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Abstract. Chronic kidney disease (CKD) is a worldwide public 
health concern with limited treatment options. The incidence 
of CDK is increasing and the disease is associated with a poor 
quality of life and a high financial cost of treatment. Shen-
Kang (SK), a traditional Chinese herbal medicine, has been used 
clinically in the treatment of renal diseases for decades. This 
study was carried out to validate the therapeutic effects of SK on 
renal injury induced by 5/6 nephrectomy, as well as its effects on 
the apoptosis of proximal tubule epithelial cells (HK-2 cells), in 
an aim to elucidate its mechanisms of action. For this purpose, 
an animal model of renal injury was created by subjecting rats 
to a 5/6 nephrectomy. The rats in the sham-operated and model 
groups received distilled water, while the rats in the SK and 
enalapril (EN) groups were treated with SK or EN. The levels 
of blood urea nitrogen (BUN) and serum creatinine (SCr) were 
measured. Kidney tissues obtained from the rats were stained 
with hematoxylin and eosin. HK-2 cells were employed to 
investigate the effects of SK on the apoptosis of renal proximal 
tubule epithelial cells induced by treatment with hydrogen 
peroxide (H2O2). In addition, cell viability was measured by MTT 
assay. Apoptotic events were monitored by western blot analysis, 
flow cytometric analysis and nuclear morphological anlaysis. 
The levels of intracellular reactive oxygen species (ROS) were 

measured by flow cytometric analysis with dihydroethidium 
staining. The results revealed that the administration of SK to 
5/6 nephrectomized rats for 1 week significantly decreased the 
levels of SCr and BUN. The morphological observations of the 
kidneys also indicated the amelioration of damage to renal tissue. 
Treatment of the HK-2 cells with SK significantly protected the 
cells from H2O2-induced apoptosis, as indicated by an increase 
in cell viability, the decrease in the cleavage of poly(ADP-ribose) 
polymerase (PARP) and fewer condensed nuclei. H2O2-induced 
ROS production was also attenuated by treatment with SK. 
Of note, the increase in the levels of phosphorylated extracel-
lular signal-regulated kinase (ERK) and phosphorylated p38 
which occurred in response to exposure to H2O2 was inhibited 
by treatment with SK. No changes were observed in the levels 
of phosphorylated JNK under the same treatment conditions. 
Thus, the mitogen-activated protein kinase (MAPK) signaling 
pathways play an essential role in the development of CKD. SK 
alleviated renal injury in rats induced by 5/6 nephrectomy and 
prevented the H2O2-induced apoptosis of HK-2 cells through the 
MAPK signaling pathways.

Introduction

Chronic kidney disease (CKD) has a significant impact on 
public health worldwide (1), and it is an important risk factor 
for death and cardiovascular disease (2). CKD is characterized 
by the progressive loss of renal function, chronic inflammation, 
oxidative stress, vascular remodeling, as well as glomerular 
and tubulointerstitial scarring (3). Although the progression of 
CKD may depend upon the capacity of residual nephrons to 
overcome stress, the mechanisms underlying the progression 
of CKD remain poorly understood (2).

Although various animal CKD models of CKD have been 
reported, rodent models tend to be more commonly employed 
in experimental CKD studies (4). The partially nephrectomized 
rat model has been used extensively to investigate archetypal 
pathological changes in CKD. The remnant kidney of nephrec-
tomized rats exhibits adaptive, compensatory growth in the 
days following injury, which is similar to the course of human 
disease (4-6).

Shen-Kang (SK), a traditional Chinese medicine (TCM) 
that confers protection against renal diseases (due to its 
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composition) (7-27), is comprised of 4 herbs used in TCM: 
rhubarb  (Rheum officinale), Salvia miltiorrhiza, safflower 
(Carthamus tinctorius L.) and Astragalus membranaceu). In 
our pre‑experimental studies, in rats subjected to 5/6 nephrec-
tomy, treatment with SK attenuated chronic clinical renal 
failure. However, the mechanisms underlying the renal protec-
tive effects of SK remain to be elucidated.

