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Abstract. The present treatment of childhood T-cell 
leukemias involves the systemic administration of prokary-
otic L-asparaginase (ASNase), which depletes plasma 
Asparagine (Asn) and inhibits protein synthesis. The mecha-
nism of therapeutic action of ASNase is poorly understood, 
as are the etiologies of the side-effects incurred by treatment. 
Protein expression from genes bearing Asn homopolymeric 
coding regions (N-hCR) may be particularly susceptible to 
Asn level fluctuation. In mammals, N-hCR are rare, short and 
conserved. In humans, misfunctions of genes encoding N-hCR 
are associated with a cluster of disorders that mimic ASNase 
therapy side-effects which include impaired glycemic control, 
dislipidemia, pancreatitis, compromised vascular integrity, and 
neurological dysfunction. This paper proposes that dysregula-
tion of Asn homeostasis, potentially even by ASNase produced 
by the microbiome, may contribute to several clinically impor-
tant syndromes by altering expression of N-hCR bearing genes. 
By altering amino acid abundance and modulating ribosome 
translocation rates at codon repeats, the microbiomic environ-
ment may contribute to genome decoding and to shaping the 
proteome. We suggest that impaired translation at poly Asn 
codons elevates diabetes risk and severity.
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1. Foundation of the hypothesis

Core hypothesis: translocation rates, poly Asparagine (Asn); 
insulin-receptor-substrate 2 (IRS2) and diabetes; hypothesis 
tests, poly glutamine (Gln) HTT and ataxias. Despite similar 
Asn codon usage, ~4%/gene, from plants to humans  (1), 
mammals are distinguished by a paucity of genes with a long 
Asn homopolymeric coding region (N-hCR) (2). The 17 human 
genes with the longest N-hCR (ranging from five to eight 
consecutive Asn codons) are listed in Fig. 1; Table I lists genes 
with N-hCR greater than three. IRS2, encoding an insulin 
signal transducer, is the gene at the top of the list in Fig. 1 and 
multiple disorders of energy homeostasis and the urea cycle are 
associated with genes in Table I. The central hypothesis of this 
paper is that manifestations of these disorders may partly be 
attributable to reduced plasma Asn concentrations, which in 
turn may disproportionately affect the production of proteins 
containing N-hCR. More broadly, we propose a model in 
which protein expression may be affected at amino acid homo-
polymeric coding regions (hCR) in general because translation 
elongation rates at hCR could reflect variation in the levels of 
the corresponding amino acids. This model may contribute to 
explaining an association, initially noted with poly Gln codon 
runs, between hCR and some human diseases (1,3).

Asparaginase (���������������������������������������ASNase) is a component of highly effec-
tive chemotherapeutic regimens used to treat pediatric acute 
lymphoblastic leukemia (ALL) (4,5) and some lymphomas (6-8). 
ASNase treatment has been estimated to have contributed to 
the sparing of the lives of upwards of 60,000 children in the 
US in the decades following its discovery (9) and rapid intro-
duction to the clinic (10). However, ASNase treatment is not 
without hazard; it can produce a myriad of side-effects that 
include hyperglycemia, dislipidemia, pancreatitis, vascular 
accidents and adverse neurological outcomes. The physi-
ological mode of action of ASNase is unclear. The enzyme 
deaminates Asn and Gln with production of altered amino 
acid ratios and ammonia (11-15). ASNase inhibits synthesis 
of proteins in vitro (16) and in vivo (17,18) by a mechanism 
consistent with reduced ribosomal translocation at Asn codons. 
In humans, ASNase treatment protocols cause depletion 
of plasma Asn and modest reductions of plasma Gln levels 
accompanied by mild transient hyperglycemia and occasional 
ketoacidosis  (11,19,20). In mice, administration of ASNase 
causes Asn depletion in plasma and some tissues, e.g., skeletal 
muscle (21,22), indicating, importantly, that intracellular Asn 
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can also be depleted. Moreover, in mice, impaired glucose 
tolerance following ASNase treatment can be improved by 
amino acid supplements which serve to moderate amino acid 
ratio imbalances (23) and Asn administered directly to mice 
reverses adverse events initiated by ASNase (24). In rabbits, 

ASNase induces dose-dependent glycemic dysregulation 
extending from transient mild glycosuria to hyperglycemia and 
diabetes (25,26). Prednisolone has been shown to potentiate the 
action of ASNase: both drugs can cause hyperglycemia when 
used alone; but predisolone synergizes with ASNase to cause 

Figure 1. Asn homopolymeric coding regions (N-hCR)-bearing-genes from 8N-hCR to 5N-hCR. The 17 human genes with N-hCR of length greater than five. 
Human genes are grouped by N-hCR length. Rows list genes, labelled on the left and grouped by N-hCR length in descending order from insulin-receptor-
substrate 2 (IRS2) with 8N-hCR. Columns of colored panels suggest (manually annotated) functional categories: purple, fiabetes and metabolism; yellow, 
membrane and mitochondria; blue, neuro; pink, cancer and immunity; grey, cardiovascular, blood and bone; green, DNA/RNA. Karlin et al (1) have speculated 
that N-hCR shorter than five in length would arise by chance. However, Kriel and Kriel (2) demonstrates that the statistical difference between mammals 
and nonmammals continues to hold at least down to 3N-hCR. The cutoff threshold of significance would then reduce to 2N-hCR, and to the definition of 
a transcription unit, cf. VEZF1, which has multiple cDNAs defining infrequently used exons. N.B. Adjacent, potentially cojoined (380) genes are used to 
categorize PAPPA-AS1 and ALS2CR11. Like the PAPPA locus, the MEPC2 locus also has an N-hCR bearing antisense transcript, with a 7N-hCR (AF361491); 
The metabolic disease and retinal development associated gene SIX3 has an antisense N-hCR bearing transcript in human SIX3-AS1 (NR_1037686.1) and 
mouse SIX3-OS1 (NR_038083.1). SNP rs16882396 marks the association of periodontal disease with TMEM178B. The 49 genes with 4N-hCR are: ACACA, 
ACACB, AGBL2, BAI2, BMPR2, C2orf61, CD9, CFTR, CHRM2, CNOT10, EOMES, EPPIN, EPPIN-WFDC6, EVI2A, FAM193A, FRS3, GTF2I, IL9R, 
KIAA1841, KIF3C, KLF17, LEMD3, LRP6, MAML2, MYRF, NCOA1, PARP3, PEAK1, PPP1R13B, RNF103, SH3D19, SI, SLIT1, SLIT2, SLIT3, SNAP91, 
TAB2, TAB3, TAX1BP1, TEC, TMEM57, TOX3, TRPM6, TRPM7, TTC8, TTLL5, UBE4A, ZXDA, ZXDB Unorthodox human proteins deserving closer atten-
tion are from unusual cDNAs: Map3K24N-hCR AAH65755.1; TCRα5N-hCR AIE11180.1; Vκ5N-hCR AAO11865; and Vλ4N-hCR AAD29331.1. The germline V regions 
of immunoglobulin (Ig) λ as well as T cell receptor AlphaJ regions are represented in Table I as 3N-hCR. However, there are rearranged cDNAs encoding for 
up to 5N-hCR in some hypervariable regions (HVR) that do not appear in the germline N-hCR (used for assigning length of N-hCR when classifying these 
genes). It is unclear what benefits, if any, could accrue to an Ig synthesized and, potentially, folded at a rate regulated by Asn levels at N-hCR. An arbitrary list 
of genes that may respond to fluctuations in other amino acids include CNDP1, CYP21A2, SELT, SELM (L-hCR); CACNA1D (M-hCR); HSD11B1 (Y-hCR); 
NR4A3 (H-hCR); TAF9, URI1, ASPN, EFTUD2, GLTSCR1L, THBS4 (D-hCR); HRC (D-, E-, H-hCR); ATAD2 (S-, D-hCR); EIF5B (K-, D-, E-hCR); KCNMA1, 
MAP3K1, CXXC4, WDR26, TNRC18, SRRM2 (S-, T-, G-hCR); CACNA1A (H, N, Q-hCR); POU4F2 (M-, G-, H-, S-hCR); POU3F2 (G-, H-, Q-hCR); SKIDA1 
(H-, E-, A-hCR); USP34 (H-, N-hCR); ATXN1, ATXN2, ATXN3, ATXN7, AR, KMT2D, KMT2C, MAMC2, MAML3, FOXP2, ARID1A, ARID1B, ARID3B 
MED12, MED15, NCOA3, NCOA6, IRF2BPL, VEZF1, ABCF1 and HTT (Q-hCR). The hCR appear in proteins from the NCBI homologene (381) database.
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significant hyperglycemia (500-700 mg/dl) when both drugs 
are administered in combination at doses that are insufficient 
to produce an effect above baseline (~100 mg/dl) when either 
drug is administered alone (27).

