signatures were identified by two steps: first, the GWRS 
of i-th gene in the j-th dataset was measured using the following 
formula:

The number of datasets was denoted by n, the number of 
unique genes across n datasets was denoted by m; rij (i = 1-m, 
j = 1-n) was the rank number of the i-th gene in the j-th study. 
When a gene was mapped to multiple probe-sets, the maximum 
value was given to indicate the expression of the probe-set. 
Genefilter package (Bioconductor) was used to select genes 

before GWRS. The gene was removed if it was absent in one 
dataset. The degree of the differential expression of genes was 
measured by fold change. We assigned a rank number for each 
gene according to their differential expression. 

Second, the GWGS value of the genes were measured 
using the following formula:

where ωj represented the relative weight of the j-th dataset. The 
value of weight can be assigned based on the data quality of the 
j-th datasets, the value of ωj can also be used to reflect the differen-
tial importance of biopsy versus cell line samples that biological 
scientists may wish to take into account. We assigned equal 
weight to each data. The P-values for all genes were recorded 
after being analyzed using the Linear Models for Microarray 
Data (Limma) 3.20.8 package, as previously described (16). The 
highest P-value was obtained by the maximum P-value (maxP) 
model which took the maximum P-value as the test statistic (17) 
with the intersection of the microarray datasets. The genes with 
|log2FC| >2 and P<0.01 were selected for further research.

Construction and analysis of PPI network. The protein inter-
action data were selected from the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) 9.1 database and 
a network was constructed by linking causal disease genes 
with the selected gene signatures using Cytoscape 3.1.0, a free 
software package for visualizing, modeling and analyzing the 
integration of biomolecular interaction networks with high-
throughput expression data and other molecular states (18).

Subsequently, we investigated the substructure of the 
biggest protein interaction network extracted from the above 
constructed network and focused on highly connected nodes 
known as clusters using the MCODE (19) clustering algorithm, 
including vertex weighting, complex prediction and optional 
post-processing. The core-clustering coefficient was proposed 
as a metric to sort the vertices in a graph with respect to their 
local neighborhood density. k-core was defined as a graph G of 
minimal degree k, where for all v in G, deg(v)>= k. At the stage 
of vertex weighting, all vertices based on their local network 
density were weighted using the highest k-core of the imme-
diate neighborhood. At the stage of complex prediction, the 
vertex weighted graph was first taken as input and a complex 
with the highest weighted vertex was seeded, then recursively 
moved outward from the seed vertex. This included vertices 
in the complex whose weight is above a given threshold. The 
threshold is a given percentage away from the weight of the 
seed vertex. As a post-processing step, clusters are enhanced 
with additional neighborhood vertices that are members of 
other clusters, resulting in overlapping clusters. The software of 
the MCODE algorithm was obtained from http://baderlab.org/
Software/MCODE. The highly interacting nodes in the clusters 
were identified by parameters keeping K-core = 4, node score 
cut-off = 0.3 and max depth up to 100.

Centralities based analysis of complex networks. Studies have 
demonstrated the presence of strong correlations between the 
PPI network structure and the functional role of its protein/gene 
constituents (20,21). In order to understand the functionality 
of complex systems of gene signatures, we constructed the 
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protein-protein network for gene signatures and characterized 
the biological importance of genes over indices of topological 
centrality using Cytoscape 3.1.0. We analyzed centralities 
related to the local (degree) scale and the global (stress centrality, 
betweenness centrality and closeness centrality) scale which 
were used to describe the importance of nodes. 

Degree quantifies the local topology of each gene, by 
summing up the number of its adjacent genes (22). It gives a 
simple count of the number of interactions of a given node.

Stress centrality is considered the number of nodes in the 
shortest path between two other nodes; the stress is a node 
centrality index. Stress is calculated by measuring the number 
of shortest paths passing through a node. The ‘stress’ [Cstr (v)] 
of a node v is calculated as follows:

To calculate the Cstr (v) of a node v, all shortest paths in a graph G 
are calculated and then the number of shortest paths passing 
through v is counted. A ‘stressed’ node is a node traversed by a 
high number of shortest paths.