Oxidative stress, which is characterized by excessive levels 
of reactive oxygen species  (ROS) due to an imbalance between 
the oxidative and anti-oxidative systems, has been implicated 
in various pathological conditions observed in CKD (28-30). 
Renal proximal tubule epithelial cells (HK-2 cells) are most 
frequently atrophic in CKD (1). During renal injury, elevated 
levels of ROS in the proximal tubule promote lipid peroxida-
tion and DNA damage, eventually resulting in apoptotic cell 
death in the kidneys (31-33).

In this study, we assessed the protective properties of SK in 
rats subjected to 5/6 nephrectomy, as well as in renal proximal 
tubule epithelial cells (HK-2 cells). An initial evaluation of 
the beneficial effects of SK was performed using an in vivo 
model of CKD (5/6 nephrectomized rats). These observations 
were further evaluated using an in vitro model with human 
renal proximal tubular epithelial HK-2 cells, in which ROS 
production, apoptosis and cell viability were determined. In 
addition, the molecular mechanisms underlying the potentially 
protective effects of SK were also investigated.

Materials and methods

Materials. SK was obtained from Xi'an Shiji Shengkang 
Pharmaceutical Industry Co., Ltd., (Xi'an, China). Enalapril 
(EN) was purchased from Merck Millipore (Billerica, MA, 
USA). Anti-extracellular signal‑regulated kinase  (ERK; 
#9102), anti-phosphorylated ERK (p-ERK; #4370), anti-p38 
(#9212), and anti-phosphorylated p38 mitogen-activated 
protein kinase (p-p38  MAPK; #9216) antibodies were 
purchased from Cell Signaling Technology (Danvers, MA, 
USA). Anti-c-Jun N-terminal kinase (JNK; sc‑571), anti‑phos-
phorylated JNK  (p-JNK; sc‑6254), anti-poly(ADP‑ribose) 
polymerase (PARP; sc‑8007) and anti-actin (sc‑47778) anti-
bodies were obtained from Santa Cruz Biotechnology, Inc. 
(Dallas, TX, USA). Horseradish peroxidase (HRP)-conjugated 
anti-mouse and anti-rabbit IgG antibodies were purchased from 
Merck Millipore. Hydrogen peroxide (H2O2) was purchased 
from Samchun Chemical Co. Ltd. (Seoul, Korea).

Animals. Six-week-old male Sprague-Dawley (SD) rats weighing 
200±20 g were obtained from the Fourth Military Medical 
University (Xi'an, China). The rats were maintained under 
a regular 12 h light/dark cycle at stable room temperature for 
1 week prior to the commencement of the experiments. The 
rats were fed standard rodent chow and had free access to tap 
water. All experimental procedures were carried out according 
to the protocols approved by the Ethics Committee for Animal 
Experimentation of the Fourth Military Medical University and 
in accordance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals.

Surgical procedures and drug administration. Each rat was 
anesthetized with chloral hydrate solution (33 mg/100 g) via 

intraperitoneal injection. A total of 18 rats was subjected to 
5/6 nephrectomy (5/6 Nx) in which, the upper and lower poles 
of the left kidney and the entire right kidney were removed, as 
previousy described (5,34,35). A sham operation was performed 
on 6 additional rats as a non-Nx control (sham-operated) group. 
The nephrectomized rats were randomly divided into 3 groups 
as follows: i) no treatment (5/6 Nx, n=6); ii) treatment with SK 
(5/6 Nx + SK, n=6); and iii) treatment with EN (5/6 Nx + EN, 
n=6, positive control). The rats in the treatment groups received 
either SK (450 mg/kg/day; via tail vein injection) or EN (5 mg/
kg/day; via intraperitoneal injection) daily for 1 week following 
surgery, whereas the rats in the sham-operated group and 5/6 Nx 
(no treatment) group received the vehicle (distilled water, 5 ml/
kg/day) only. The animals were sacrificed by exsanguination at 
day 30 post-surgery.