Complementing these clinical and experimental observa-
tions, metabolomic data from the Framingham Heart study 
and from diabetic patients in a Shanghai study have shown 
that plasma Asn concentration is negatively correlated with 
fasting insulin concentration  (28), and that the degree of 
negative correlation is the highest for Asn by comparison 
with the 20 amino acids that are commonly incorporated into 
proteins by ribosomal synthesis. By contrast, γ-amino butyric 
acid (GABA) levels are 10-fold more negatively correlated with 
fasting insulin levels. In the Framingham data, the maximal 
negative correlation observed between Asn concentration and 
fasting insulin also extends to additional diabetes metrics 
such as body mass index (BMI), waist circumference (WC), 
homeostatic model assessment (HOMA), and triglyceride 
levels. In a third study, of a different cohort, Asn was the amino 
acid most negatively correlated with adiponectin, HOMA and 
leptin levels (29). Because therapeutic Asn depletion induces 
glycemic dysregulation, low Asn levels may not merely be 
correlatively associated with poor glycemic control, but may 
be causative or provocative. This raises the question of the 
potential mechanisms by which Asn depletion in plasma or 
tissues could adversely impact glucose homeostasis.

The possibility that N-hCR can be implicated in the etiolo-
gies of some diabetic syndromes is supported by the enrichment 
of genes governing metabolic balance among the list of those 
containing N-hCR. Approximately one‑fifth of the genes bearing 
N-hCR in Table  I are associated with metabolic disorders, 
obesity, diabetes, urea cycle or pancreatic islet β-cell regulation. 
Among these, IRS2 is of particular note. IRS2 encodes insulin 
receptor substrate-2, a labile (30,31) intracellular signal trans-
ducer that is a substrate for a number of membrane spanning 
receptor tyrosine kinases specific for extracellular cytokines 
that include insulin, insulin‑like‑growth-factor-1, erythropoi-
etin, thrombopoetin, growth hormone, leukemia inhibitory 
factor, interleukin-4 (IL-4) and interferon-γ (32-37). Sequence 
polymorphisms in the human IRS2 locus have been associated 
with obesity (38), type 2-diabetes-mellitus (T2DM) (39,40) 
or its complications (41,42), aspects of schizophrenia (43) and 
IgE immune responses (44). In transgenic mice, IRS2 deletion 
causes compromised maintenance of β-cell mass and produces 
a diabetic state similar to T2DM (45,46). Reduced levels of 
IRS2 in humans have been proposed to lead to desensitized 
insulin/cytokine signalling and thus to hyperglycemia/muted 
immune responses, with prolonged IRS2 deficits exacerbating 
islet cell mass reduction leading to T2DM (47-50). Alterations 
in IRS2 expression have been associated with altered lipid 
metabolism in obese subjects (51) and have been correlated with 
development of insulin nonresponsiveness in obese boys (52). 
IRS2 has eight consecutive Asn-codons located 19 codons after 
the initiator AUG codon. Depletion of the levels of the cognate 
Asn aminoacyl-tRNA may result in compromised elongation in 
the homopolymeric Asn coding region that may be especially 
deleterious to the synthesis of IRS2 due to the location of the 
N-hCR.

Codon usage and ribosome translocation rates affect 
protein expression in bacterial (53-57), viral (58,59) and human 

genes (60,61). Ribosomal footprinting studies have suggested 
that the stability of translation initiation complexes increases 
when nascent chains emerge from the exit tunnel or folding 
vestibule to engage chaperones (62). Ribosomal stalling may 
potentially lead to translation termination when the elongation 
rate is diminished in the ‘translation-initiation-ramp’ or insta-
bility region (63-65). The concept of the ramp, which may not 
apply to all mammalian genes, remains controversial (66) and 
though potentially contributory, it is not essential to the overall 
thesis proposed here. In general, a severely diminished elonga-
tion rate may lead to premature termination; for example in 
prokaryotes, ribosomal stalling induces a translational termi-
nation mechanism through tmRNA (67, Cf. 68). In the abstract, 
reduced rates of translation anywhere along an mRNA would 
result directly in a reduced overall rate of target protein 
synthesis and, depending on protein halflife, result indirectly 
in decreased steady state levels of such proteins. High rates of 
translation may even increase the halflife of an mRNA (69).

Of the genes that have been identified with N-hCR of 
length 3 or greater, approximately one third can be associated 
with cancer and immune response, one quarter with neurode-
generation (20% with metabolic disorders, above), and eight 
percent with vasculature and hematopoesis. Of the remaing 
~14%, many can be classified as involved with chromatin 
modification, DNA maintainance and repair, RNA transcrip-
tion and processing or protein synthesis and turnover, some 
have Leucine rich repeats that can serve as pattern recognition 
elements. Some genes fall into multiple categories, e.g. IRS2 
is associated not only with diabetes and receptor mediated 
signal transduction for specific extracellular cytokines, but also 
with epilepsy (70), aspects of schizophrenia (43), Alzheimer's 
disease (71-73), retinal degeneration (74), hippocampal synaptic 
plasticity (75), long term potentiation of hippocampal synaptic 
transmission  (76), ataxia  (77), cardiac failure  (78), kidney 
development  (79), renal disease (80), breast cancer  (81,82), 
rhabdomyosarcoma (83) and, in conjunction with JAK23N-hCR, 
hematopoesis (84,85). A limited study of an N-hCR length 
polymorphism in IRS2 shows no association with diabetes (86).

For the purpose of establishing the consequences of N-hCR 
for translational sensitivity to Asn concentration, other genes 
with N-hCR could be tested, including conserved genes with 
nonhuman N-hCR lengths that also differ from humans in some 
other parameter (such as inflammatory response profiles) (87). 
For example an exceptional mammalian gene, with an N-hCR 
longer than the 8N-hCR of IRS2, is a bat paralog of the 
IL8-receptor, CXCR2, (EPQ18419), which has a 60N-hCR. 
Other genes of interest from mouse, that differ from human 
in N-hCR length, include MDR1 and CFTR (a Salmonella 
receptor), and TNFRSF16/BEX3A/NGFRAP1 (implicated in 
diabetes) (88) as well as the redox regulators: GCLC (89) and 
TXNIP (90) (the former encodes the first, rate limiting, enzyme 
in the glutathione synthesis pathway and has been associated 
with cardiovascular events) (91); the latter encodes a conserved 
thioredoxin binding protein that has an 8N-hCR in mice, 
vs. a 3N-hCR in nonrodent mammals. All of these TXNIP 
N-hCR are invariantly located and they begin at codon 386, 
end 3 codons before the stop codon. This is discussed further, 
below, along with the contribution of TXNIP to host response 
to P. aeruginosa bacteremia by recruitment of neutrophils in 
mice (92). TXNIP also affects pancreatic β-cell biology (93), 
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A2M
AATK
ACACA
ACACB
ACAN
ACSBG2
ADAM10
ADAM19
ADAM30
ADCY8
ADCY9
AEBP1
AFF2
AGAP1
AGBL2
AKAP4
ALDH6A1
ALKBH8
ALPK2
ALS2CR11
AMBRA1
AMY2A
AMY2B
ANAPC7
ANK3
ANKFN1
ANKFY1
ANKRD17
ANKRD28
ANKRD44
ANKRD7
ANPEP
ANTXR1
ANTXRL
AP2B1
AP4E1
APBA2
APC
APCDD1
APOB
APOL1
AQP5
ARHGAP11A
ARHGAP20
ARHGAP24
ARHGEF10
ARHGEF5
ARHGEF6
ARID1A
ARID1B
ARID5B
ARMC3
ARMC4
ARPP21
ASB2
ASCL5
ASIC2
ASPN
ATAD5
ATF7IP
ATF7IP2
ATL2
ATP2B1
ATP2B3
ATP2B4