Betweenness centrality (23) is another topological metric in 
graphs for determining how the neighbors of a node are inter-
connected. It is considered the ratio of the node in the shortest 
path between two other nodes. The betweenness centrality of a 
node v is given by the expression:

Betweenness centrality of a node scales with the number of 
pairs of nodes as implied by the summation indices. Therefore, 
the calculation may be rescaled by dividing the number of 
pairs of nodes not including v, so that CB(v) ∈ [0,1]. σst is the 
total number of shortest paths from node s to node t and σst (v) 
is the number of those paths that pass through v in formula 1 
and 2.

Closeness centrality is a measure of the average length 
of the shortest paths to access all other proteins in the 
network (22). The larger the value, the more central is the 
protein. The closeness centrality, Cc(v) was calculated for 
each functional category, taking into consideration all the 
shortest paths for each node. Cc(v) of node n is defined as the 
reciprocal of the average shortest path length and is computed 
as follows:

where dG (s, t) represents the length of the shortest path between 
two nodes s and t in graph G, which is the sum of the weights of 
all edges on this shortest path. dG (s, s) = 0, dG (s, t) = dG (t, s) in 
the undirected graph.

KEGG pathway enrichment analysis. To further investigate the 
signaling pathway of the selected gene signatures, we performed 
a pathway analysis to assess the functional relevance of selected 
gene signatures based on the KEGG database, a knowledge base 
for the systematic analysis of gene functions, linking genomic 
information with higher order functional information (24). It is 
a widely used comprehensive inference for pathway mapping 
of genes. The analysis of gene signatures was performed using 

the online tool, DAVID Bioinformatics Resources 6.7 (25). The 
EASE score was used to evaluate the significant categories. 
KEGG pathways with P-values <0.05 and 0.01 were considered 
to indicate statistical significance in a category.

Statistical analysis. To compare the degree, stress centrality, 
betweenness centrality and closeness centrality among each 
cluster and each significant pathway, one-way analysis of 
variance (ANOVA) was employed for multiple pair-wise 
comparisons. A P-value was estimated for each compared pair 
(P<0.05, P<0.01, P<0.0001) and a P-value <0.05 was consid-
ered to indicate a statistically significant difference. Statistical 
analysis was performed using SPSS 17.0 software (SPSS Inc., 
Chicago, IL, USA).

Results

Screening of gene signatures. Five microarray datasets from 
different origins were integrated in the analysis to identify 
robust gene biomarker signatures for breast cancer using the 
GWGS model. A rank number for each gene according to their 
degree of differential expression (fold change) was obtained. 
A total of 20,109 genes (i.e., across all five microarray dataset 
intersections) were identified and the GWGS values of these 
genes were measured using GWGS (Sr

j) as defined above. A 
gene with a large Sr

j value is considered to be significant across 
multiple independent studies (i.e., globally significant). The 
log2FC average of common genes and highest P-values with 
maxP model were obtained from five datasets. The 487 genes 
were selected with |log2FC| >2 and P<0.01 as the starting point 
for our new proposed gene signatures, including 364 upregu-
lated genes and 123 downregulated genes. The top 50 ranked 
gene signatures are listed in Table I and their degrees of differ-
ential expression are presented in Fig. 1, which were uniform for 
each gene among the five data sets using the GWGS method. 
The gene signatures corresponding to the top five GWGS value 
were as follows: collagen, type XI, alpha 1 (COL11A1; S=14.06), 
neurotrophic tyrosine kinase, receptor, type 2 (NTRK2; 
S=13.98), ATP-binding cassette, sub-family A (ABC1), 
member 8 (ABCA8; S=13.65), chromosome 2 open reading 
frame 40 (C2orf40; S=13.58), retinol binding protein 4 (RBP4; 
S=13.42). The 487 genes were selected for further research.

