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Abstract. Glaucoma is the second leading cause of blindness 
worldwide and elevated intraocular pressure (IOP) is the most 
important risk factor. High IOP usually occurs as a result of an 
increase in aqueous humor outflow resistance at the trabecular 
meshwork (TM). An abnormal TM contributes to the develop-
ment of glaucoma. Oxidative stress and vascular damage are 
considered two major cellular factors that lead to alterations 
in the TM. In this review, we discuss the findings related to 
oxidative damage to the TM, including the sources of oxida-
tive stress in the TM such as the mitochondria, peroxisomes, 
endoplasmic reticulum, membrane, cytosol and exogenous 
factors. We also discuss antioxidants and clinical studies related 
to protection against oxidative stress in the TM. Although many 
questions remain unanswered, it is becoming increasingly clear 
that oxidative stress-induced damage to the TM is related to 
glaucoma. This may inspire new studies to find better and more 
stable antioxidants, and better models with which to elucidate 
the mechanisms involved, and to determine whether in vitro 
findings translate into in vivo observations. The regulation of the 
oxidative/redox balance may be the ultimate target for protecting 
the TM from oxidative stress and preventing glaucoma.
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1. Introduction

Glaucoma is the second leading cause of blindness world-
wide (1). It is characterized by optic disk changes and progressive 
visual field loss, and eventually leads to the apoptosis of retinal 
ganglion cells and axon loss (2). Elevated intraocular pres-
sure (IOP) is the most important risk factor for glaucoma (3,4). 
High IOP usually occurs as a result of an increase in the aqueous 
humor outflow resistance of the trabecular meshwork (TM). 
The TM is composed of trabecular beams made of extracellular 
matrix (ECM) elements, including fibronectin, laminin and 
collagen (5). Cells that line the trabecular beams are believed 
to be essential for regulating the aqueous humor outflow that 
controls IOP. TM abnormalities are the most common patho-
genesis of glaucoma (6-9). Still, the pathogenesis of glaucoma 
is unclear as is the reason why the TM fails to maintain normal 
levels of aqueous humor outflow resistance. Oxidative stress 
and vascular damage (6) are considered two major alterations 
in the TM related to glaucoma (10). In this review, we discuss 
findings related to oxidative damage to the TM.

2. Oxidative stress

Free radicals are moieties with an unpaired electron and occur 
as normal metabolites. Under physiological conditions, cells 
produce up to 1011 free radicals per day. Free radicals may be 
classified as oxygen and non-oxygen moieties. Among these, 
oxygen radicals account for 95%. Oxygen radicals include 
oxygen and highly reactive oxygenated molecules, such as 
hydrogen peroxide (H2O2), hydroxyl radical (OH•), peroxide 
hydroxyl radicals, alkoxy radicals, superoxide and the anion 
radical (O2

-), which are collectively known as reactive oxygen 
species  (ROS)  (11). Reactive nitrogen species also play an 
important role in oxidative stress (12); however, they will not 
be discussed in this review.

Under physiological conditions, the production and elimi-
nation of ROS are in equilibrium; however, some xenobiotics, 
ionizing radiation, illnesses, or aging may cause the produc-
tion of ROS to levels that exceed the neutralizing capacity 
of an organism, thus leading to a series of pathological 
changes, which in turn leads to oxidative stress. This process 
is related to defense mechanisms, such as neutrophil inflam-
matory infiltrates, an increase in protease secretion and the 
generation of oxide intermediates. This process is similar to 
the normal aging process, although more severe (11). It is a 
prominent feature of many acute and chronic diseases (13). 
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Oidative stress plays an important role in pulmonary fibrosis, 
epilepsy, hypertension, atherosclerosis, Parkinson's disease 
and sudden death, and it is also known to be associated with a 
number of ophthalmic diseases, such as age-related macular 
degeneration, cataract and glaucoma (14,15).

3. Sources of ROS in the TM

ROS in cells are derived from both endogenous and exogenous 
sources. In the endogenous process, the majority of ROS are 
generated as a by product of normal metabolism (16). The 
sources of ROS are summarized in Fig. 1.