ATP6V1C1
BAG5
BAG6
BAI2
BCAS1
BCAS3
BIN2
BIRC6
BMPR2
BNIP3L
BOC
BOD1L1
BRIP1
BRCA2
BTAF1
BTBD1
BTBD2
BTBD3
BTG4
C18orf63
C1orf86
C1QB
C1QL2
C1QL3
C2orf49
C2orf61
C3
C3orf67
C5orf67
C7
CACHD1
CACNA1A
CACNA1C
CACNA1D
CACNA1F
CACNA1H
CACNA1S
CALHM1
CARF
CASC5
CASS4
CASZ1
CATSPERD
CCDC144A
CCDC144NL
CCDC18
CCDC36
CCDC39
CCDC73
CCDC88A
CCKAR
CCNT1
CD63
CD9
CDC14A
CDH9
CDHR1
CDKL5
CDON
CEACAM5
CELSR3
CEMIP
CENPC
CEP350
CERS2

CES2
CFAP45
CFAP54
CFTR
CGRRF1
CHAD
CHD7
CHEK2
CHFR
CHRM2
CHRM3
CHRNB1
CHRND
CHSY1
CKAP2L
CLCA1
CLCA2
CLCA3P
CLCA4
CLEC10A
CLEC6A
CLMN
CLTC
CNOT10
CNOT2
CNOT6
CNOT6L
CNST
COBL
COBLL1
COIL
COL24A1
COL6A2
COL6A5
COX19
CPEB4
CPM
CPNE9
CPS1
CPXM2
CRTAC1
CSMD2
CSTF3
CUL1
CUL3
CXCL12
CYP19A1
CYP1A1
CYSLTR2
DCAF6
DCAF7
DCBLD1
DCN
DDIAS
DDR2
DDX4
DDX42
DDX59
DHX38
DIAPH1
DIDO1
DLGAP5
DMD
DMXL2
DMKN

DNAH1
DNAH6
DNAJB11
DNAL4
DNM1L
DNMT3A
DNTTIP2
DOCK4
DRD1
DSCAM
DSPP
DUSP10
DUSP21
DYNC1H1
DYNC1I1
DYNC1I2
DYRK4
DZIP1
ECM2
EFNB2
EIF2A
ELAVL2
ELF1
EOMES
EPCAM
EPPIN
EPPIN-WFDC6
EPRS
EPYC
EVI2A
EYA1
F5
FAM117B
FAM126A
FAM171B
FAM193A
FAM208B
FAM65B
FAM69C
FANCI
FAT2
FAT3
FAT4
FBXL5
FBXO27
FBXO38
FBXO39
FBXO48
FBXO5
FBXW7
FCGR2A
FCGR2B
FCGR2C
FCN1
FCRL4
FEZ1
FGB
FKBP7
FLII
FLRT1
FLRT3
FNDC4
FNDC5
FRS3
FSHR

FSIP2
FSTL3
G3BP1
GABBR1
GBP6
GCLC
GDPD1
GGA1
GGA3
GIN1
GIT2
GJA9
GK
GKN1
GNAZ
GNPAT
GOLPH3
GP1BA
GPATCH2
GPR112
GPR126
GPR64
GPR82
GSG2
GTF2I
HACL1
HAVCR1
HCFC2
HECTD4
HERC6
HERPUD1
HERPUD2
HLA-DPA1
HLTF
HMCN1
HNRNPL
HNRNPUL1
HRG
HSD3B1
HSPG2
HYPM
ICE1
IGDCC3
IGLV10-54
IL1RAP
IL23R
IL9R
ING3
INTS12
IPMK
IRAK3
IRS2
ISLR2
ITGAV
ITGB1BP1
ITK
JAK2
JMJD1C
JMY
KCNA3
KCNH4
KCNH8
KDM3A
KDM6A
KDM6B

KHDRBS2
KIAA0232
KIAA1024L
KIAA1107
KIAA1210
KIAA1217
KIAA1549L
KIAA1586
KIAA1671
KIAA1841
KIDINS220
KIF16B
KIF1A
KIF21A
KIF3C
KLF17
KLHL3
KLHL30
KMT2A
KMT2E
KNG1
l101060321
l101060389
l102723859
l102724862
l102725117
LAMA3
LAMB4
LAMC2
LAMP2
LARP4
LEMD3
LGI1
LGI3
LGR6
LIMS2
LINGO2
LITAF
LPHN2
LRFN2
LRFN5
LRIG1
LRIG2
LRIG3
LRP1B
LRP2
LRP4
LRP5
LRP6
LRPPRC
LRRC30
LRRC37A
LRRC37A2
LRRC37A3
LRRC38
LRRC57
LRRC69
LRRC70
LRRC71
LRRC72
LRRC8B
LRRN1
LRRN2
LRTOMT
LTF

LY75
LYST
MALT1
MAML2
MAP7
MAPK8IP2
MAPRE2
MARCH1
MARCH6
MASP1
MBD5
MDGA2
MED1
MEX3B
MGAM
MGAM2
MGAT2
MIB1
MID1
MIS18BP1
MITF
MLLT3
MON2
MTBP
MTCH1
MTERF1
MTG2
MTNR1A
MTTP
MTUS2
MUC19
MUC3A
MUC4
MXRA5
MYO10
MYO19
MYO1A
MYO1B
MYO1E
MYO1F
MYO6
MYO9A
MYO9B
MYOM1
MYRF
MYT1L
N4BP2
NBN
NBR1
NCAM2
NCAPH2
NCKAP1
NCOA1
NCOA3
ND4
NECAB3
NEDD1
NEURL4
NFATC1
NGLY1
NIPA2
NKX2-5
NNT
NOD1
NOS2

Table I. Alphabetical listing of 765 human genes 3N-hCR and higher (>3N-hCR).
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NOTCH1
NPNT
NPY1R
NPY6R
NR1D1
NRK
NRP1
NSUN7
NT5E
NTRK3
NUP54
OBSL1
OGG1
OIT3
OLFM4
OMG
OR4A5
OR4C16
OR8G5
OSCP1
OTOG
OVGP1
P2RY10
PAN3
PAPD5
PAPPA-AS1
PARG
PARP2
PARP3
PAWR
PCDH7
PCDHAC2
PCDHGA3
PCSK2
PDE3A
PEAK1
PEG10
PFKFB2
PGBD2
PHACTR1
PHF2
PIK3CB
PIK3R1
PJA1
PJA2

PKDREJ
PKD1L3
PKHD1L1
PKP1
PLEKHG3
PLS1
PMS1
PNLIPRP1
POGZ
PPAP2B
PPP1R13B
PPP1R36
PPP1R3A
PPP1R42
PPP1R7
PPP1R9A
PPP3CB
PPP3CC
PRDM12
PRDM2
PRELP
PREX1
PRF1
PRL
PSMD1
PSMD3
PSMF1
PTPRB
PTPRD
PTPRQ
PUM1
PXDN
PXDNL
PXMP4
PYGO1
PZP
QSER1
R3HDM2
RAB3GAP1
RANBP17
RAPGEF2
RBM12
RBM27
RBM28
RBMS1

RDH10
REG4
RELA
RGL1
RLF
RMI1
RNF103
RNF128
RNF139
RNF157
RNF180
RNF19A
RNF2
RNF213
RNF216
RNF220
ROBO2
RP1
RPGR
RUSC1
RYR2
RYR3
S100PBP
SALL4
SCARB1
SCP2
SCRN3
SDAD1
SEC16A
SEC24B
SEZ6L2
SGOL2
SH3BP5
SH3D19
SH3GLB1
SHANK1
SHCBP1L
SHOC2
SI
SIN3A
SIN3B
SIPA1L1
SIX1
SLC18A1
SLC26A9