PPI network construction and subnet analysis. According 
to the PPI dataset downloaded from STRING, the resulting 
breast cancer-related PPI network was composed of 442 gene 
signatures and 2,853 interactions. The network was binary and 
all interactions were unweighted and undirected. The giant 
component which included the majority of the entire network 
genes containing 366 nodes and 2,760 edges was constructed 
(Fig. 2) based on our analysis. The size of each node represented 
the degree index. The degree of its nodes indicated the number 
of interactions to a single node with all the other nodes. The 
MCODE clustering algorithm was used to identify the clusters 
in the PPI network. Using the MCODE plugin, the results 
revealed that four clusters (highly interconnected regions) 
(Fig. 3) in the networks were obtained with parameters set as 
follows: degree cut-off = 0.3, K-core = 4, max depth = 100. A 
cluster is a complete n-node sub-graph, which means that within 
a sub-graph, each pair of nodes is connected by an edge. The 

         [3]

         [1]

         [2]
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Figure 1. Column chart of expression changes of the top 50 ranked gene signatures in the five breast cancer data sets. Each single colored bar represents the fold 
change of a gene signature in a specific breast cancer data set. Bars plotted above the x-axis denote upregulation, while those plotted below the x-axis denote 
downregulation. The gene signatures are ordered depending on their genome-wide global significance (GWGS) values.

Table I. The 487 gene signatures identified using the genome-wide global significance (GWRS) method and the values of the top 50 
genes.

Gene GWGS Gene GWGS Gene GWGS Gene GWGS

COL11A1 14.06 CXCL2 11.71 PRC1 10.74 TIMP4 10.14
NTRK2 13.99 CHRDL1 11.55 ANLN 10.73 LMOD1 10.14
ABCA8 13.65 FABP4 11.45 HOXA5 10.64 MAOA 10.10
C2orf40 13.58 SDPR 11.37 CDO1 10.60 EBF1 10.08
RBP4 13.42 NUSAP1 11.32 GHR 10.56 GINS1   9.96
OGN 13.13 PLIN4 11.22 INHBA 10.52 DTL   9.91
ADH1B 13.11 LPL 11.22 ADAMTS5 10.50 LEPR   9.90
SCARA5 12.45 ZBTB16 11.13 LYVE1 10.46 CEP55   9.85
CD36 12.19 MAMDC2 11.03 IGF1 10.43 CDK1   9.74
FOSB 11.99 PDK4 10.97 GPC3 10.33 SORBS1   9.74
MME 11.91 GPD1 10.93 SEMA3G 10.33 TF   9.70
RRM2 11.87 COL10A1 10.93 DARC 10.17 LIFR   9.69
TOP2A 11.79 S100P 10.80



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  35:  664-674,  2015668

nodes of cluster1, cluster2, cluster3 and cluster4 were 1,437, 61, 
14 and 23, respectively (Table II). 

Centralities of the networks. This was used to indicate the 
relevance of a gene as functionally capable to hold together the 
communicating nodes in a biological network. The higher the 
value, the higher the relevance of the gene in connecting regu-
latory molecules. We computed four centralities for each gene 
in the PPI network. By assessing centrality at the local and 
global level of degree, stress centrality, betweenness centrality 
and closeness centrality, a total of 366 genes centralities were 
obtained and the information corresponding to the centrali-
ties of the top five ranked genes was represented, as listed in 
Table III. The results revealed that cyclin-dependent kinase 1 
(CDK1) was the top one ranked gene; however, the results of 
various centralities based analyses of the same gene were not 
consistent. However, centralities based analysis of baculo-
viral inhibitor of apoptosis repeat-containing 5 (BIRC5) and 
epidermal growth factor receptor (EGFR) focused on ranking 
the top two and three. The results also revealed that the top 
genes as hub nodes were mostly distributed in cluster1, for 

Figure 2. Interactome of the 366 genes showing 366 nodes and 2,760 edges in the protein-protein interaction map encompassing four clusters in breast cancer. 
Genes were denoted as nodes in the graph and interactions between them were presented as edges. Green color indicates downregulated genes, red color 
indicates upregulated genes; the node size represents the degree value.

Table II. The clusters generated by the molecular complex detec-
tion (MCODE) clustering algorithm at K-core = 4, node score 
cutoff = 0.3 and max depth up to 100 along with interacting 
gene partners.