Mitochondrial ROS production. The mitochondria consume 
>90% of cellular oxygen in aerobic organisms under physi-
ological conditions. Of this, approximately 1-5% of the oxygen 
is converted to ROS (17,18). In the mitochondria, the electron 
transport chain resides in the inner membrane where electrons 
are transmitted from NADH/FADH2 to oxygen to produce 
H2O. However, some electrons leak before they reach the final 
step, prematurely reacting with O2 to form superoxide instead 
of H2O (19-21).

Peroxisomal ROS production. Peroxisomes are monolayer 
vesicles, 0.5-1.0 µm in diameter, that generally exist in eukary-
otic cells. Peroxisomes contain a variety of enzymes, such as 
flavoenzymes and oxidoreductases. All these enzymes are either 
involved in the oxidation of fatty acids, D-amino acid catabo-
lism and anabolism, glyoxylate/dicarboxylate metabolism, or 
in the production of spermidine, an autophagy-stimulating, 
life-prolonging substance. Peroxisomes produce H2O2 as a 
byproduct (18,22) and also produce O2

-, which mainly origi-
nates from the enzyme, xanthine oxidase, that is also found in 
the cytosol and is essential for purine degradation (23).

Endoplasmic reticulum ROS production. The mitochondria 
were believed to be the main producer of ROS in the cell; 
however, an increasing number of studies over the past decade 
have indicate dthat the endoplasmic reticulum, as well as 
peroxisomes produce as much or even more ROS than the 
mitochondria  (18,22). In the endoplasmic reticulum, ROS 
are mainly produced by cytochrome  P450 mono-oxygen-
ases (P450), a superfamily of heme thiol proteins that are also 
distributed in the mitochondrial inner membrane. P450 is 
responsible for the synthesis and degradation of endogenous 
substances (i.e., fatty acids and hormones) and the detoxifica-
tion of xenobiotics and lipophilic compounds. In this process, 
electrons are transferred from NADPH to cytochrome P450 
via cytochrome P450 reductase, leading to the hydroxylation 
of xenobiotics. The leakage of electrons from this system 
can result in the formation of oxygen radicals, particularly 
O2

- (24,25).
The endoplasmic reticulum is the main organelle respon-

sible for protein processing. At the early stage of the protein 
unfolding process, the level of protein disulfide isomerase 
increases to correct misfolded proteins by forming correct 
disulfide bonds. Via the folding protein process, protein 
disulfide isomerase is reduced and an electron is transferred to 
molecular oxygen and glutathione (GSH). Incomplete transfer 
leads to the production of superoxide (26,27).

ROS produced in membranes and in the cytosol. Superoxide 
produced in mitochondrial and plasma membranes  (29-31) 
is due to the activity of NADPH oxidases which is different 
from all other byproduct process. The superoxide produced 
in these membranes acts as a signaling molecule to protect 
against invading microorganisms (28). Electrons are passed on 
from NADPH to FAD to two b-type hemes and finally to O2, 
resulting in the formation of superoxide.

In the cytosol, ROS are produced as a byproduct of arachi-
donic acid metabolism. With NADH or NADPH, superoxide is 
generated by cyclooxygenase and lipoxygenase enzymes that 
use arachidonic acid to synthesize prostaglandin H2 or leukot-
rienes (32). Additionally, in the cytosol, ferrous iron reacts with 
H2O2 and, via the Fenton reaction, generates ferric iron, the 
very reactive hydroxyl radical (OH•), and hydroxide (OH-).

Exogenous factors. Infrared, ultraviolet  (UV) and visible 
light can cause oxidative damage to the eye. UV light induces 
mutations that have been linked to a variety of ophthalmic 
pathological changes. UV light can be categorized by its 
wavelength as: UVA (315-400 nm), UVB (280-315 nm) and 
UVC (100-280 nm). All UVC and the majority of UVB light 
are absorbed by the cornea. Only UV wavelengths longer 
than 295 nm can be transmitted through the cornea to the 
anterior chamber; thus the aqueous humor and TM are only 
exposed to a small amount of UVA. However, even this small 
amount of UVA leads to the generation of ROS that are one 
of the main causes of oxidative stress in the TM (33,34). The 
UV-irradiation process can affect DNA, particularly mitochon-
drial DNA (mtDNA). It often leads to a ‘common’ 4977-bp 
long deletion of mtDNA that can increase mitochondrial 
ROS production. Increased levels of ROS can also lead to 
increased levels of mtDNA damage. Infrared light is absorbed 
by the mitochondrial electron transport chain, particularly at 
complex IV, leading to an increased leakage of ROS into the 
mitochondrial matrix. Besides, X-rays, some environmentally 
toxic moieties and some chemotherapies, as well as inflamma-
tion can could cause oxidative damage (18,35,36).