SLC2A12
SLC35A4
SLC6A11
SLC6A4
SLC6A8
SLCO3A1
SLIT1
SLIT2
SLIT3
SLITRK1
SLITRK2
SLITRK3
SLITRK4
SLITRK5
SLITRK6
SMARCA2
SMARCA4
SMG1
SNAP91
SNCAIP
SNED1
SNRPA1
SOCS4
SON
SOWAHD
SP4
SPATA16
SPDYA
SPECC1
SPRY1
SPSB1
SPTBN4
SRPRB
SSH1
STAB2
STAU2
STK32A
STK32B
STMN1
STMN2
STMN3
STMN4
SULF1
SULF2
SUMO4

SUSD1
SUZ12
SYCP1
SYNPO2
TAB2
TAB3
TALPID3
TANGO2
TAS2R38
TAX1BP1
TBC1D3
TBC1D3B
TBC1D3C
TBC1D3F
TBC1D3H
TBC1D3K
TBC1D3L
TBC1D5
TBR1
TCHHL1
TCN1
TCTN2
TEC
TECTA
TEKT1
TENM3
TENM4
TESK1
TEX15
TEX2
THEG
THRAP3
THSD7B
TINAGL1
TKT
TLR10
TLR2
TLR3
TM4SF18
TMCO1
TMCO2
TMEM106B
TMEM178B
TMEM2
TMEM57

TMEM259
TMOD1
TMPRSS11A
TMPRSS11D
TMPRSS15
TNRC6A
TNRC6B
TOX3
TPGS1
TPRKB
TRAJ31
TRAJ39
TRAJ43
TRAPPC12
TRIP12
TRPM6
TRPM7
TSC22D3
TSEN2
TSHZ3
TSPAN17
TSPAN5
TSPYL2
TTC1
TTC8
TTLL4
TTLL5
TXLNG
TXNIP
TXNL4A
UBAC1
UBE2Q2
UBE4A
UBXN7
ULK4
URB2
USO1
USP11
USP12
USP13
USP26
USP31
USP32
USP34
UTRN

UTY
VEPH1
VEZF1
VGLL4
VN1R2
VPS13A
VPS4A
VPS45
WDR13
WDR17
WDR48
WFDC6
XIRP2
YAE1D1
ZAN
ZBTB10
ZBTB6
ZC3HAV1
ZCCHC11
ZFAND3
ZFP1
ZFPM2
ZFYVE1
ZFYVE28
ZIC4
ZMIZ2
ZMYM6
ZNF132
ZNF23
ZNF236
ZNF347
ZNF451
ZNF518A
ZNF804A
ZNRF3
ZPLD1
ZXDA
ZXDB
ZZEF1
ZZZ3

Table I. Continued.

The top 17 listed on Fig. 1 from 8N-hCR to 5N-hCR are in bold font; the 49 genes with 4N-hCR are underlined. A total of 699 genes on this 
list have 3N-hCR and are in normal font (not bold or underlined). 17x5N-hCR, 49x4N-hCR, 699x3N-hCR. Each N-hCR-bearing-gene and 
its corresponding protein in the NCBI homologene database, were used in this analysis except for the following 28 genes: APOL1 isfX1, 
X2; ANKRD28 iCRA_g; C1orf86/FAAP20 tvi4X1,2,3; DMKN  i5; FBXO38 iCRA_d; FKBP7 isf23 AF100751.1; IGLV10-54 BAA19993.1; 
KHDRBS2 iCRA_c; loc102725117 isf.X1-7; LRTOMT isf1c,1a; MARCH1 ix1; MASP1 isf1; MGAM int iX1; MTCH1 AAD34059.1; NTRK3 
isof x10, XP_006720612; PAAAA-AS1 AAV41520.1; PTPRB iX5; PHACTR1 iX6; RAPGEF2 iX7; RNF128 isf2; SH3D19 isfX2,4,5,6,8; 
SNAP91 isfD; TRAJ31,39,43 AAB86765.1, AAB86758.1, AAB86754.1; VEZF1 iCRA_a,c; WFDC6 iCRA_a,b; WDR17 iX5; XIRP2 tv5 and 
tv3; ZFP1 iX1. A number of N-hCR-bearing-genes are in GTPase, GPCR or odorant receptor families, or can be grouped as involved with 
ubiquitin conjugation, DNA repair, RNA processing,or pattern recognition response. The relative frequency of appearance of such genes among 
the N-hCR-bearing genes versus their proportional representation in the human genome remains uncharacterized. CKS2, on a list of genes that 
are devoid of Asn codons in mammalia, is a paralog of a plasmodium protein (XP_001352106 ) which has the longest contiguous stretch of 
83 Asn residues in plasmodia (382,383). When the plasmodium gene is compared to the human database, the best 3 homologies are to CKS2, 
CKS1B and the N-hCR-bearing-gene PPP1R13B4N-hCR/ASPP1, the promoter of which is silenced by methylation in ALL (384). The balance 
between CKS2 and CKS1B is thought to play a role in multiple cancers (385), including HHV4 associated nasopharyngeal cancer (386) (along 
with TRPM74N-hCR). Altered Asn levels could shift the balance between CKS2 and CKS1B to affect cell cycle regulation in multiple cancers 
including ALL, and, via PPP1R13B, senescence in normal cells  (387). Other notable genes devoid of Asn codons are mus APRT (kidney 
stones) (388) and human BIRC7 (ALL prognosis) (389), LOR (cf. Staph. aureous infection of nares) (390), SEPW1 (cell cycle) (391), TCL1 
(leukemia) (392), CSF3 (innate immunity and aneurysms) (393) and KLF16 (proposed master metabolic regulator KLF14) (394).
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diabetic retinopathy (94), and glucose metabolism (indirectly 
regulated by mTOR) (95). Finally, a gene with the third longest 
N-hCR in the mosquito genome (XM_316513) is translation-
ally regulated (perhaps at its N-hCR) in insect midgut in 
response to plasmodium infected blood meals (96). The gene 
is homologous to human FAF1/TNFRSF6 which is associated 
with diabetes (97) and Parkinson's disease (PD) (98).

Human genes with hCR have been linked to complex 
diseases (1). Genes that may respond to fluctuations in amino 
acids other than Asn  (99-106), include CNDP1  (107,108) 
(L-hCR), MEPC2e1   (109) (A,G,H-hCR), and HTT 
(Q-hCR)  (110). The gene list could also extend to DMPK/
SIX5 (111,112), GCLC (89), FMR1 (113) and C9orf72 (114-116) 
if unorthodox, repeat-associated-non-ATG (RAN), translation 
of upstream codon repeats (117-120), or alternate transcript 
variants (121) are included.

The HTT locus mediates the deleterious effects of 
Huntington's ataxia, and is one of the early examples of a 
gene containing an hCR associated with a disease (122). It 
has a Q-hCR whose length can vary inversely with the age 
of onset and severity of the ataxia. The 23Q-hCR of HTT is 
situated in its ramp region, with a 16 codon interval between 
the hCR and the initiator AUG. Although much of the effort to 
understand Huntington's disease has focused on aggregation of 
products of the HTT locus (123,124), the etiology of truncated 
translation products resulting from ribosomal stalling in the 
Q-hCR has received much less attention. Exon truncation 
fragments may arise if HTT is expressed in an environment 
of limiting Gln (22,125) and the resulting increase in neuronal 
cell death (126), could accelerate the onset and clinical course 
of Huntington's disease (127,128).

2. ASNase produced by the biome. The potential for 
N-hCR-bearing-genes to cause side-effects

ASNase production by Salmonella, pancreatitis, immunosu-
pression. Genetic studies suggest an environmental component 
for the etiology of diabetes  (129) and the gut microbiome 
has been proposed to regulate human physiology, e.g. bone 
mass (130). An individual's microbiome may also produce 
enzymes that alter host Asn levels. Persistent salmonellosis in 
mice causes pancreatitis (131,132) which is a side-effect of ther-
apeutic ASNase treatment (133,134). In addition, Salmonella 
mediates its own virulence (135) via a cytostatic ASNase (16) 
and inhibits mouse T cell responses in a manner reversible 
by administration of Asn (24,136); this Salmonella mediated 
immune inhibition may reflect the immunosuppression noted 
in ASNase-treated rabbits (137) and rodents (138,139).

