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Abstract. Acetaminophen (APAP) is a widely used analgesic 
and antipyretic drug. Generally, the therapeutic dose of APAP 
is clinically safe, however, high doses of APAP can cause 
acute liver and kidney injury. Therefore, the majority of 
previous studies have focussed on elucidating the mechanisms 
of APAP‑induced hepatotoxicity and nephrotoxicity, in addi-
tion to examining ways to treat these conditions in clinical 
cases. However, few studies have reported APAP‑induced 
intoxication in human stem cells. Stem cells are important 
in cell proliferation, differentiation and repair during human 
development, particularly during fetal and child development. 
At present, whether APAP causes cytotoxic effects in human 
stem cells remains to be elucidated, therefore, the present 
study aimed to investigate the cellular effects of APAP treat-
ment in human stem cells. The results of the present study 
revealed that high‑dose APAP induced more marked cytotoxic 
effects in human mesenchymal stem cells (hMSCs) than in 
renal tubular cells. In addition, increased levels of hydrogen 
peroxide (H2O2), phosphorylation of c‑Jun N‑terminal kinase 
and p38, and activation of caspase‑9/‑3 cascade were observed 
in the APAP‑treated hMSCs. By contrast, antioxidants, 
including vitamin C reduced APAP‑induced augmentations in 

H2O2 levels, but did not inhibit the APAP‑induced cytotoxic 
effects in the hMSCs. These results suggested that high doses 
of APAP may cause serious damage towards hMSCs.

Introduction

Acetaminophen (APAP) is commonly used as an analgesic and 
antipyretic agent (1‑3), and is considered safe at therapeutic 
doses (4). It is readily available, and high doses of APAP may be 
provided to patients over a short time‑period. However, APAP 
is the most common drug to cause clinical hepatotoxicity and 
nephrotoxicity in several countries (5‑7). A number of studies 
have demonstrated that high‑dose APAP  (10‑15  g) causes 
serious damage to liver and renal cells (8,9). High‑dose APAP 
can increase the levels of reactive oxygen species (ROS), thus 
increasing cellular oxidative stress and causing liver and renal 
injury (10‑12). Therefore, several studies have examined the 
ability of antioxidants to target high‑dose APAP‑induced liver 
and renal damage through the reduction of cellular ROS levels 
and oxidative stress (13‑16). At present, N‑acetylcysteine (NAC), 
an antioxidant, has been used to treat APAP‑induced hepato-
toxicity and nephrotoxicity in emergency cases (17‑19).

In order to improve the understanding of the mechanisms 
underlying APAP‑induced toxicity, several animal and cell 
models have been developed for hepatotoxic and nephrotoxic 
investigations. In general, high‑dose APAP (>5 mM) is used 
to induce cell death in renal and liver cell models (20‑26), and 
high‑dose APAP (300‑2,500 mg/kg) is used to induce liver 
and kidney damage in animal models (27‑31). These studies 
have observed that APAP can stimulate apoptotic or necrotic 
death pathway activation in different cell models (24,31,32). 
In addition, several cellular effects and signals are stimulated 
in high‑dose APAP‑treated cells, including increased levels of 
ROS and oxidative stress, decreased levels of glutathione, induc-
tion of the mitogen‑activated protein kinase (MAPK) signaling 
pathway and activation of caspase cascades (21,25,26,31,33‑36).
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High‑dose APAP‑induced clinical intoxication is predomi-
nantly found in liver and renal cells; therefore, the majority of 
previous studies have focussed on the mechanisms underlying 
high‑dose APAP‑triggered liver and renal injury (17,37,38). 
Furthermore, certain studies have indicated that APAP can 
exhibit antitumor activities in certain tumor types, including 
breast cancer, liver cancer and neuroblastoma  (26,39‑43). 
These studies also demonstrated that APAP‑induced cell death 
is linked to nuclear factor‑κB, the B‑cell lymphoma 2 family 
or glycogen synthase kinase‑3 in different tumor cells.