Endogenous and exogenous factors together contribute to 
pathogenic events that set forth the process of oxidative stress-
induced damage. Intense exposure to light, robust metabolic 
activity, and high oxygen tension are considered the major 
causes of pathological ROS (37).

The TM is surrounded by aqueous humour and thus the 
maintenance of the redox state of the aqueous humor is of 
vital importance to the TM. Inner TM cells resident near 
the anterior chamber are more severely exposed to oxidative 
damage (38,39). In the anterior chamber, H2O2 and other ROS 
are mainly generated by a light-dependent reaction with iris 
melanin (40). Metabolic pathways, inflammatory processes 
and phagocytosis are also important generating pathways. The 
concentration of H2O2 in the aqueous humor is believed to be 
25 µM (41).

4. Oxidative damage in the TM

Free radicals take part in many important life processes. 
They are closely related to cell proliferation, differentiation, 
apoptosis, muscle contraction, nerve conduction and gene 
expression, and act as second messengers in cell signal trans-
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duction (42,43). Due to or under some external causes, such as 
illness or aging, the oxidative balance of the body is compro-
mised, leading to pathological changes. ROS damage proteins, 
lipids, and in particular, DNA molecules (44); these process are 
associated with the development of cell aging, chronic inflam-
mation, cancer and apoptosis.

OH• is the most reactive ROS. It can react with different 
DNA moieties, including purine, pyrimidine and the deoxy-
ribose backbone, resulting in irreversible mutations, such 
as single and double chain fracture, crosslinking between 
or within the chain, base modification and purine loss (16). 
mtDNA is less protected than nuclear DNA (45) and is more 
sensitive to oxidative stress (46). Superoxide anions mainly 
damage biological membranes, causing lipid peroxidation that 
generates cytotoxic secondary products of lipid oxidation. ROS 
also damage amino acid residues, particularly cysteine and 

methionine residues, and damage the structure of critical areas, 
which leads to misfolding or dysfunction (47).

The TM is the most sensitive tissue to oxidative damage 
in the anterior chamber  (48). Oxidative stress to the TM 
can cause much damage, such as reduce TM mitochondrial 
respiratory activity, leading to growth arrest (49), affect ECM 
structure (50) and lead to ECM accumulation (51), damage TM 
cellular DNA (52), alter membrane permeability (53), cause the 
rearrangement of TM cell cytoskeletal structures, cause the loss 
of cell-matrix adhesion (54), affect cell cycle progression (55), 
cause inflammatory cytokine release  (56,57), and trigger 
apoptosis (58,59), as well as many forms of cell death (60). Cell 
death may cause a free radical attack (61,62) and the loss or 
altered functionality of TM cells, leading to even more oxida-
tive stress, thus beginning a vicious cycle (63). At least, ROS 
alter the morphology, function and drainage of the anterior 

Figure 1. Factors associated with ROS production and cellular damage. ROS, reactive oxygen species.
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chamber filter channel that eventually leads to an increase in 
IOP (40,39,54,63-70). In patients with glaucoma, the levels of 
mtDNA damage and lipid peroxidation products in the TM are 
significantly higher compared with the controls (14,69,71) and 
their visual field defects, due to retinal ganglion cell degen-
eration, are directly proportional to oxidative damage to the 
TM (69,70).

5. Antioxidants in the TM

The ability of antioxidants in TM cells to counter oxidative 
damage is critical to their survival.

In a biological system, antioxidants can be categorized 
as enzymatic or non-enzymatic (Figs. 1 and 2). Antioxidant 
enzymes in the TM include superoxide dismutase  (SOD), 
glutathione peroxidase  (GSH-Px), catalase and glutathione 
reductase  (GSH-Re)  (63,72). Non-enzymatic antioxidants 
include endogenously produced GSH or dietary compounds, 
such as vitamins C and E, and certain metal reduction proteins. 
The function of these molecules is to capture free radicals by 
accepting the unpaired electron and passing it on. In nocturnal 
animals, the levels of antioxidants in aqueous humor are much 
lower than in diurnal animals, suggesting that non-enzymatic 
antioxidants are consumed to protect the eyes from exogenous 
light damage (73-75).