Elongation: pancreatitis, cystic fibrosis, dislipidemia, clot-
ting, complement and neurodysfunction; Notch, WNT and 
hedgehog. Allelic variation in loci encoding-N-hCR-bearing-
genes, such as KCNA3, CFTR, SLC26A9, SCARB1, IRS2, 
F5, FGB and SHANK1, have been associated with diabetes, 
pancreatitis, lipidystrophy, vascular disorders and neurological 
changes (140-144). KCNA33N-hCR encodes a potassium channel 
that has allelic variants associated with altered risk for ALL (145) 
in a certain (germ line RUNX rearranged) subset of children 
and its mouse homolog regulates energy homeostasis and body 
weight (146). KCNA3 is thought to have its structure and func-

tion affected during its synthesis by residence time of certain of 
its elongating domains in the ribosomal vestibule (147-149) (cf. 
KCNH43N-hCR and KCNH83N-hCR). Pancreatitis and diabetes are 
associated, respectively, with CFTR4N-hCR and SLC26A93N-hCR, 
the products of which physically and functionally interact. 
CFTR is an ion channel, closely related, by membership in the 
superfamily of ATP-binding cassette proteins, to the multi-
drug resistance transporter (MDR1) (150‑153). Some MDR1 
alleles contain a polymorphic synonymous codon substitu-
tion at Gly412 (C1236T), very similar in location to Asn416 
in the N-hCR of CFTR. Such polymorphisms in MDR1 have 
been proposed (154) to affect its rate of translation elongation 
resulting in alterations in the conformation of MDR1 with 
concomitant functional changes in the profile of anticancer 
drugs that MDR1 transports (60). The N-hCR of CFTR, located 
in the regulatory insert (RI) between the membrane spanning 
domain (MSD) and the nucleotide binding domain (NBD) 
could, by analogy to the key MDR1 Gly412 substitution, alter 
translation rate at its Asn 415 to 418 region, under conditions 
of low Asn, to result in generation of CFTR protein folding 
variants (155) with altered function that may affect bicarbonate 
exchange (in co-assemblies with SLC26A93N-hCR) (156-158), 
Salmonella susceptibility (159), and timing of cystic fibrosis 
(CF) disease onset (160).

A similar location of N-hCR, between MSDs and NBDs, 
is found in two genes that encode important ATP-regulated 
magnesium channels: TRPM64NhCR and TRPM73N-hCR,4NhCR. 
Allelic variation of the former has been associated with elevated 
risk of diabetes, osteoporosis, asthma, and heart and vascular 
diseases (161), whereas allelic variation of the latter has been 
associated with sudden cardiac death, QT interval prolongation 
and atrial fibrillation in individuals with African ancestry (162), 
and ALS and PD in Guam (163). TRPM6 can form heterodi-
mers with, and regulate function of, TRPM7; the latter is 
a channel regulated enzyme that can be cleaved to modify 
histones (164,165). TRPM7 affects vascularization (166), and 
has been implicated in ovarian, breast, pancreatic and prostate 
cancer as well as in the metastasis of nasopharyngeal carci-
noma (167). The NBDs of these ion channels, as well as the STAS 
domain of SLC26A93N-hCR (151) (which is thought to assemble 
and interact with the Regulatory domain in the NBD of CFTR), 
all have poly Asn regions separating them from portions of their 
hydrophobic MSDs, suggesting that translocation rate at the 
N-hCR, perhaps due to variation in Asn levels, may serve to 
modulate the chronology of the synthesis and assembly of the 
hydrophobic intracellular domains of these molecules.

Dislipidemia could be caused by altered translation of 
SCARB13N-hCR. A list of fifteen candidate genes in which 
synonymous codon substitutions may be of functional conse-
quence, perhaps due to altered translation rate affecting protein 
synthesis, includes not only MDR1 (Gly412 and Ile1145) but also 
CFTR (Ile507 and ΔF508) (160) and SCARB1 (Ala350) (168). 
Rs5888, a synonymous substitution in SCARB1 of codon 
Ala350, adjacent to Asn349, is associated with increased risk of 
coronary artery disease (CAD) and ischemic stroke (169-171). 
Translation rates of CFTR and SCARB1 may be regulated not 
only at the synonymous codon substitutions above, but also, 
in response to Asn concentration changes, at their N-hCR. 
SCARB1 is a high density lippoprotein (HDL) receptor 
that participates in lipid metabolism and flux of cholesteryl 
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esters  (172) into e.g. HDL particles that contribute to cell 
signalling (173) and thus it could mediate the dislipidemia that 
accompanies the therapeutic administration of ASNase (174). 
SCARB1 affects suseptibility to myocardial infarction (175) 
and renal cell carcinoma  (176,177) activity of lippoprotein 
associated phospholipase A2 (Lp-PLA2) (178), and causes an 
anti-inflammatory effect in macrophage  (179); it indirectly 
affects atherosclerosis (180), mitigates stress (181), and affects 
fertility (182) and macular degeneration (183). By influencing 
gut absorption of vitamins, it can affect vascular integrity and 
diabetes suseptibility (184-188). A similar synonymous codon 
substitution at Cys816 of IRS2, (rs4773092), is associated with 
an auditory component of schizophrenia (43); this supports the 
notion, with the usual caveats regarding RNA stability, that IRS2 
may also be translationally regulated, for example at its N-hCR.

ASNase treatment produces side-effects that include vascular 
dysfunction. Factor V and fibrinogen are two of several coagula-
tion and complement factors encoded by N-hCR‑bearing-genes. 
Polymorphic alleles of F53N-hCR104t (encoding coagulation 
Factor V) have been linked to coronary artery disease (189), 
hippocampal degeneration  (190) and thrombotic events in 
ASNase treated children (144,191). ASNase specifically reduces 
the synthesis rate of fibrinogen (18), see below, a subunit of 
which is encoded by FGB. Thus inhibition by ASNase of the 
synthesis of at least two N-hCR-bearing-genes, F5 and FGB, 
could potentially account for the vascular side-effects of ASNase 
administration. FGB3N-hCR, GP1BA3N-hCR, encoding the platelet 
membrane receptor (for von Willebrand's factor) associated with 
ischemic stroke (192), and CD94N-hCR, a gene involved in platelet 
formation (193), are candidate N-hCR bearing genes that could 
be examined for their genetic association with adverse vascular 
events attending ASNase treatment (as has been reported for 
F5, above). Coagulation proteins have long been considered 
potential risk factors of ASNase therapy  (194). The steady 
state half-life of autologous iodinated fibrinogen is not affected 
by ASNase treatment and hence the observed reduction in 
steady state plasma fibrinogen concentration that produces the 
hypofibrinogenemia (195) observed after ASNase treatment is 
likely due to inhibition of fibrinogen synthesis (18). There are 
concordant studies in rabbits (196) and humans (197) regarding 
the rate of catabolism and synthesis of fibrinogen in response 
to ASNase, as well as studies on the proteomics of FGB and 
C3 in diabetics  (198,199). N-hCR-bearing-genes encoding 
complement proteins may also contribute to other disorders 
such as retinal degeneration through effects on C33N-hCR (200) 
to multiple sclerosis through effects on C73N-hCR (201) and to 
uptake of pathogens such as glycosylated viruses or bacteria by 
any of multiple members of the lectin and alternate complement 
pathway on Table I such as CLEC6A (202), CLEC10A (203) 
CLEC13B/LY75, MASP1 and C1QB.