Cluster name Score Nodes Edges

 1 52.255 56 1,437
 2 4.88 26      61
 3   4.667   7      14
 4   3.538 14      23



ZHUANG et al:  IDENTIFICATION OF HUB SUBNETWORK IN BREAST CANCER 669

instance CDK1, BIRC5, protein regulator of cytokinesis 1 
(PRC1), topoisomerase II alpha (TOP2A), cyclin B1 (CCNB1), 

cyclin-dependent kinases regulatory subunit 2 (CKS2) and 
cyclin A2 (CCNA2), while EGFR was in cluster4. The overall 

Figure 3. Best four interconnected clusters among the 366 genes and their interactions with neighboring genes. Green color indicates downregulated genes, while 
red color indicates upregulated genes; the node size represents the genome-wide global significance (GWGS) value. (A-D) cluster1, cluster2, cluster3 and cluster4, 
respectively.

Table III. Centralities based analysis and the values of the top five ranked genes.

No. Terms Value Terms Value Terms Value Terms Value

 Degree Stress Betweennes centrality Closeness centrality
 ---------------------------------- ------------------------------------ ------------------------------------------------ ----------------------------------------------
 1 CDK1 81 CDK1 55156 CDK1 0.0559 CDK1 0.4416
 2 BIRC5 80 BIRC5 42696 EGFR 0.0529 BIRC5 0.4333
 3 CCNA2 79 EGFR 41584 BIRC5 0.0440 CCNA2 0.4248
 4 TOP2A 74 FOS 40114 FOXO1 0.0424 CCNB1 0.4218
 5 PRC1 73 CKS2 38250 FOS 0.0406 KIAA0101 0.4218
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centralities of the four subnetwork clusters were analyzed. 
As regards node degree distribution, cluster1 had the highest 
degree with 61.68 and it had significant differences with 
cluster2 (P<0.0001), cluster3 (P<0.05) and cluster4 (P<0.0001), 
as shown by one-way ANOVA. There were no significant 
differences between groups apart from the complement 
and coagulation cascades pathway in the other three global 
centralities based analyses (Fig. 4).

KEGG pathway enrichment analysis. We conducted the 
enrichment analysis for the 487 genes in which 25 genes were 
not mapped in the KEGG database. A total of 118 pathways 
were selected after being analyzed using the EASE method. 
The results revealed that 462 genes were significantly (P<0.05) 
enriched in 11 pathways (Table IV). The two most significant 
terms were cell cycle (P=1.88x10-5) and the oocyte meiosis 
(P=2.12x10-5) pathway which were related to cell growth and 
death, which included 15 and 14 genes, respectively. In addi-
tion, six pathways with a significance level of P<0.01 were 
established as subnetworks, which were the cell cycle, oocyte 

meiosis, ECM-receptor interaction, progesterone-mediated 
oocyte maturation, complement and coagulation cascades 
and focal adhesion (Fig. 5). The centralities of these pathways 
were analyzed (Fig. 4) by aggregating the centralities of all 
genes enriched in one pathway (or a functional subnetwork); 
the degree of cell cycle containing 14 genes was found to be 
significant with ECM-receptor interaction (P<0.05), comple-
ment and coagulation cascades (P<0.01) and focal adhesion 
(P<0.01). Although there was no significance in the comparison 
between stress centrality, betweenness centrality and closeness 
centrality of these six pathways, it was easy to observe that the 
values of these centralities of the cell cycle were higher, which 
may be viewed as a putative marker for participating in breast 
cancer with functional insight. Besides, we found that CDK1, 
CCNB1, extra spindle pole bodies homolog 1 (S. cerevisiae) 
(ESPL1), CCNB2, CDC20 and BUB1 were commom genes in 
significant cluster1, cell cycle and oocyte meiosis (Fig. 6). The 
cell cycle and oocyte meiosis pathway, with common function, 
were contacted effectively by cluster1 using the PPI network 
and were presented visually in the form of a diagram.