Biochemical analysis. Blood samples were collected from the 
orbital venous plexus on days 0, 7 and 20 post-surgery. At the 
end of the experiment, blood samples were obtained from the 
abdominal aorta, immediately following sacrifice. The serum 
concentrations of blood urea nitrogen  (BUN) and serum 
creatinine (SCr) were determined using standard laboratory 
procedures, as previously described (36).

Histological analysis. After the rats were sacrificed, the kidney 
tissue was removed from the abdominal cavity of the rats by 
surgical methods (isolated kidney tissue from adipose tissue, 
renal vasculature cut with scissors to obtain kidney tissue). Tissue 
was fixed in formalin, dehydrated with ethanol, rendered trans-
parent with xylene, embedded with liquid paraffin and sliced 
with an automatic slicing machine. Slices of renal tissue fixed 
in 10% neutral-buffered formalin were embedded in paraffin, 
and 2-µm-thick sections were cut for morphological anlaysis. 
These sections were stained with hematoxylin and eosin (H&E), 
as previously descrbied (37). All tissue samples were evaluated 
by an independent investigator without prior knowledge of the 
group to which the rat belonged. All glomeruli and the entire 
microscopic area of each specimen were examined.

Cell culture. Renal proximal tubule epithelial cells (HK-2 cells) 
were obtained from the American Type Culture Collection 
(ATCC, Manassas, VA, USA). The HK-2 cells were passaged 
every 2-3  days in 100-mm dishes containing combined 
Dulbecco's modified Eagle's medium/F-12 [DMEM/F12(1:1)] 
supplemented with 10%  fetal bovine serum, 2  mM gluta-
mine, 100 U/ml penicillin and 100 µg/ml streptomycin (Life 
Technologies, Grand Island, NY, USA). The cells were grown 
at 37˚C in a humidified 5% CO2 atmosphere. These cells were 
treated with H2O2 in the presence or absence of SK at the 
indicated concentrations. For experimental use, the cells were 
harvested at the end of the treatment period for further analysis.

Cell viability assay. Cell viability was measured using the 
EZ-Cytox Cell Viability Assay kit (MTT) assay (Itsbio, Seoul, 
Korea). MTT assay is based on the cleavage of the tetrazolium 
salt, MTT, to the water-insoluble formazan (38,39). The formazan 
dye produced by viable cells can be quantified by measuring the 
absorbance of the dye solution at 460 nm. The HK-2 cells were 
seeded in 96-well plates (5x103 cells/well) at 37˚C in a 5% CO2 
incubator in DMEM/F12. Following an overnight incubation, 
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the cells were incubated for 24 h in the presence or absence of 
SK (300, 600 and 900 µg/ml) for 1 h prior to exposure to H2O2 
(200, 300, 400 and 500 µM). The final incubation of the cells 
with 10 µl of kit reagent was performed for 45 min at 37˚C. The 
absorbance was measured at 460 nm using a microplate reader 
(Bio-Rad, Hercules, CA, USA). Cell viability was calculated 
and averaged. The cells from the control group were treated in 
the same manner without H2O2, and cell viability was expressed 
as a percentage of the untreated controls.

Flow cytometric analysis. Early apoptosis and late apoptosis/
necrosis induced by H2O2 were detected quantitatively, using 
an Annexin V-FITC apoptosis detection kit (Invitrogen, Grand 
Island, NY, USA), as previously described (31). Briefly, the 
cells were treated with H2O2 and/or SK, and then harvested 
by centrifugation, washed with PBS, re-suspended in a Ca2+-
enriched binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 
and 2.5 mM CaCl2), incubated with 10 µM fluorescein isothio-
cyanate (FITC)-conjugated Annexin V protein and propidium 
iodide (PI) for 15 min in the dark and analyzed by two-color 
flow cytometry. The cell samples were detected immediately in 
the FL1-H and FL2-H channels of a FACSCalibur flow cytom-
eter (BD Biosciences, San Jose, CA, USA), which measured the 
fluorescence at 488 nm excitation and 530 nm emission. The 
number of apoptotic cells was quantified and the percentage of 
apoptotic cells was calculated.