At present, with the exception of liver, renal and tumor cells, 
almost no cellular effects have been reported in other human 
cells following APAP therapy (10,12,39-43). Therefore, whether 
APAP causes toxic cellular effects in other human cells remains 
to be elucidated. APAP can freely cross the placenta (44,45); 
thus, high‑dose APAP can cause cellular damage in maternal 
as well as fetal liver cells. In addition, several previous studies 
have suggested that stem cells are critical during fetal devel-
opment (46‑48). However, whether APAP can induce toxic 
cellular effects in stem cells during fetal development remains 
to be elucidated. APAP‑induced cellular effects in human stem 
cells have not been reported previously, therefore, the aim of 
the present study was to investigate the cellular responses of 
APAP‑treated human stem cells.

Based on the above-mentioned studies, the aim of our study 
was to determine the cytotoxic effects of APAP on human 
mesenchymal stem cells (hMSCs). Furthermore, the ROS 
levels (H2O2 and O2

-) and the role of caspase death pathways 
and MAPK signaling pathways were also determined in the 
APAP‑treated hMSCs.

Materials and methods

Chemicals. Caspase‑3, caspase‑8, caspase‑9, cleaved caspase‑3, 
cleaved caspase‑8 and cleaved caspase‑9 monoclonal antibodies 
were purchased from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). Extracellular‑signal‑regulated kinase (ERK), p38, 
JNK, phosphorylated (p)‑p38, p‑ERK and p‑JNK monoclonal anti-
bodies were purchased from BD Transduction Laboratories (San 
Diego, CA, USA). Secondary mouse anti‑human antibody 
was purchased from GE Healthcare  (Piscataway, NJ, USA). 
Tubulin monoclonal antibody, luminol, lucigenin, vitamin C 
and Hoechst  33342 were purchased from Sigma‑Aldrich 
(St. Louis, MO, USA). The 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑di-
phenyltetrazolium bromide (MTT) kits were purchased from 
Bio Basic, Inc. (Markham, ON, Canada). Fetal bovine serum, 
Dulbecco's modified Eagle's medium (DMEM), DMEM‑low 
glucose (DMEM‑LG), non‑essential amino acid L‑glutamine 
and penicillin/streptomycin were obtained from GE Healthcare 
Life Sciences (Logan, UT, USA).

Cells and cell cultures. The NRK‑52E rat renal tubular cells 
were obtained from Bioresource Collection and Research 
Center  (Hsinchu, Taiwan). The hMSCs (Bioresources 
Collection and Research Center, Hsin Chu, Taiwan) were 
cultured in DMEM‑LG supplemented with 10% fetal bovine 
serum, 2 mM L‑glutamine, 100 IU/ml penicillin/streptomycin 
and 0.1 mM non‑essential amino acids. The NRK‑52E cells 
were cultured in DMEM supplemented with 10% fetal bovine 
serum, 2 mM L‑glutamine, 100 IU/ml penicillin/streptomycin, 

and 0.1 mM non‑essential amino acids. The two cell lines 
were maintained in a humidified 37˚C incubator containing 
5% carbon dioxide.

Cell survival rate assay. The survival rates of the NRK‑52E and 
hMSCs were determined using MTT assay kits, as described in a 
previous study (26). Briefly, 1,500 cells were cultured in each well 
of 96‑well plates at 37˚C. After 24 h, the cells were divided into 
control and experimental groups and the cell survival rates were 
examined for 4 days. Each day, 100 µl MTT (0.005 g/ml in PBS) 
were added to each well, according to the manufacturer's instruc-
tions. After 3 h incubation at 37˚C, the absorbance (570 nm) was 
measured under a multi‑well enzyme‑linked immunosorbent 
assay reader (SpectraMax Paradigm Multi-Mode Microplate 
Reader; Molecular Devices, Sunnyvale, CA, USA). The cell 
survival rate was determined using the following formula: 
A570 experimental group / A570 control group x 100%.

Observation of nuclear condensation. The examine the pres-
ence of apoptotic cells exhibiting nuclear condensation, a 
Hoechst 33342 staining method was used (26,49). The cells 
(approximately 104) in the control group and experimental 
group were treated with 10 µg/ml Hoechst 33342 for 5 min. 
Nuclear condensation was observed under an Olympus BX61 
fluorescent microscope (excitation, 352 nm; emission, 450 nm; 
Olympus Corporation, Tokyo, Japan).