In addition to the antioxidants mentioned above, TM cells 
have been shown to be able to synthesize a specific set of proteins, 
such as β-crystalline, that may act as molecular chaperones to 
prevent oxidative damage (76). Compared with plasma, the 
concentrations of ascorbic acid (530 µM) and GSH (5.5 µM) in 
aqueous humor are higher, which is important for maintaining 
the anterior chamber and TM oxidation balance (64). Ascorbic 
acid is considered to be the main antioxidant in the eye due to its 
high concentration in many ocular tissues (77-79). In the aqueous 
humor, the concentration of ascorbic acid is 15‑fold higher than 
that in plasma (80). The mechanisms responsible for the anti-
oxidant activity of ascorbic acid include the direct absorption of 

UV light (81), quenching the fluorescence of biomolecules, and 
controlling fluorescence-mediated bio-transformations (82). 
A number of studies have demonstrated that the antioxidant 
activity of ascorbic acid depends on its concentration; ascorbic 
acid can also promote oxidation (83-85). Ascorbic acid can 
cause the decomposition of lipid peroxide and the generation of 
endogenous genotoxic substances; these substances can damage 
DNA and the level of these substance increases with the ascorbic 
acid concentration (86).

Oxidation and antioxidant systems in the eye cross-
over to maintain balance. Classical examples include the 
GPX-GSH‑GR-NADPH and GSH-vitamin C and E systems. 
These systems work together so a deficiency in one antioxidant 
is not always associated with eye pathologies (73). ROS produc-
tion essentially depends on mitochondrial function and on the 
levels of antioxidant defenses (87). Age (88-90), diet and gene 
polymorphisms (91) also affect the ability of the body to resist 
and protect itself against oxidative damage.

In patients with primary open-angle glaucoma, the levels 
of circulating GSH are decreased, which indicates that the 
antioxidant defense system has been compromised (92). The 
levels of total reactive antioxidant potential and water soluble 
antioxidants, such as ascorbate and tyrosine in aqueous humor 
also decrease (93). The level of antioxidant enzymes in the 
aqueous humor of patients with primary open-angle glaucoma 
is controversial. Some articles have reported an increase in 
antioxidant enzymes (94,95), whereas others have reported a 
decrease (96,97). Whether the content of antioxidant enzymes 
correlates with the clinical course of primary open-angle glau-
coma remains to be elucidated.

6. TM and oxidative stress in vitro/in vivo

Establishing a reliable oxidative stress model is essential to 
elucidating the mechanisms of oxidative stress and the efficacy 
of antioxidant drugs. In in vitro experiments, H2O2 is the most 
widely used agent in oxidative stress models. H2O2 can easily 

Figure 2. Mechanisms related to antioxidant activity. SOD, superoxide dismutase; GSH-px, glutathione peroxidase.
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pass through cell membranes and into cells, where it may react 
with iron ions to produce very active free radicals. In TM cells, 
the concentration of H2O2 usually ranges from 100  µM to 
1 mM (54,57,98-100). Treatment concentrations and times vary 
significantly among different studies. In some studies, TM cells 
were exposed to 200 µM H2O2 for 30 min (57) or 300 µM for 
1 h (103) which caused a 60% reduction in mitochondrial activity. 
In other studies, TM cells were exposed to 1 mM H2O2 for 24 h, 
resulting in a rate of cell death of apprximately 50% (98,99). The 
difference here may be due to the instability of H2O2. H2O2 is 
usually stable in solutions with a pH between 3.5-4.5; however, 
it easily decomposes in alkaline solutions or when exposed to 
bright light, particularly shortwave radiation. Tert-butyl hydro-
peroxide (tBHP) is a common lipid hydroperoxide. Unlike H2O2, 
tBHP is not degraded by catalase, which allows it to cause oxida-
tive stress for a longer period of time compared with H2O2 (101).