4',6-Diamidino-2-phenylindole (DAPI) staining. Changes 
in the nuclear morphology of apoptotic cells were detected 
using the DNA-specific fluorescent dye, DAPI (Vectashield; 
Vector Laboratories, Burlingame, CA, USA), as previously 
described (31). The HK-2 cells were grown on glass coverslips 
and treated with H2O2 and/or SK for 24 h. The treated cells were 
then fixed with 4% paraformaldehyde for 15 min at room temper-
ature, washed with PBS, permeablized with 0.2% Triton X-100 
for 10 min at room temperature, washed with PBS again and 
20 µl of mounting medium (DAPI) was then added to the fixed 
cells for 5 min. The finalized slides were stored at 4˚C, protected 
from light and examined under a fluorescence microscope 
(Nikon, Tokyo, Japan) in order to assess chromatin condensation 
and fragmentation of the nuclei. Cells that exhibited a reduced 
nuclear size, chromatin condensation, intense fluorescence and 
nuclear fragmentation were considered apoptotic.

Determination of oxidative stress. The generation of intracellular 
ROS was measured with dihydroethidium (DHE; Invitrogen) (a 
ROS fluorescent probe), as previously described (1). Briefly, the 
HK-2 cells were seeded onto 6 cm plates and incubated with 
500 µM H2O2 for 6 h in the presence or absence of 300 µg/ml SK. 
At the end of the experimental period, the cells were incubated 
with 5 µM DHE for 30 min at 37˚C, washed and then collected 
by centrifugation (600 x g for 5 min at room temperature), and 
resuspended in PBS. The fluorescence intensity was measured 
using a FACSCalibur™ flow cytometer (BD Biosciences). An 
OxiSelect™ Total Antioxidant Capacity (TAC) assay kit (Cell 
Biolabs, San Diego, CA, USA) was employed to measure TAC, 
as previously described (40) and to estimate the reductive or 
antioxidant capacity of biomolecules. Briefly, HK-2 cells were 
incubated with 500 µM H2O2 for 6 h in the presence or absence 
of 300 µg/ml SK, washed 3 times with cold PBS, homogenized 

in cold PBS, and then centrifuged at 10,000 x g for 10 min at 4˚C. 
The supernatant was stored at -80˚C and measured according to 
the manufacturer's instructions and with the appropriate controls.

Western blot analysis. Following treatment with H2O2 and/
or SK, the HK-2 cells were placed on ice, washed twice in 
ice-cold PBS and lysed at 4˚C for 30 min in cell lysis buffer 
containing 50 mmol/l Tris-HCl, pH 7.5, 1% (v/v) Nonidet P-40, 
250 mmol/l NaCl, 0.1 mmol/l phenylmethylsulfonyl fluoride, 
0.1 mmol/l sodium vanadate, 20 mmol/l β-glycerol phosphate, 
2 mmol/l DTT, 1 mmol/l leupeptin and 10 mmol/l PNPP, as 
previously described (31). The lysate was then centrifuged at 
16,000 x g for 20 min at 4˚C. The supernatant was collected 
for use in sodium dodecyl sulfate‑polyacrylamide gel electro-
phoresis (SDS-PAGE) and the protein content was estimated 
using a bovine serum albumin protein assay. Proteins were 
mixed with sample buffer containing β-mercaptoethanol and 
heated at 100˚C for 2 min. A total of 40 µg of each cell lysate 
was fractionated by SDS-PAGE on a 10% polyacrylamide gel 
and transferred onto nitrocellulose membranes. After blocking 
with 5% skim milk in Tris-buffered saline (TBS) containing 
0.02% Tween-20 at room temperature for 1 h, the membranes 
were then incubated with primary antibodies (diluted 1:1,000) 
overnight at 4˚C. Actin (diluted 1:5,000) was used as a loading 
control. Following incubation with the primary antibodies, the 
blots were washed 4 times in TBS/Tween-20 prior to incubation 
for 1 h at room temperature in goat anti-mouse or anti-rabbit 
HRP-conjugate antibody at 1:2,000 dilution in TBS/Tween-20 
containing 5% skim milk. Following extensive washing in 
TBS/Tween-20, the blots were processed for the detection 
of antigens using the enhanced chemiluminescence system. 
Proteins were visualized with the ECL-chemiluminescence kit 
(GE Healthcare Life Sciences, Logan, UT, USA).