Sodium dodecyl sulfate (SDS) electrophoresis and western blot 
analysis. SDS electrophoresis and western blot analysis were 
performed, according to previous described methods (50,51). 
Briefly, the cells (approximately 107) were treated with radioimmu-
noprecipitation assay lysis buffer (50 mM Tris‑HCl, 120 mM NaCl, 
1 mM EDTA, 1% NP‑40, pH 7.5) and centrifuged (16,000 x g) 
for 10 min at 4˚C. The protein was collected from the superna-
tant layer and the concentration was determined using a BSA 
Protein Assay Reagent kit (Pierce, Rockford, IL, USA) with a 
DU‑530 spectrophotometer (OD562 nm; Beckman Coulter, Inc., 
Brea, CA, USA). Equal quantities of protein (60  µg) were 
separated on a SDS‑polyacrylamide gel (13.3%) using GHE320 
Mini‑STD Vertical Gel Electrophoresis Tank and transferred 
onto a polyvinylidene difluoride membrane (Millipore, Billerica, 
MA, USA). The membranes were blocked with 5% milk for 2 h 
at 25˚C and then washed with phosphate‑buffered saline (PBS). 
The membranes were incubated with 5% milk containing the 
primary antibodies (1:500) for 2 h at 25˚C. The membranes 
were then washed with PBS buffer and treated with secondary 
antibodies (1:2,000) for 1 h at 25˚C. Finally, the proteins were 
detected using 400 µl Western Lightning Chemiluminescence 
Reagent Plus (PerkinElmer, Inc., Waltham, MA, USA).

Determination of oxygen (O2
-) and H2O2 levels. The levels 

of O2
- and H2O2 were examined using a lucigenin‑ampli-

f ied chemiluminescence technique, as previously 
described (52,53). Briefly, to determine the levels of H2O2, 
200 µl of the sample (containing 8,000 cells) was treated with 
0.2 mmol/l luminol solution (100 µl), followed by examina-
tion using a chemiluminescence analyzing system (CLA‑FS1; 
Tohoku Electronic Industrial Co., Ltd., Sendai, Miyagi, 
Japan). Similarly, to determine the levels of O2

-, 200 µl of the 
sample (containing 8,000 cells) was treated with 0.1 mmol/l of 
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the lucigenin solution (500 µl), followed by examination using 
the CLA‑FS1 system.

Statistical analysis. Data were calculated from four independent 
triplicate experiments and are presented as the means ± standard 
deviation. Statistical differences between 2 groups were analyzed 
using the Student's t‑test. A P‑value <0.05 was considered to 
indicate a statistically significant difference.

Results

APAP decreases the survival of kidney tubular epithelial 
cells and hMSCs. Previous studies have demonstrated that 
high‑dose APAP (> 5 mM) can decrease the cell survival rate 
of liver and kidney cells (20‑26). Similar to these studies, the 
present study revealed that high‑dose APAP (7.94 mM) reduced 
cell survival in the NRK‑52E kidney tubular epithelial cells 
(Fig. 1A). Until now, the cytotoxic effects of APAP treatment in 
human stem cells have not been investigated. The present study 
is the first, to be best of our knowledge, to demonstrate that 
high‑dose APAP reduced the survival rate of hMSCs (Fig. 1B). 
The results following low‑dose APAP treatment (0.794 mM) 
revealed no significant cytotoxic effects in the NRK‑52E cells 
or the hMSCs (Fig. 1). The survival rates following high‑dose 
APAP therapy between the NRK‑52E cells and hMSCs were 
also compared. The survival rate on day 3 was ~60% in the 
APAP‑treated NRK‑52E cells  (Fig.  1A) and ~30% in the 
APAP‑treated hMSCs (Fig. 1B). Therefore, high‑dose APAP 
exerted a more marked cytotoxic effect in the hMSCs, compared 
with the NRK‑52E cells. These findings indicated that APAP 
induced more damage in the stem cells than in the kidney cells.