Mitigating the effects of low plasma Asn, by altering the 
composition of intestinal microbiota (204) or by using amino 
acid supplements (23), may slow disease onset or progression 
in those at risk of diabetes or its complications. Dietary Asn 
supplementation may particularly benefit CFTR-null homo-
zygotes or compound heterozygotes, who frequently present 
with diabetes at later stages of their disease  (205). One of 
the N-hCR-bearing-genes in Fig. 1, PHACTR15N-hCR has been 
linked to coronary artery disease (CAD) in diabetics (206). 
Diabetes and CAD are frequent comorbidities, as are diabetes 

and Alzheimer's disease (72) perhaps due to a shared etiology 
originating in low plasma Asn concentration. There are two 
N-hCR-bearing-genes from Fig. 1 that are linked to PD and 
mood disorders: SNCAIP5N-hCR and ANK35N-hCR. PD and 
diabetes are comorbidities, and abnormal glucose regulation 
has been reported in >50% of PD patients (207) perhaps due 
to altered Asn homeostasis; correspondingly, bipolar disorder 
treatment outcomes differ for patients with diabetes as 
compared to normal controls (208). PD and ALS often occur 
with dementia (209,210); a shared etiology may be responsible, 
due to altered levels of Asn, perhaps even through comple-
ment genes such as C1QB3N-hCR (211), or the balance between 
C1QL23N-hCR, C1QL33N-hCR (212) and BAI23N-hCR and their non 
N-hCR bearing paralogs: C1QL1 and BAI3 (213).

Multiple genes encoding N-hCR have been linked to 
neuropsychiatric disorders, PD, aspects of schizophrenia, 
Alzheimer's disease, mood disorders [CDH9 (214), GTF2I (215) 
and ALDH6A1], neurological dysfunction (CDKL5 and 
TMEM106B) (216,217), breast-cancer [BRCA2, CEACAM5/
CEA (218), CYP19A1/Aromatase (219), IRS2, CLEC10A (220), 
LRP6 and TBC1D5 (221)], spinal degeneration (COIL, FBXO38, 
ITGAV, ASIC2, KIAA1217 and CHAD), age of onset of amyo-
trophic lateral sclerosis (ALS) (TTLL4 and LAMA3) (222), 
dementia in ALS (TMEM106B)  (223) retinal dystrophy 
(TTLL5) (224), large artery stoke (TTLL5 and PHACTR1) (225) 
decreased bone density in tamoxifen treated women (LRP4 and 
NCOA1) (226), ovarian cancer (TBC1D3 and TBC1D3F) (227) 
T cell anergy (GRAIL/RNF128/isf2) (228‑230), asthma, autoim-
mune diseases, innate immunity (231-233) and the link between 
innate and adaptive immunity (FCGR2-A,  -B,  -C)  (234) 
suggesting a common etiology of altered Asn homeostasis may 
need to be considered for some of these conditions.

LRP5, LRP6 and APC are encoded by N-hCR-bearing-
genes involved in the Wnt pathway. Rotterlin, which is reported 
to accelerate the turnover rate of LRP6 (235) (a Wnt signalling 
co-receptor)  (236), could be co-administered with ASNase 
because it may potentially synergize with ASNase to focus 
the effect of ASNase on LRP6 mediated Wnt signalling (237). 
We hypothesize that by preferentially lowering the steady state 
level of LRP6, the combination of drugs could regulate (238) 
bone mass, cancer, cardiovascular health, vision, Alzheimer's 
and multiple other diseases of aging. Notch and hedgehog 
signalling are also affected by N-hCR bearing-genes such as 
DZIP1, MAML2, BOC and CDON, and may present attractive 
targets for drug discovery via small molecules that accelerate 
turnover of specific proteins encoded by N-hCR bearing-genes, 
synergistically magnifying the impact of ASNase by altering 
the replacement rate and perhaps by establishing lowered 
steady state levels of the targeted protein. There is already a 
precedent for synergism of prednisolone with ASNase, which 
occurs by an as yet unknown mechanism. The halflife of WNT 
signalling complexes and the contribution of DSV to turnover 
of WNT coreceptors FZD and LRP6 has recently been charac-
terized (239).

The psychiatric disorders associated with ASNase treatment 
of adults (240) have been ascribed to ammonia toxicity and 
cerebrovascular-accidents (22,241,242). N-hCR-bearing-genes 
that affect nitrogen metabolism include CPS13N-hCR, regulating 
the first committed step of urea-cycle entry, and SLC6A83N-hCR, 
a creatine transporter. Impaired translation of either gene could 
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tend to cause ammonia toxicity due to urea cycle dysregulation. 
Indirect support for a link between elongation rate and altered 
mental status (cf. KIF3C4N-hCR) (243,244) comes from compu-
tational studies noting that SHANK-2 and SHANK-3, but not 
SHANK-1, demonstrate traditional ‘codon-use-bias’, suggesting 
that a translational regulatory mechanism may underly SHANK 
mediated autism spectrum disorders (245). Since SHANK family 
genes are associated with schizophrenia and SHANK-1, -2, and 
-3 are associated with autism, SHANK13N-hCR could mediate 
mental status changes through altered translation rate that could 
be caused by fluctuations in plasma Asn concentrations.

Adverse neurological outcomes have also been associ-
ated with N-hCR-bearing-genes ANK3, IRS2, SNCAIP, 
XIRP2, PPP1R9A and CACNA1-C. Low plasma Asn, via 
the 17 N-hCR‑bearing-genes listed in Fig. 1, can thus also 
plausibly be linked to onset of age associated disorders from 
ALS (246‑248) to PD (249) through COIL, PPP1R9A (250), 
QSER1  (251) and SNCAIP; dental caries and peridontal 
disease as a diabetes comorbidity through TMEM178B or 
ANKRD17 in children (252,253); (cf. LRP1B and periodon-
titis in adults)  (254). Also affected by LRP1B are age at 
menarche (255), APOE and fibrinogen binding (256), protec-
tion from cognitive decline in aging (257) as well as BMI, 
insulin resistance, optic disc size/area (cf. glaucoma), condi-
tional erectile dysfunction in African American men, heart rate 
and multiple cancers. Deafness (258,259) is affected by XIRP2 
(cf. Xeplin, PTPRQ), heroin addiction vulnerability in African 
Americans  (260) and heart disease by XIRP2  (261,262); 
heart disease by PHACTR1 (263) (cf. LRP6) and PPP1R9A 
(cf. CHRM-2, -3) (264); bone density by PHACTR1 (cf. LRP4, 
LRP5); erythropoesis and quality control of mitochondria by 
BNIP3L; nucleic acid processing by COIL, PAPD5, THRAP3, 
MEX3B and C1orf86/FAAP20; and diabetes by THRAP3 
(cf. CHRM3), PTPRD and IRS2.

BNIP3L and PEG10: cancer and frameshifting. The discussion 
above has focused on adverse events elicited by ASNase therapy, 
not the induction of tumor remission. Two N-hCR‑bearing-
genes, PEG10 and BNIP3L, have transcripts with long N-hCR 
that are encompassed within their initial two dozen codons. 
Both BNIP3L and PEG10 are apoptosis-related genes that are 
candidates for mediation of the cell death that has been observed 
to follow depletion of Asn either in cell culture (265) or in 
pediatric ALL. Multiple other N-hCR‑bearing-genes are also 
potential targets, e.g., APC, (ARID5B, IL9R and RYR2) (266), 
JAK2, KCNA3  (145), UBE2Q2  (267), COIL  (268) or 
SMG12x3N-hCR (269) (a Ser-Thr kinase with homology to mTOR). 
Temperature sensitive mutants of Asn tRNA synthetase undergo 
cell cycle arrest in early S phase at the nonpermissive tempera-
ture, a phenomenon that has been posited to be consistent with 
the existence a protein required for cell cycle progression that 
is highly sensitive to the level of charged Asn-tRNA (270), such 
as one encoded by an N-hCR‑bearing‑gene that is eliminated 
and must be resynthesized once per cell cycle (cf. COIL above).