In the past, the degree of oxidative stress was usually 
measured by quantifying the activity of SOD, catalase and 
GSH-Px (93); however, currently the levels of products of 
oxidation such as oxidized lipids, proteins, amino acids and 
DNA are measured as they are more stable. Measured products 
include the lipid peroxidation products, hydroxyoctadeca-
dienoic acid and malondialdehyde, and the DNA oxidative 
modification marker, 8-OH deoxyguanosine (Fig. 1) (11).

In TM cells, after exogenous oxidative treatment, the 
following damage has been observed: a decrease in cellular 
activity (102), a change in cell cycle progression, the inhibi-
tion of cell proliferation (103), and the promotion of cellular 
senescence (100). Oxidation treatment can rearrange the cell 
cytoskeleton structure (actin and vimentin) (54,102), increase the 
synthesis of ECM (fibronectin, plasminogen activator inhibitor 1, 
connective tissue growth factor) (103), decrease the adhesion to 
ECM (fibronectin, laminin, collagen types I and IV) (54), and 
increase the expression of some inflammatory mediators [inter-
leukin (IL)-1α, IL-6, IL-8 and endothelial-leukocyte adhesion 
molecule  1  (ELAM‑1)]  (57,103), leading to cell apoptosis 
and death (100). Nuclear factor (NF)-κB is the most relevant 
pathway associated with H2O2-induced changes  (54,103). 
NF-kB expression increases, and activate downstream target 
genes, including mitogen-activated protein kinase (MAPK) 
signaling pathways; phosphoinositide 3-kinase (PI3K)-Akt, 
extracellular signal-regulated kinase (ERK) and p38 have all 
been reported to contribute to cellular damage (101,102).

Oxidative in vivo models are diverse; however, few studies 
have examined oxidative stress in the TM. Non-specific methods 
include the use of irradiation, inhaled ozone and hypoxia-
reperfusion, which may hardly reach effective concentrations 
in the TM during a short period of time. For the research of 
oxidative stress in the TM, methods involving the injection of 
drugs near targeted tissues, which have been widely reported in 
many other ocular tissues, such as the retina and lens (104,105) 
may be considered for future studies (106).

7. Clinical studies on protection against oxidative stress for 
the treatment of glaucoma

A series of substances have been reported to have potential 
antioxidant effects, such as creatine, α-lipoic acid, nicotinamide 
and catechins. These substances mainly include some antioxi-
dant enzymes, oxidase inhibitors, vitamins C and E, some metal 

ions such as Se and Zn, and some hormones. Some foods which 
have ingredients such as as polyphenolic flavonoids (107) such 
as tea, coffee, dark chocolate (108), red wine (109), anthocy-
anosides (110) found in blueberries and Ginkgo biloba (111) 
also have antioxidant effects. However, all of these antioxidant 
substances lack targeting and specificity. There are some 
compounds that have been shown to protect TM cells from 
oxidative stress in vitro (103,112); however, their effects are 
limited in vitro. In vivo, dorzolamide, a carbonic anhydrase 
inhibitor, has been reported to reduce oxidative products and 
increase antioxidant enzyme activity in the aqueous humor of 
patients with primary open-angle glaucoma (113).

It is worth emphasizing that although oxidative stress has 
been confirmed to play a role in many diseases, antioxidant 
supplements are not always good for the health (114) and some-
times may even cause harm (115-117). In a 2-year randomized 
controlled trial, oral antioxidant supplementation in 117 patients 
with mild or moderate glaucoma had no effect (118), and some 
researchers have indicated that antioxidants promote cancer cell 
metastasis (119). As in studies of other systems, the research of 
antioxidant treatments for TM protection or glaucoma needs 
to be designed to elucidate how to use antioxidant compounds, 
determine when is the best intervention time (to prevent or to 
treat), and who (healthy or unhealthy individuals) can benefit 
from these compounds.

8. Conclusion and future perspectives

Although many questions remain unanswered, it is becoming 
increasingly clear that oxidative stress-induced damage to the 
TM is related to glaucoma, which may inspire futher studies to 
find better and more stable antioxidants and better models with 
which to elucidate the mechanisms involved, and to determine 
whether in vitro findings can translate into in vivo observa-
tions. The regulation of the oxidative/redox balance may be the 
ultimate target for protecting the TM from oxidative stress and 
preventing glaucoma.
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