Figure 4. Integrated centralities based analysis of clusters and pathways. (A-D) Comparisons of degree, stress centrality, betweenness centrality and closeness 
centrality among the four clusters and six significant pathways, respectively. Pathway1 to pathway6: cell cycle, oocyte meiosis, ECM-receptor interaction, 
progesterone-mediated oocyte maturation, complement and coagulation cascades and focal adhesion, respectively. There were significant differences between 
cluster1 and cluster2, cluster3 of degree analysis (P<0.0001). Degree of cell cycle was significant with ECM-receptor interaction (P<0.05), complement and 
coagulation cascades (P<0.01), and focal adhesion (P<0.01). All four values of complement and coagulation cascades pathway were the lowest. There were no 
significant differences among the other groups apart from pathway5. The significant level was analyzed by one-way ANOVA. *P<0.05, **P<0.01 and ***P<0.0001.
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Figure 5. Six subnetworks constructed of significant (P<0.01) KEGG enrichment pathways of breast cancer. Nodes and links represent human genes and gene 
interactions, respectively. (A) Cell cycle; (B) Oocyte meiosis; (C) ECM-receptor interaction; (D) Progesterone-mediated oocyte maturation; (E) Focal adhesion; 
(F) Complement and coagulation cascades. 

Table IV. Eleven significant (P<0.05) KEGG pathways.

Term Count P-value Genes

Cell cycle 15 1.88E-05 CDC7, CDK1, DBF4, TTK, CDC20, ESPL1, PTTG1, CCNB1, CDKN1C, 
   CCNE2, CCNB2, MAD2L1, BUB1, BUB1B, CCNA2
Oocyte meiosis 14 2.12E-05 ADCY4, CDK1, ADCY6, IGF1, AURKA, CDC20, ESPL1, IGF2, PTTG1, 
   CCNB1, CCNE2, CCNB2, MAD2L1, BUB1
ECM-receptor interaction 11 1.85E-04 LAMA2, VWF, LAMA4, SDC1, CD36, COL6A6, ITGA7, TNN, RELN, 
   COL11A1, HMMR
Progesterone-mediated 11 2.25E-04 CCNB1, CDK1, ADCY4, MAD2L1, CCNB2, MAPK13, ADCY6, BUB1,
oocyte maturation   IGF1, IGF2, CCNA2
Complement and   8 0.004395 VWF, C7, THBD, F3, CFH, TFPI, CFD, PROS1
coagulation cascades
Focal adhesion 14 0.007100 EGFR, CAV2, CAV1, IGF1, LAMA2, VWF, LAMA4, COL6A6, ITGA7, 
   RELN, TNN, PDGFD, COL11A1, PARVA
Aldosterone-regulated   5 0.033673 NR3C2, IGF1, IGF2, NEDD4L, ATP1A2
sodium reabsorption
Pathways in cancer 17 0.036557 EGFR, PTGS2, EPAS1, TGFBR2, RUNX1T1, FOXO1, IGF1, BIRC5, 
   ZBTB16, MECOM, STAT1, CCNE2, LAMA2, FOS, LAMA4, FGF1, FGF2
Prostate cancer   7 0.050592 EGFR, CCNE2, IGF1, FOXO1, CREB5, IGF2, PDGFD
p53 signaling pathway   6 0.052858 CCNE2, CCNB1, CDK1, CCNB2, RRM2, IGF1
Ether lipid metabolism   4 0.086840 ENPP2, PAFAH1B3, PPAP2A, PPAP2B
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Discussion

In this study, we aimed to identify a hub subnetwork with 
functional insight associated with cell growth and death using 
a protein-network-based approach. A total of 487 gene signa-
tures were selected using the GWGS method from five sets of 
breast cancer data and the changes in gene expression were 
measured clearly both with fold change criterion and GWGS 
values. With 422 gene signatures mapped from the STRING 
database, a giant component PPI network was constructed with 
366 nodes. After applying the MCODE clustering algorithm 
and KEGG pathway enrichment analysis, four clusters with 
highly connected nodes and six significant (P<0.01) pathways 
were obtained, respectively. The degrees and three types of 
centralities related to the global scale were analyzed for all the 

detected genes and the significant complex (i.e., four clusters 
and six pathways). The top five ranked genes as hub nodes 
and one cluster (cluster1), two pathways (cell cycle and oocyte 
meiosis) as significant groups with high degrees and centralities 
were identified. We found that almost all hub nodes existed in 
significant cluster1 which connected the cell cycle and oocyte 
meiosis pathways effectively. It was found that CDK1, CCNB1, 
ESPL1, CCNB2, CDC20 and BUB1, some of the top ranked 
genes, composed a small sized hub subnetwork attributing to 
the biological processes of cell growth and death. 