High‑dose APAP induces apoptosis and activates the 
caspase‑9/‑3 cascade in hMSCs. The present study subsequently 
examined whether the apoptotic death pathway is involved 
in hMSC death following high‑dose APAP treatment. Upon 
examination of the nuclear morphology, nuclear condensation, 
an apoptotic feature (26,54), was identified in the APAP‑treated 
hMSCs (Fig. 2). Thus, the results demonstrated that high‑dose 
APAP induced apoptosis in the hMSCs. Caspase activa-
tion triggers apoptosis (49,55). Two major caspase signaling 
pathways are associated with the apoptosis‑caspase‑9/‑3 and 
caspase‑8/‑3 cascades (26,56). Cleaved caspase‑3, ‑8 and ‑9 
were observed following 3 days of APAP treatment using 
western blot analysis. As shown in Fig. 3, the levels of cleaved 
caspase‑3 and ‑9 were increased in the high‑dose APAP‑treated 
hMSCs (Fig. 3A, lane 3 and Fig. 3C, lane 3); however, the levels 
of cleaved caspase‑8 were unchanged (Fig. 3B). Therefore, these 
results suggested that high‑dose APAP stimulated apoptosis in 
the hMSCs via the caspase‑9/‑3 signaling pathway.

APAP induces the phosphorylation of JNK and p38 in hMSCs. 
APAP can induce liver injury via the MAPK signaling path-
ways (57,58). In the present study, whether APAP also activates 
the MAPK signaling pathways in hMSCs was examined. JNK, 
p38 and ERK belong to the MAPK family (59,60). Therefore, 
the phosphorylation levels of JNK, p38 and ERK were exam-
ined using western blot analysis in the present study. As shown 
in Fig. 4, the levels of p‑ JNK and p‑p38 were increased in the 
high‑dose APAP‑treated cells (Fig. 4B, lane 3), compared with 

the control group (Fig. 4B, lane 1). However, ERK phosphory-
lation was not observed in the APAP‑treated cells (Fig. 4B). 
These experimental results suggested that APAP activated the 
JNK/p38 MAPK signaling pathways, but not the ERK MAPK 
signaling pathway, in the hMSCs.

Figure 1. Cell survival rates following treatment with APAP. (A) NRK‑52E 
cells were treated with 7.94 mM (high‑dose) and 0.794 mM APAP. (B) hMSCs 
were treated with 7.94 mM (high‑dose) and 0.794 mM APAP. The survival 
rate was lower in the 7.94 mM APAP‑treated hMSCs, compared with the 
7.94 mM APAP‑treated NRK‑52E cells. Data was calculated from four inde-
pendent experiments and is presented as the means ± standard deviation. The 
statistical differences between 7.94 mM-treated and 0.794 mM-treated group 
were analyzed by the Student's t‑test. *P<0.05. APAP, acetaminophen; hMSC, 
human mesenchymal stem cell.

Figure 2. Nuclear condensation. (A)  Control group. (B)  APAP‑treated 
group. hMSCs were treated with 7.94 mM APAP for 2 days, nuclear con-
densation (white arrow) was observed in the APAP‑treated cells under a 
phase‑contrast microscope at magnifications of x400. APAP, acetaminophen; 
hMSC, human mesenchymal stem cell.
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APAP stimulates increases in H2O2 levels in hMSCs. Previous 
studies have demonstrated that APAP can induce increases in 
ROS levels (61,62). In addition, a previous study reported that 
augmentations in H2O2 levels are found in APAP‑treated kidney 
cells (26). O2

- and H2O2 belong to the ROS family and are 
normally present in living cells, therefore, the levels of O2

- and 
H2O2 were examined in the present study. As shown in Fig. 5, 
the O2

− levels remained constant (Fig. 5A), whereas increases 
in H2O2 were found in the APAP‑treated hMSCs (Fig. 5B), 
whereas. Therefore, the APAP‑induced augmentation of ROS 
was associated with H2O2, but not O2

-, in the hMSCs.

Vitamin C reduces APAP‑induced increases in H2O2 levels, 
but does not inhibit APAP‑induced cytotoxicity in hMSCs. 
APAP can stimulate elevations in ROS levels causing cellular 
oxidative stress, which results in hepatotoxicity and nephrotox-
icity (16,63). Therefore, several antioxidant drugs that prevent 
APAP‑induced cellular damage have been investigated (64‑68). 
Vitamin C, an antioxidant, was used to inhibit the cytotoxic 
effects of APAP in the hMSCs in the present study. The 
resulting data revealed that vitamin C effectively reduced the 
increases in H2O2 levels (Fig. 6). Therefore, vitamin C had an 
antioxidative function in decreasing cellular oxidative stress. 
Subsequently, whether vitamin C inhibited APAP‑induced 
cytotoxicity in the hMSCs was determined. As shown in Fig. 7, 
cell survival rates were markedly decreased in the high‑dose 
APAP‑treated group and high‑dose APAP + vitamin C‑treated 
group, compared to the control group. These findings indi-
cated that inhibition of the increases in H2O2 did not prevent 
APAP‑induced cytotoxicity in the hMSCs.