Statistical analysis. The quantification of the results of western 
blot analysis was carried out using the ImageJ (1.47) software 
(version 1.47). Data are expressed as the means ± SEM of 
the 3 independent experiments and analyzed by the Student's 
unpaired t-test (SPSS version 17.0 software; SPSS Inc., Chicago, 
IL, USA). A value of P<0.05 was considered to indicate a statis-
tically significant difference.

Results

Administration of SK attenuates the development of glomerular 
lesions in rats induced by 5/6 nephrectomy. In order to evaluate 
the putative effects of SK on renal function, histopathological 
changes in the renal sections of 5/6 nephrectomized rats were 
examined  (Fig.  1). In the control (sham-operated) group, 
proximal and distal tubules exhibited a normal structure (no 
histological lesions; Fig. 1). A significantly greater number of 
renal histological abnormalities (glomerular sclerosis, tubular 
vacuoles, interstitial fibrosis and inflammatory cell infiltration) 
was observed in the 5/6 Nx vs. the sham-operated group. These 
abnormalities were markedly decreased in the 5/6 Nx + SK 
group compared with the 5/6 Nx group, and similar effects were 
also observed in the 5/6 Nx + EN-treated group (Fig. 1). EN, an 
effective and widely used drug in the treatment of CKD (41-47), 
was used as a positive control treatment. These results indicate 
that SK may be beneficial in the treatment of CKD.
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Treatment with SK or EN improves renal function in rats 
subjected to 5/6 nephrectomy. To evaluate renal function, SCr 
and BUN levels were measured. The SCr and BUN levels 

significantly increased in the 5/6 Nx group vs. the sham‑oper-
ated group (Fig. 2), indicating that the 5/6 nephrectomy model, 
reflecting an impairment in renal function, had been successfully 

Figure 1. Effects of Shen-Kang (SK) on histopathological changes in renal tissue obtained from 5/6 nephrectomized rats. H&E staining of renal sections of rats 
subjected to 5/6 nephrectomy (magnification, x200). From left to right, control (sham-operated) group, 5/6 Nx group, 5/6 Nx + SK group, 5/6 Nx + enalapril (EN) 
group, respectively. The black arrow indicates glomerular sclerosis, the red arrow indicates tubular vacuoles, the blue arrow indicates interstitial fibrosis and the 
yellow arrow indicates inflammatory cell infiltration.

Figure 2. Changes in the levels of serum creatinine (SCr) and blood urea nitrogen (BUN) in rats subjected to 5/6 nephrectomy (5/6 Nx). Serum levels of (A) SCr 
and (B) BUN were measured on days 0, 7, 20 and 30 following 5/6 Nx. Values are the means ± SEM (n=6); **P<0.01 compared with the control group; #P<0.05 
and ##P<0.01 compared with corresponding model values.

Figure 3. Effects of Shen-Kang (SK) on viability of HK-2 cells. Cell viability was assessed by MTT assay following treatment with SK and/or H2O2 for 24 h. 
(A) Viability of HK-2 cells following exposure to H2O2 at various concentrations. (B) Viability of HK-2 cells treated with various concentrations of SK prior to 
exposure to 500 µM H2O2. Values are expressed as a percentage of the untreated controls, and each value represents the mean ± SEM of 3 individual experiments. 
*P<0.05 and **P<0.01 compared with the control; #P<0.05 compared with the H2O2-treated group.
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established. Notably, the SCr and BUN levels were significantly 
decreased in the 5/6 Nx + SK and 5/6 Nx + EN groups compared 
with the 5/6 Nx group (Fig. 2), which suggests that the adminis-
tration of SK improves renal function in a similar manner to EN.