3. Evidence for and against the model, caveats

In vitro translation and in vivo half lifes are consistent with 
ASNase impaired translocation at N-hCR. ASNase in E. coli, 
as well as in other gram negative bacteria (Salmonella, 

Klebsiella)  (271), is encoded by two independent genes 
AsnA and AsnB. The AsnB product is periplasmic and is the 
therapeutic enzyme whereas the AsnA product is a cytoplasmic 
enzyme with a lower Km (272). Studies of a cytostatic factor 
produced by Salmonella led to its isolation and identification 
as ASNase, virtually identical to the AsnB product of E. coli. 
When added to in vitro translation extracts, it inhibited protein 
synthesis (16). To determine how it inhibited protein synthesis, 
i.e. if it simply depleted the levels of asparaginylated tRNAs 
available for translation, or if the process was more compli-
cated (273,274) in vitro translation experiments (unpublished 
data) were performed with defined templates containing Asn 
codons at predetermined sites. T7 RNA polymerase was used 
to generate transcripts that were either devoid of Asn codons or 
contained one, two, five or 23 Asn codons between the N- and 
C-terminal segments of a bipartite hybrid protein composed 
of two human genes with no Asn codons. The N-terminal 
portion was derived from TCL1A, and the C-terminal portion 
was derived from CKS2. The central, intragenic N-hCR 
was, on occasion, substituted by the programmed ribosomal 
frameshifting (PRF) region from PEG10 which contains an 
Asn (AAC) codon at the frameshifting site. The resulting in vitro 
transcripts were translated in rabbit reticulocyte cell free lysates 
with isotopically labelled 35S-methionine and the products were 
analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel 
electrophoresis followed by autoradiography. This template 
gave extremely clean IVT results without the partial products 
seen with other templates such as PEG10 or gaussia luciferase. 
It was determined, with some appropriate control experiments, 
that there were quantities of ASNase that could be added to 
the translation mix to create different ratios of partial to full 
length products which could reflect relative degrees of pausing 
at the different poly Asn regions of length zero, one, two, five 
and 23 codons. Free Asn could subsequently be added back to 
the depleted reaction mix to ‘chase’, to a first approximation, 
the short ‘TCL1A’ proteins into longer, hybrid, ‘TCL1A/CKS2’ 
proteins. Conditions were also established in which the relative 
efficiency of frameshifting at the Asn codon of the PRF site of 
PEG10 was affected by exogenous ASNase added to the in vitro 
translation reaction, but this result was far less compelling than 
the effect of ASNase on translocation at N-hCR.

We have seen full length translation of templates devoid of 
Asn codons under conditions of exogenously added ASNase, but 
in templates containing Asn codons, translated under identical 
conditions, we observe translation that extends to the N-hCR. 
Thus we suggest that depletion of Asn-ylated tRNA is likely to 
be the underlying cause of inhibition of synthesis seen previ-
ously by use of random, mixed templates for characterizing the 
inhibition, by Salmonella ASNase, of in vitro translation reac-
tions (16). There were also unanticipated findings suggesting 
that frameshifting efficiency may depend on the number of 
Asn codons in an artificial N-hCR that was inserted a dozen 
codons upstream of the PEG10 frameshifting site. We have not 
characterised the behavior of deamidated Asn-tRNAAsn which 
could incorporate Asp residues at Asn codons were it not edited 
and removed by a proofreading complex.

Differences in response to ASNase administration in children 
and adults, a recent gene family expansion. There are differ-
ences in response to ASNase between children and adults. They 
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are most obvious in the ALL tumor remission response, as well 
as in the type of glycemic dysregulation: periphiral vs. central 
loss of responsiveness. In the pediatric patients, the hypergly-
cemia is insulin reversible, insulin is absent from circulation 
following an ASNase therapeutic regimen that includes steroid 
hormones similar to prednisolone, and it is likely that central 
control over insulin synthesis or release may be deficient. In 
the metabolomic studies of diabetic adults, Fasting Insulin 
levels are high, and IRS2 mediated peripheral signalling 
may be deficient. In addition, the unacceptable neurovascular 
complications (fugue state, cerebrovascular accidents) in adults 
compared to children underscores the difference between the 
physiology of children and adults.

The evolutionarily recent duplication of the TBC1D33N-hCR 
gene of hominids, and the expansion, and perhaps positive 
selection in humans, of eight members of this N-hCR bearing-
gene family (275), suggests that these oncogenes (associated 
with ovarian cancer)  (227) whose turnover is regulated by 
palmitoylation  (276), may control vesicle fusion by nonca-
nonical regulation of RAB GTP exchange (277), perhaps in 
association with Rab5 (278) [cf. TBC1D5 with Rab7 (279) or 
autophagy with ATG-8 (280) or ATG-9 (280)]. TBC1D3 is 
involved in pinocytosis with ARF6 (281), affects epidermal 
growth factor receptor (EGFR) signalling by altering microtu-
bule dynamics (282) and can influence insulin signalling (280) 
by regulating IRS1 degradation (284 cf. 285). These genes 
could also potentially regulate insulin or amino acid release 
from vesicular or lysosomal storage (286).

AAC codons; intrinsically disordered protein assemblies. 
Most of the poly Asn codon runs reported here consist of 
the two isoaccepter codons AAT and AAC used in about 
equal frequency with a slight bias towards homopolymeric 
runs of AAC. In the gene IRS28N-hCR, from human, zebrafish, 
elephant-shark, frog, python and falcon, AAC is used exclu-
sively in N-hCR runs of varying length and distance from 
the initiator methionine, suggesting that if regulation is not 
restricted only to the AAC isoacceptor species, perhaps there 
is a further, structural, component to this phenomenon [CAG 
homocopolymers encoding poly Q repeats can form triple 
stranded structures (287), RNA sequences enriched in AAT 
motifs can be labile  (288)]. Interestingly, PEG107N-hCR and 
BNIP3L5N-hCR employ AAC codons exclusively in human and 
mouse (PEG10), or in human, mouse, rat, lizard, ~frog and 
chicken (BNIP3L), indicating that the two isoacceptor tRNAs 
may indeed be differentially regulated.

N-hCR-bearing-genes encode proteins that engage in 
networks whose equilibria may be affected by elonga-
tion rate, e.g. PPP1R9A5Nx2-hCR, unique among the 17 genes 
of Fig. 1 because of two separate N-hCR, encodes neurabin, 
the intrinsically disordered regions (289) of which become 
conformationally restricted in regulatory complexes with 
PP1 (290), and which is implicated in neurite formation (291), 
neuroprotection against seizures (292), mood disorders (293), 
hippocampal plasticity (294), long term depression (295), dopa-
mine mediated plasticity (296), contextual fear memory (297), 
hepatosplenic lymphoma (298) and regulation of G protein 
coupled receptor (GPCR) signalling (250). A key unstructured 
UBZ domain of Fanconi's anemia gene FAAP20 can form a 
highly structured α helix upon ubiquitin binding; this domain 

is interrupted by a 5N-hCR in certain variant isoforms. The 
2N-hCR of TP53 is similarly located: adjacent to a pair of 
transactivation domains (TADs) that gain structure upon ligand 
binding (299,300). The N-hCR of TRPM-6 and -7 interrupt 
their α kinase domain. Modulating translation rate by varying 
Asn concentration, while synthesising these proteins, could 
allow modulation of the protein assemblies in which these 
proteins participate.

Caveats, Asn residues can be post-translationally modified; 
interspecies N-hCR length variation and inflammation. In 
this survey of other potential roles for the conserved poly 
Asn regions in proteins, we note that they also act as sites of 
post-translational modification to regulate protein activity by 
glycosylation or deamination or [cleavage, by Asparaginyl 
endopeptidases (301) (cf. Taspase1, an ASNase gene family 
member) (302)]. The 4N-hCR of CFTR, differing in length 
between human, mouse and pig, encodes a conformationally 
dynamic regulatory insertion (303) that may gate access to the 
ATP binding site (304). A similarly unstructured loop in Bcl-xL 
undergoes deamination (305,306), as does an Asn residue pair 
between the TADs of TP53 (307), a region unstructured until 
bound to MDM2 (308,309). The 2N-hCR of TP53 differs in 
length between rats, mice and humans. N-hCR length variation 
in N-hCR-bearing-genes can correlate with disease severity 
in animal models of human inflamation. For example the pig 
model of CF more closely reflects the physiology of the human 
disorder, in comparison to the mouse model  (310) perhaps 
because, as with TP53, the length of the poly Asn region in 
pig more closely resembles that of human rather than mouse. 
Also, in P. aeruginosa-induced bacteremic shock, TXNIP 
exacerbates septic shock associated with bacteremia in a mouse 
model (92). TXNIP of mouse has an identically situated, but 
longer poly Asn region (8N-hCR) than human and most other 
nonrodent mammals (3N-hCR), perhaps enabling greater redox 
level changes in response to Asn level variation. These examples 
may reflect divergent evolutionary choices in inflammatory 
and pathogen response strategies that may partially explain 
the reported differences between human and rodent models 
of inflammation (311,312) and IRS2 genetic associations (72). 
Altered electrophoretic mobility, a hallmark of some deamina-
tion events, indicates that post-translational modification may 
even occur at the poly Asn region of IRS (281). Deletion analysis 
of the N-terminal poly Asn containing region of BNP3L/B5/NIX 
suggests that it masks apoptosis inducing function (313,314). 
Regarding self association and aggregation at poly Asn regions, 
Perutz stated that it is unlikely that poly Asn repeats can form 
polar zippers of the kind formed by poly Gln repeats (315), 
but see (316). hCR may be tolerated at intrinsically disordered 
regions of proteins (317) where proteins could accommodate 
hCR expansion in their genes (318). An alternative explanation 
for the action of ASNase: NH3 generated by ASNase may act 
as a gaseous reactive signalling molecule, akin to NO, CO or 
SH2, to modify protein structure and function (319).