The present study was the first, to the best of our knowledge, 
to demonstrate that high‑dose APAP reduced the survival rate 
of hMSCs, induced the JNK/p38 MAPK signaling pathways 
and activated the caspase‑9/‑3 apoptotic death pathway. In 
addition, the inhibition of increases in the levels of H2O2 did 
not rescue the cell survival rate following APAP treatment.

Discussion

APAP is regarded a safe medicine applied widely to treat pain 
and fever in clinical cases (69‑71). However, high‑dose APAP 
can cause clinical hepatotoxicity and nephrotoxicity  (5‑7). 
Previous studies have demonstrated that APAP has antitumor 
effects in various types of cancer, including liver cancer, breast 
cancer and neuroblastoma (26,39,43). These studies indicated 
that APAP can induce cytotoxicity in liver, renal and tumor cells. 
Therefore, the majority of studies investigating APAP‑induced 
cytotoxic mechanisms have focused on renal, liver and tumor 
cells (26,39,43,58,62,72,73). The present study was the first, to the 
best of our knowledge, to demonstrate that APAP also induces 
cytotoxicity in hMSCs, suggesting APAP not only triggers 
clinical hepatotoxicity and nephrotoxicity, but it is also harmful 
to stem cells. Notably, as shown in Fig. 1, the present study 
demonstrated that APAP exerts a more marked cytotoxic effect 
in hMSCs than in renal tubular cells. Stem cells are important 
in fetal development, and stem cell dysfunction may be harmful 
to fetus growth. In addition, previous studies have demonstrated 
that APAP can cross the placenta (44,45). Therefore, the results 
of the present study suggested the requirement for caution when 
treating pregnant females with APAP for pain and fever.

Figure 3. Western blot analysis to determine caspase activation. The activities of (A) caspase‑3, (B) caspase‑8 and (C) caspase‑9 were analyzed on day 3 in the 
control (lane 1), 0.794 mM APAP‑treated (lane 2) and 7.94 mM APAP‑treated (lane 3) cells. Ceaved caspase‑3 and cleaved caspase‑9 were markedly increased 
in the 7.94 mM APAP‑treated cells. APAP, acetaminophen; hMSC, human mesenchymal stem cell.

Figure 4. Western blot analysis to determine the expression of mitogen‑activated protein kinases, (JNK, p38 and ERK) and their phosphorylation. (A) JNK, p38 
and ERK, and (B) p‑JNK, p‑p38 and p‑ERK were observed at 30 min in the control (lane 1), 0.794 mM APAP‑treated (lane 2) and 7.94 mM APAP‑treated (lane 3) 
cells. The levels of p‑JNK and p‑p38 were increased in the 7.94 mM APAP‑treated cells. JNK, c‑Jun N‑terminal kinase; ERK, extracellular signal‑regulated 
kinase; p‑, phosphorylated; APAP, acetaminophen.

  A   B   C

  A   B



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  36:  485-492,  2015 489

The activation of apoptosis and necrosis have been found 
in liver and renal cells following APAP treatment in different 
animal and cell models (31,32). The majority of studies have 
reported that APAP‑induced apoptotic death in liver and 
renal cells is associated with caspase‑3 activation  (74‑76). 
There are two major caspase cascades, caspase‑9/‑3 and 
caspase‑8/‑3 cascades (26,54,55). The caspase‑9/‑3 cascade 
is linked to mitochondrial dysfunction and the caspase‑8/‑3 
casecade is associated with death receptor signal transduction. 
APAP‑induced liver and renal injury has been observed to 
trigger the caspase‑9/‑3 pathway (11,77). In addition, activa-
tion of the caspase‑9/‑3 cascade is also found in APAP‑treated 
hepatoma cells (26). In the present study, the data revealed 
that APAP activated caspase‑9 and ‑3 signaling in the hMSCs 
but did not activate caspase‑8 (Fig. 3). Taken together, these 
studies indicated that mitochondrial damage is an important 
factor that results in cell death in renal cells, liver cells, hepa-
toma cells and stem cells following APAP treatment.