The capabilities of bioinformatics tools for the detection of 
differential gene expression, network analysis, gene ontology 
and gene-disease relationships (26,27) together with all available 
data on protein/gene expression during breast cancer provide an 
interesting and valuable opportunity for the study of diseases. 

Figure 6. Graphical representation of the hub subnetwork composed with the significant cluster and pathways intersection. The red circle represents cell cycle, 
the blue circle represents oocyte meiosis, and the green circle represents cluster1. Common genes could be observed clearly between any two groups. CDK1, 
CCNB1, ESPL1, CCNB2, CDC20 and BUB1 as common genes among these three groups composed the hub subnetwork which was essential in the function of 
cell growth and death biological process.
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At present, many gene signatures have been identified based 
on fold change criterion to assess differential expression (28). 
In our study, the degree of change in gene expression was also 
clearly shown using the GWGS method. However, although 
there have been numerous studies on gene signatures of breast 
cancer, the results have not been uniform (3,4). For example, 
Berlingieri et al (29) found that UbcH10 was overexpressed 
in a variety of tumor tissues in breast cancer, lung cancer and 
colon cancer, and that its high expression was closely related to 
tumor occurrence, development metastasis and the degree of 
malignancy. Rutnam et al (30) demonstrated that FN1 or cell 
adhesion changes was a key step in malignant transformation, 
and that it may prevent malignant or confine cancerous lesions 
to the epithelium by regulating FN1. Thus, it is still prudent 
further detect essential genes after identifying gene signatures. 
Besides, it may not work effectively in different datasets even 
though the gene signatures were the same in some studies (31). 
However, the results of fold change were uniform (i.e., either 
all were upregulated, or downregulated) from the five breast 
cancer data of the identified gene signatures by combining the 
GWGS and maxP methods in our research.

Networks as a powerful tool have attracted a great deal of 
attention in the analysis of many biological and communication 
systems. Protein interaction network analysis provides an effec-
tive method for estimating and understanding the likelihood 
of the existing yet unknown connections between proteins/
genes (32). It can provide significant instructions for mining 
unknown connections in incomplete networks. However, in PPI 
networks, although the data of large-scale protein interaction are 
accumulated with the development of high throughput testing 
technology, a certain number of interactions are not tested, 
which may be very important. This issue has been resolved to 
some extent using clustering methods which have previously 
been shown to be useful in identifying protein/gene interactions 
that take place within the same cellular process (33). In this 
study, we applied the MCODE clustering algorithm to explore 
gene-gene connectivity in a more informative manner and 
obtained four clusters with highly connected nodes. 

In many PPI networks, essentiality is correlated with the 
topological placement of the proteins/genes in the network, 
and while connectivity provides an indication of the impor-
tance of a gene, it is possible to further classify the topological 
role of highly connected genes based on their locality. That 
is, hubs that are highly connected in a PPI network tend to 
correspond to essential genes (34). In this study, topological 
analysis of all detected genes and the significant clusters and 
pathways was carried out through stress centrality, closeness 
centrality, betweenness centrality and node degree distribu-
tion. The top five ranked genes were identified. Moreover, we 
identified the topologically related pathways and processes. 
These pathways were unlikely to be compared using tradi-
tional term-based analysis. In our results, cluster1, the cell 
cycle and oocyte meiosis pathways with high centralities were 
considered significant compared with the other groups. The 
hub subnetwork composed of these three significant groups 
and intersecting genes was presented visually and was shown 
to participate in cell growth and death processes. Our data 
provide functional insight into the identification of hub subnet-
works which may play a vital role in the progression of breast 
cancer. 
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