SK protects against H2O2-mediated cell death in HK-2 cells. 
To elucidate the molecular mechanisms underlying the effects 
of SK, HK-2 cells were employed to examine the effects of 
SK on the apoptosis of renal proximal tubule epithelial cells 
induced by H2O2. The HK-2 cells were exposed to H2O2 at 
various concentrations at 37˚C for 24 h. Cell viability was 
then measured by MTT assay. As shown in  Fig.  3A, cell 
viability was decreased in the H2O2-treated cells in a dose-

dependent manner  (200‑500  µM). Notably, H2O2-induced 
cell death was inhibited by treatment with SK (300, 600 and 
900 µg/ml)  (Fig. 3B) prior to exposure to H2O2  (500 µM), 
suggesting that treatment with SK effectively protects HK-2 
cells against H2O2-induced cell death.

Morphological and biochemical effects of H2O2 and SK on 
HK-2 cells. To further investigate the effects of SK on H2O2-
mediated cell death, Annexin V and PI staining were employed 
to evaluate the events leading to cell death. FACS analysis with 
Annexin V and PI staining revealed that the apoptotic cell 
population, induced by exposure to H2O2 for 24 h, was elevated 
from 3.4±0.1 to 32.1±0.4%  (Fig.  4A); this increase in the 

Figure 4. Shen-Kang (SK) pre-treatment inhibits the H2O2-induced apoptosis of HK-2 cells. (A) Apoptosis of HK-2 cells was detected by flow cytometry 
with Annexin V and propidium iodide (PI) staining. Cells were treated for 24 h with 500 µM H2O2 or 300 µg/ml SK followed by 500 µM H2O2. (B) Examination 
of HK-2 cell nuclear morphology by fluorescence microscopy after staining with 4',6-diamidino-2-phenylindole (DAPI). (C) Western blot analysis of cleaved 
poly(ADP‑ribose) polymerase (PARP) following treatment with 500 µM H2O2 and/or 300 µg/ml SK in HK-2 cells. Values are expressed as the means ± SEM of 
3 individual experiments. **P<0.01 compared with the control; #P<0.05 compared with the H2O2-treated group.
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apoptotic cell population was prevented by treatment with SK 
prior to exposure to H2O2 (apoptotic cell population decreased 
to 19.1±0.3%). Statistical analysis further confirmed that 
treatment with SK protected the HK-2 cells against apoptosis 
(induced by H2O2; Fig. 4A, lower panel). To further evaluate 
the effects of SK, morphological changes in the nuclei were 
observed using DAPI staining with fluorescence microscopy. 
Normal nuclei were characterized by homogeneous staining, 
and regular oval and rounded shapes  (Fig. 4B, left panel). 
Apoptotic nuclei, indicated by condensed nuclei and nuclear 
fragmentation, were apparent following exposure to 500 µM 
H2O2 for 24 h (Fig. 4B, center panel). However, these changes in 
nuclear characteristics were ameliorated by pre-treatment with 
SK in the HK-2 cells (Fig. 4B, right panel). This was confirmed 
by western blot analysis of PARP, which is cleaved under apop-
totic conditions (48,49). As illustrated in Fig. 4C, the cleaved 
form of PARP significantly increased following exposure to 
H2O2 for 24 h. The cleavage of PARP was inhibited by pre-
treatment of the cells with SK (Fig. 4C), suggesting that SK 
prevents the molecular events involved in apoptotic signaling.