4. Biochemistry of amino acid activation, genome-wide 
association studies

At least five different human tRNA synthetases can serve as 
autoantigens in inflammatory responses (320). Human tRNA 
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synthetases AsnRS and HisRS both serve as chemoattrac-
tants (321), ligands for cell surface proteins CCR5 and CCR3 
respectively (322). AsnRS protein levels are upregulated by 
almost three orders of magnitude in a model of preosteoblast 
cell proliferation driven by FGF2 (323). Filarial AsnRS, in 
contrast to human AsnRS, serves as a ligand for CXCR1 and 
CXCR2 and is chemotactic for neutrophils and eosinophils, 
with a terminal subdomain that serves as a ligand for human 
IL8 receptor (324). The link between inflammatory responses 
and Asn tRNA synthetases remains an open question.

Leu contributes to formation of mTOR1C, a biochemical 
complex that regulates cell cycle (325) in conjunction with 
other amino acids  (326,327) including Arg  (328,329) and 
Gln  (105,330-332). In a related experimental paradigm, 
apoptosis induced by Gln withdrawal, Asn, instead of Gln 
may actually be the effector molecule whose withdrawal is 
sensed (267). A biochemical mechanism for sensing Asn levels, 
required either to trigger apoptosis, or to advance through 
S phase of the cell cycle, perhaps mediated by AsnRS, and not 
involving ribosomes may yet be discovered, but even if such 
a mechanism were to exist, translational inhibition at N-hCR 
would still remain a most parsimonious explanation for the 
myriad clinical side-effects of ASNase treatment. Poly Asn (2) 
and poly Leu (100) codon repeats (N-hCR and L-hCR) appear 
in a biased manner in mammalian genomes; this bias may be 
related to metabolomic differences in the levels of Asn (23,28) 
and Leu (333) between normal and diabetic patients as we have 
discussed for the case of Asn in this study, and as may be the 
case for Leu (cf. L-hCR length polymorphisms and diabetic 
nephropathy in CNDP1 (107,108). mTORC1 activation is the 
orthodox pathway for understanding how altered amino acid 
levels exert metabolic control. This study has examined an 
alternative hypothesis, of the potential for amino acid fluc-
tuations to control translation rate, to thereby effect a different 
measure of metabolic control by reshaping the composition of 
the proteome.

Genome-wide association studies (GWAS). GWAS have 
met limited success  (190,334-336). The contribution of 
the environment to gene expression is particularly difficult 
to quantify but it may explain the missing heritability 
problem  (337). The biomic environment has a significant 
impact on gene expression, and part of its function could 
be to alter levels of plasma amino acids that may ultimately 
be reflected in intracellular amino acid level variation and 
alterations in translation rates within those cells. If the genomic 
bias in N-hCR use is a harbinger of a broad effect of inhibited 
translation due to Asn level variation, then GWAS screens 
for common disorders may reveal N-hCR-bearing-genes that 
could be influenced by constituents of the biome that alter Asn 
concentrations and could contribute to metabolism, aging and 
complex diseases.

GWAS of five major psychiatric illnesses implicates 
four N-hCR-bearing-genes (338). Most prominent is ANK3 
(one of the top 17  N-hCR-bearing-genes)  (cf.  Fig.  1) as 
well as CACNA1C, ZFPM2 and NTRK3. NTRK3 can be 
related, through a neuronal cell death mechanism (339), to 
mBEX3 (340), a murine gene that bears a long N-hCR. NTRK3 
is associated with Gaucher's disease, PD (341,342), multiple 
cancers (343-347) leukemia (348), and is an entry receptor for 

trypanosomes (349) (cf. APOL1, PTPRD, PHACTR1) (350). 
Asn level variation may affect all of these processes. In a 
GWAS of seven common diseases, hypertension was most 
closely associated with two linked N-hCR-bearing‑genes, RYR2 
and CHRM3. RYR2 is involved with heart disease (351) and 
associated with lipid levels (352) and ALL (266), CHRM33N-hCR 
is associated with response to an antidiabetic drug in African 
Americans (353) (cf. CHRM24N-hCR associated with metabolic 
syndrome)  (354). Another of the seven common diseases, 
Crohn's disease, was quite significantly associated with an 
N-hCR-bearing-gene, IL23R (355). IL23R is also associated 
with psoriasis, diabetes (356), CAD, Behcet's disease, anky-
losing spondylitis (357‑359) and leprosy (360).

A GWAS of ALL shows that it is affected by at least 
two other N-hCR-bearing-genes, in addition to RYR2 (noted 
above): IL9R (361) and ARID5B (cf. KCNA3) (145). IL9R shares 
a common γ subunit with other interleukin receptors) (362) 
IL9R has a 4N-hCR that is absent from all mammals except 
Pan [cf. APOL1 which lacks 3N-hCR in all mammals except 
Gorilla (2N in Pongo)]. ARID5B encodes part of a histone 
lysine demethylase complex (363) and is not only genetically 
associated with ALL (266,364-369) but is also associated with 
corneal changes (370), low birth weight (371), diastolic blood 
pressure (372) rheumatoid arthritis (373), response to halo-
peridol (374) (an anti-psychotic medication), systemic lupus 
erythematosus (SLE) (375), lipid balance (376) and triglyceride 
metabolism in mouse adipocytes (377), as well as, in humans, 
T2DM (378). The contribution of ASNase to these conditions, 
especially to ALL, potentially by altered translation at the 
N-hCR of ARID5B warrants further investigation (379).

We propose that the impaired translation which has been 
described above be termed the ‘translational N-hamper effect’ 
because there is nothing intrinsically impaired about a protein 
polymerization reaction in which one of the required compo-
nents, activated Asn tRNA, is ratelimiting for the translocation 
reaction on the template mRNA. The verb of choice for slowed 
translocation could just as well have been cumbered move-
ment instead of hampered movement. If the argument was first 
made for Gln, the Q-cumber effect could have encompassed 
this hypothetical phenomenon.

The ‘translational N-hamper effect’ is a mechanism 
whereby protein expression is modulated by coupling fluc-
tuations in appropriate aminoacylated-tRNA availability to 
ribosome translocation rates at corresponding hCR. Thus, 
ribosome movement could pause at hCR which would serve 
as punctuation marks to allow relative intracellular amino acid 
pool sizes to influence mRNA decoding and protein synthesis. 
Amino acid level fluctuation could potentially affect: mRNA 
halflife and accessibility to regulatory complexes, ribosome 
frameshifting efficiency, initiation rate and formation of stable 
translation complexes, and elongation rate and vestibule resi-
dence time to affect steady state levels of these proteins and of 
higher order structures in which they participate.

Our model holds that Asn level reductions, such as those 
accompanying the administration of ASNase, cause impaired 
translation of N-hCR-bearing-genes to precipitate metabolic, 
vascular, immunological and neurological disorders and 
contends that this could result in insulin desensitization, impaired 
insulin release and, ultimately, diabetes. Thus the microbiome, 
by endogenously generating ASNase, could cotranslationally 
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regulate a constellation of N-hCR‑bearing‑genes to initiate 
complex disease pathologies.
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