The MAPK signaling pathways undergo three major 
phosphorylation reactions: ERK, JNK and p38 phosphoryla-
tion (59,60). Previous studies have demonstrated that APAP can 
induce acute liver injury via the JNK and ERK phosphoryla-
tion signaling pathways (57,58). A previous study found that 

APAP‑induced liver damage not only activates JNK and ERK 
phosphorylation, but also induces p38 phosphorylation in 
mouse models (78), although the common signaling pathways 
are the ERK and JNK phosphorylation pathways. In the present 
study, JNK and p38 phosphorylation were observed in the 
APAP‑treated hMSCs, however, ERK phosphorylation was not 
observed (Fig. 4). The observation of ERK phosphorylation in 
the APAP‑treated liver cells, but not in the stem cells remains 
to be elucidated and requires investigation in the future.

Previous studies have demonstrated that high‑dose 
APAP‑induced hepatotoxicity and nephrotoxicity are 
associated with increases in ROS levels  (25,79‑81). 
Severalantioxidants against APAP‑induced cytotoxicity 
have been investigated, including green tea, honey, tofu and 
NAC (13,80,82‑85). O2

- and H2O2 belong to the ROS family 
and are produced by the electron transport chain. O2

- can be 
removed by superoxide dismutase, and H2O2 can be removed 
by glutathione system (19,26,85). NAC, a precursor for gluta-
thione synthesis, can effectively reduce H2O2 levels and has 
been applied as a treatment method for APAP‑induced hepato-
toxicity and nephrotoxicity in clinical cases (17‑19). The levels 
of O2

- and H2O2 can be determined in APAP‑treated stem 

Figure 6. H2O2 levels. The levels of H2O2 levels were determined in the con-
trol, high‑dose APAP‑treated and high‑dose APAP + 0.5 mM vit C‑treated 
cells. The levels of H2O2 were measured after 1 h treatment. Data were 
analyzed from four independent experiments and are presented as the 
means ± standard deviation.*P<0.05, compared to the control group. H2O2 
hydrogen peroxide; APAP, acetaminophen; vit C, vitamin C.

Figure 7. Cell survival rates. The hMSCs were treated with 0.5 mM vit C, 
high‑dose APAP, and high‑dose APAP +0.5 mM vit C‑treated cells. No sig-
nificant difference in survival rates were observed between the APAP‑treated 
and APAP + vit C‑treated cells. Data were calculated from four independent 
experiments and are presented as the means ± standard deviation.*P<0.05, 
compared to vitamin C alone group; both APAP group and APAP plus 
vitamin C group have significant difference. hMSC, human mesenchymal 
stem cell; APAP, acetaminophen; vit C, vitamin C.

Figure 5. O2
‑ and H2O2 levels. (A) O2

‑ levels were determined in the control and high‑dose APAP‑treated cells. (B) H2O2 levels were determined in the control and 
high‑dose APAP‑treated cells. The levels of O2

‑ and H2O2 levels were measured following 1 h treatment. Data were analyzed from four independent experiments 
and are presented as the means ± standard deviation. *P<0.05, compared to the control group. O2

‑, oxygen; H2O2 hydrogen peroxide; APAP, acetaminophen.
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cells. The present study demonstrated that APAP stimulated 
increases in the levels of H2O2, but not O2

-, in human stem 
cells. This result is similar to a previous study, in which only 
increases in H2O2 levels were found in APAP‑treated Hep3B 
cells (26). In addition, the present study further demonstrated 
that vitamin C effectively reduced APAP‑induced elevations 
in H2O2, but does not inhibit APAP‑induced cytotoxicity, in 
human cells. This result indicated that there are unknown 
cellular effects, in addition to augmentations in the levels of 
ROS, resulting in APAP‑induced cytotoxicity in human stem 
cells. The present study demonstrated that antioxidants agents 
prevented APAP‑induced damage in liver and renal cells, but 
not in stem cells.

In conclusion, this study was the first, to the best of our 
knowledge, to demonstrate that APAP induced the p38/JNK 
MAPK signaling pathway, activated the caspase‑9/‑3 cascade 
and decreased survival rate in human stem cells. The present 
study also revealed that APAP‑induced cytotoxic effects were 
more marked in stem cells than in renal cells, and antioxidants 
did not prevent stem cell damage following APAP treatment.
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