Inhibition of intracellular oxidative stress following treatment 
with SK in HK-2 cells. It is well-established that oxidative stress 
contributes to apoptosis (31-33). Therefore, the intracellular 
ROS levels, and TAC, were measured in the HK-2 cells. ROS 
production, measured by DHE staining, was elevated following 

exposure to H2O2; treatment with SK significantly reduced 
ROS production (Fig. 5A). In addition, TAC was also enhanced 
by treatment with SK (Fig. 5B). Taken together, our findings 
suggest that the SK-induced inhibition of ROS production is 
mediated by enhanced TAC in HK-2 cells.

Modulation of MAPK signaling by SK in HK-2 cells. To 
determine whether SK regulates the signaling mechanisms 
responsible for H2O2-induced apoptosis, the activation of 
different MAPK signaling pathways, including ERK, JNK 
and p38  MAPK, was monitored by western blot analysis. 
Notably, the H2O2‑mediated activation of ERK and p38 was 
observed, but JNK activation was not affected by exposure to 
H2O2 (Fig. 6A). Furthermore, pre-treatment of the HK-2 cells 
with SK inhibited the phosphorylation of ERK and p38, but not 
that of JNK.

Discussion

CKD is a progressive, pathological condition characterized by 
the progressive destruction of renal parenchyma and the loss of 
functional nephrons over time (50). Various pathophysiological 
conditions, including diabetes, hypertension, hyperlipidemia, 
obesity, smoking and aging, are risk factors for the progression 
of CKD (51-54). The clinical diagnosis of CKD is dependent on 
the levels of BUN and SCr (50). In 2002, the National Kidney 

Figure 5. Effects of Shen-Kang (SK) on H2O2-induced oxidative stress in HK-2 cells. (A) Levels of reactive oxygen species (ROS), as indicated by FITC 
fluorescence, were assessed by flow cytometry. Representative flow cytometry tracings of DHE-loaded HK-2 cells in untreated control (dotted) and exposed to 
H2O2 (solid) or to H2O2-treated cells with SK (dashed). (B) Total antioxidant capacity (TAC) was measured by colorimetric assay. Values are expressed as the 
means ± SEM of 3 individual experiments. *P<0.05 and **P<0.01 compared with the control; #p<0.05 compared with the H2O2-treated group.
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Foundation Kidney Disease Outcomes Quality Initiative estab-
lished a novel CKD staging paradigm that characterized the 
progression of CKD according to 5 stages (I‑V) that result in 
unavoidable end‑stage renal disease (55-58). It is critical that 
novel therapeutics or medications are developed to improve the 
cost-effectiveness of renoprotective interventions, such as TCM.

TCM has been used for over 2,500 years. Up to 80% of the 
world's population uses herbs for medicinal purposes (59,60). 
TCM is frequently used in conjunction with pharmacotherapy 
for the treatment of CKD in China and many other Asian 
countries (61,62). TCM represents a major complementary and 
alternative branch of CKD therapy (63). Clinical data indicate 
that SK and its constituents, which include rhubarb, Salvia, 
safflower and Astragalus, exert protective effects against renal 
diseases (7-27). In China, SK is widely used in the treatment of 
patients with renal diseases, such as CKD, diabetic nephropathy, 
chronic renal failure, glomerulonephritis, chronic nephritis and 
renal insufficiency. SK reduces pathological damage, inhibits 

endothelial cell proliferation, attenuates proteinuria and 
glomerular sclerosis and protects residual renal function and 
attenuates disease progression (41-47).

The 5/6 nephrectomized rat model, involving unilateral 
nephrectomy and either partial infarction or amputation of 
the poles of the remaining kidney, represents the primary 
option for the investigation of CKD (4,33,34). Lu et al reported 
kidney dysfunction, with significantly elevated BUN and SCr 
levels and histopathological changes (glomerular sclerosis and 
interstitial fibrosis) in a 5/6 nephrectomized rat model (34). The 
5/6 nephrectomized model of CKD has demonstrable clinical 
relevance (5,35,64,65). SCr reflects the ability of the renal system 
to remove creatinine from the blood and to concentrate it in the 
urine. The diseased or damaged kidney is less able to clear urea 
from the bloodstream, which results in elevated SCr and BUN 
levels (66). In our 5/6 nephrectomized rat model, glomerular 
and interstitial pathogenesis was significantly altered (Fig. 1); 
rats subjected to 5/6 nephrectomy exhibited markedly increased 

Figure 6. Effects of Shen-Kang (SK) and H2O2 on MAPK phosphorylation in HK-2 cells. (A) Western blot analysis of phosphorylated (p-)ERK, p-JNK, and 
p-p38 following treatment of HK-2 cells with 500 µM H2O2 and/or 300 µg/ml SK. Values are expressed as the means ± SEM of 3 individual experiments. *P<0.05 
compared with the control; #P<0.05 compared with the H2O2-treated group. (B) Proposed model of SK action in 5/6 nephrectomy (5/6 Nx)-induced chronic 
kidney disease (CKD). SK plays a role in the protection of HK-2 cells from H2O2-induced apoptosis by modulating total antioxidant capacity (TAC) and MAPK 
signaling pathway activation, which eventually leads to attenuation of CKD in vivo.
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SCr and BUN levels (Fig. 2), and this increase was reversed 
by 1 week of treatment with SK, suggesting that SK restores 
kidney dysfunction in 5/6 nephrectomized rats.

Oxidative stress manifests as an increase in the production 
of ROS, which arise from various cellular sources (67,68). ROS 
represent a family consisting of a large number of free-radical 
and non-free-radical molecules derived from oxygen; the 
free radical reaction is a type of chain reaction (29,69). Small 
et al  (29), as well as others have clearly demonstrated that 
oxidative stress is a unifying mechanism in CKD pathogen-
esis (33,70). In addition, Lee et al demonstrated that ROS are 
important mediators of apoptosis, as they alter mitochondrial 
membrane potential (31). Tu et al provided evidence that cell 
apoptosis, including in renal tubular epithelial HK-2 cells, is a 
critical determinant of renal fibrosis, which eventually results 
in CKD (71). Similarly, our results also indicated that treat-
ment of HK-2 cells with H2O2 promoted apoptosis (Figs. 3A 
and  4). This effect, attenuated by concomitant SK treat-
ment (Figs. 3B and 4), was further evaluated by measuring ROS 
levels and TAC. The H2O2-mediated ROS production in HK-2 
cells was reduced by pre-treatment of the cells with SK (Fig. 5). 
Of note, TAC was enhanced by SK treatment  (Fig.  5B), 
suggesting that the upregulation of TAC by SK may underlie 
the SK-mediated cell survival.

ROS also activate MAPKs, which include ERK, JNK 
and p38  MAPK  (72-75). The MAPK signaling pathways 
play a vital role in the apoptosis of renal proximal tubule 
epithelial cells, inflammation and renal injury  (73,76-83). 
Shimizu et al reported that the renal expression of monocyte 
chemotactic protein-1 is upregulated by indoxyl sulfate through 
ROS production and the activation of ERK and JNK in prox-
imal tubular cells (77). Consistent with previous studies, in this 
study, ERK and p38 MAPK phosphorylation was increased 
by exposure of the cells to H2O2 (Fig. 6A). However, SK pre-
treatment prevented the H2O2-mediated ERK and p38 MAPK 
activation in HK-2 cells (Fig. 6A), indicating that SK protects 
HK-2 cells against H2O2‑induced apoptosis, by modulating 
TAC and the MAPK signaling pathways (Fig. 6B).

Taken together, our data suggest that SK attenuates glomer-
ular sclerosis and interstitial fibrosis, reduces SCr and BUN 
levels in rats subjected to 5/6 nephrectomy and abrogates the 
H2O2‑induced apoptosis of HK-2 cells. This inhibitory effect 
may be partly mediated through the MAPK signaling pathways 
and the upregulation of TAC. The association between TAC 
and MAPK signaling requires further investigation.
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