
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  39:  463-471,  2017

Abstract. Venous thromboembolism (VTE) is a common, 
fatal and frequently recurrent disease. Changes in the activity 
of different coagulation factors serve as a pathophysiological 
basis for the recurrent risk of VTE. Systems biology approaches 
provide a better understanding of the pathological mechanisms 
responsible for recurrent VTE. In this study, a novel compu-
tational method was presented to identify the recurrent risk 
modules (RRMs) based on the integration of expression profiles 
and human signaling network, which hold promise for achieving 
new and deeper insights into the mechanisms responsible for 
VTE. The results revealed that the RRMs had good classifica-
tion performance to discriminate patients with recurrent VTE. 
The functional annotation analysis demonstrated that the RRMs 
played a crucial role in the pathogenesis of VTE. Furthermore, a 
variety of approved drug targets in the RRM M5 were related to 
VTE. Thus, the M5 may be applied to select potential drug targets 
for combination therapy and the extended treatment of VTE.

Introduction

Venous thromboembolism (VTE) is a common and chronic 
disease with a considerable risk of recurrence and can be 
fatal (1,2). The crucial steps to preventing further complications 
and recurrence are an accurate diagnosis and early treatment 

with appropriate drugs (3). Biomarkers have been specifically 
investigated for their capacity to predict VTE during the 
course of disease (4). The analysis of VTE-related molecular 
expression may identify potential disease specific biomarkers 
associated with disease recurrence and as potential drug 
targets (5). The expression of the potent pro-coagulant protein 
tissue factor can trigger thrombosis (6). Although a number of 
putative mechanisms have been proposed, the mechanisms that 
initiate VTE have not been completely elucidated, and treat-
ment options for individuals with recurrent disease in particular 
remain limited (7). The understanding of the mechanisms of 
VTE may lead to the development of effective treatments for 
patients. Accurate diagnosis, early prevention and the treatment 
of VTE with appropriate drugs are crucial to prevent further 
complications and recurrence (3). Warfarin and low molecular 
weight heparin (LMWH) are the conventional drugs used for 
the treatment of recurrent VTE. Kearon suggested that warfarin 
was effective in the treatment of recurrent VTE (8). However, 
the use of warfarin for anti-coagulation in patients with vein 
thrombosis does not minimize the risk of recurrence (9). Thus, 
more systematic research and drug combination strategies have 
been recommended (10).

Network-based methods have been implemented to predict 
drug side-effects, drug targets and new therapeutic indica-
tions (11). The biological functional network modules can reveal 
disease mechanisms and identify drug targets (12). The dynamic 
changes in gene expression would improve the understanding of 
the pathological processing of complex diseases. The analysis 
of gene expression using the network may be more effective in 
predicting drug targets (13). According to the different factors 
and differential gene expression in easily recurrent thrombosis, 
a systemic method for screening drugs and research on recurrent 
VTE may prove to be very good strategy (14). The integrated 
analysis of the network and high-throughput data is benefiical 
to human disease research. In this study, we developed a novel 
module screening method to identify the dynamic module 
changes by combining human signaling networks and gene 
expression. We aimed to elucidate the molecular mechanisms 
responsible for recurrent VTE, and identify drug response 
pathways and potential drug targets with which to improve the 
efficacy of VTE therapy and reduce the recurrence of VTE.
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Materials and methods

Data source. The human signaling network data were obtained 
from previous studies  (15,16). This included 6,287  genes 
and 62,239  signaling relations. The human signaling 
network was integrated into the human subcellular signaling 
networks (HSSNs) from the Gene Ontology (GO) database (17) 
and Universal Protein Resource (UniProt) (version UniProt 
release 2014_03) (18).

We obtained the whole blood gene expression profile 
dataset  GSE19151 from the Gene Expression Omnibus 
database. The GSE19151 expression profile dataset contains 
3 sets of samples, including 70 adults with one or more prior 
VTE treated with warfarin (32 single and 38 recurrent) and 
63 controls. The samples were collected and screened by the 
Duke Anticoagulation Satisfaction Scale  (DASS)  (19). In 
the study, patients over 18 years had at least one prior venous 
thromboembolic event. All patients administered warfarin 
were had suffered from their most recent thromboembolic 
event ≥4 weeks earlier. Patients who were just administered an 
anticoagulant (warfarin) and patients with cancer or antiphos-
pholipid syndrome were excluded. The investigators who 
enrolled all VTE events reviewed and confirmed the number 
of events, thrombus location, thrombus type, and other 
clinical data. This study included patients who suffered from 
spontaneous or provoked VTE for exploratory research from 
a previous study (20). Blood was collected in PAXgene tubes 
followed by RNA extraction and gene expression profiling by 
Affymetrix arrays. The independent VTE expression profile 
datasets GSE17078 from GPL96 platform contained 3 samples 
of patients with VTE (VT sample) and 27 normal samples.

Recurrent risk modules  (RRMs). Considering the different 
conditions of recurrent VTE under the treatment of warfarin, 
we developed a novel algorithm for identifying RRMs. 
RRMs were selected by two steps: first, we determined three 
different stages (control/single, control/recurrent and single/
recurrent) modules, respectively. Network modules were 
screened through an efficient Markov clustering algorithm 
of the GraphWeb (http://biit.cs.ut.ee/graphweb/) tool in each 
HSSN (21). The default value of 1.8 for the Markov clustering 
parameter was considered. Modules with less than four genes 
were excluded. The genes in each module were both highly 
correlated and topologically close. The differential stage 
modules were then screened by evaluating the expression 
correlation differential score, which represented the significantl 
changes in expression in different sets of samples at different 
stages. Supposing a module  M contains  m  edges E1…Em 
from the HSSNs, thus the differential score S was expressed as 
follows:

wherein, X, Y and X', Y' denote the gene expression data of 
two distinct stages, respectively. n1 and n2 denote the sample 
size of two distinct stages, respectively. Ek and Ek' denote the 
Pearson correlation coefficients of the edge k from the edge 
E1…Em under two distinct stages, respectively. The real 
differential score S was calculated between two stage samples 
for each module. Subsequently, one thousand random modules 
were constructed from the same HSSN with the degree 
conserved. The random differential scores S1…S1000 were 
also calculated. If the random differential scores were signi
ficantly less than the real differential score, the module was 
considered as a differential stage module (permutation test, 
p-values <0.05). The p-values were then adjusted using the 
Benjamini-Hochberg method. Second, we defined the 
differential stage modules existing in control/single, control/
recurrent and single/recurrent profiles as disease risk modules 
to improve the reproducibility. Finally, RRMs were identified 
from these disease risk modules by the Jonckheere-Terpstra 
test with gene expression in different stages of samples. The 
Jonckheere-Terpstra test, which is a non-parametric test, was 
used to test the distribution of multiple independent samples 
from the more general ones to find whether there was a signi
ficant difference  (22). We used the Jonckheere-Terpstra 
test (http://www.mathworks.com/matlabcentral/fileexchange/ 
22159-jonckheere-terpstratest-on-trend/content/jttrend.m) to 
evaluate the classification significance of RRMs among 
different stages with a null hypothesis of no differences. The 
alternative hypothesis was that the sample means changed 
among the disease stages. A p-value <0.05 indicated significant 
differences among disease stages. The RRMs could reveal the 
expression differential among control, single and recurrent 
conditions.

Functional annotation analysis. In order to analyze the 
biological mechanisms of the RRMs, we applied the gene-
annotation enrichment analysis to measure the functional 
characteristics which could increase the possibility to identify 
the most relevant biological processes (23). Given an RRM 
with ‘n’ genes, the enrichment analysis of the RRM could be 
efficiently measured by the common and well-known statis-
tical method Hypergeometric test (24). The hypergeometric 
test is executed for each RRM separately, which is defined 
by four parameters: i) N is the size of human genes; ii) K is 
the gene number in the annotation terms such as GO terms or 
pathways; iii) ‘n’ is the gene number of the RRM; and iv) ‘c’ is 
the common gene number between the biological annotation 
terms and the RRM. The hypergeometric test calculates the 
p-value by using the following formula:

With the p-value <0.05 adjusted with Benjamini-Hochberg 
method, the term is defined as a significant enrichment. The 
enriched annotation terms in relation to the genes may provide 
insight into understanding the biology themes behind these 
genes (25).
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Classifying performance with RRMs. In order to evaluate 
the classifying performances and recognizing patterns for 
the RRMs, the Support Vector Machine (SVM) method was 
employed to discriminate patients at different disease stage s 
using RRMs as an input feature. Support vector machines are 
supervised learning models based on relevant learning algo-
rithms (26). The performance of our approach was evaluated 
using 5-fold cross-validation. The stage sample dataset were 
equally divided into five parts. We then performed five rounds 
of cross-validation. One part was used for testing and the 
others were used for training for each round. We averaged the 
results of the rounds to obtain the final results. Subsequently, 
we applied the receiver operating characteristic (ROC) curve 
to illustrate and evaluate classification performance. The area 
under the ROC curve (AUC) quantifies the overall discrimina-
tive power of the test (27).

Results

RRMs of VTE. The differential stage modules were obtained 
by assessing the significantly expression changes in the gene 
expression profile datasets. The disease risk modules were 
screened out. Finally, seven RRMs were identified through the 
Jonckheere‑Terpstra test (Table I).

The functional characteristics of the RRMs. The correlation 
between RRMs and VTE was investigated by a literature 
review and functional annotation analysis (28). The functional 
categories were mostly enriched in the RRMs were coagula-
tion cascades, blood circulation, signal transduction and cell 
death (Table II), and the coagulation cascades pathway, apop-
tosis and p53 signaling pathway (Fig. 1A).

Previous studies have demonstrated that these annotated 
functional categories and pathways are associated with VTE. 
For example, it has been shown that the alterations in both 

the complement and coagulation systems are associated with 
VTE (29,30). The coagulation cascade is a key component 
of the hemostatic process and limits blood loss in response 
to tissue injury. Derangements in this process can lead to 
VTE (31). Gawaz and Vogel indicated that apoptosis plays a 
critical role in platelet life and is implicated in the pathoge-
nicity of thrombosis (32).

Classifying the capacity of RRMs. With the rapid devel-
opment of systems biology, the modular analysis of 
biological networks may allow for the better understanding 
of the molecular mechanisms responsible for disease and 
may aid researchers in the identification of multiple module 

Table I. The recurrent risk modules and disease-related genes for VTE.

RRMs	 Genes of the module	 Localization

M1	 GUCY1A2, GUCY1A3, GUCY1B3, PRKG1, TNNI1, TTN, TCAP, PDE5A, TRIM28, 	 Cytoplasm
M2	 CEBPD, MXD4, CLU, DDIT3, E2F4, PEG10, GAPDH, MYCBP, LIN28B, LGALS1,	 Nucleus
	 MAX, MYC, NFYB, NFYC, NME2, FBXW7, USP28, KIAA1524, S100A7, SMARCA2, 
	 ZFP36L1, CDC73, TRRAP, CDCA7, MINA, PARP10, PIAS1, DDX18, HN1L, MTDH
M3	 TRIM28, PRDX3, CKS1B, DNM1, MTOR, MYCBP, GLS, HDAC1, HMGCS2, HSPD1, HSPE1, 	 Mitochondrion
	 MAOB, MYC, NME1, NME2, GPAM, BCAT1, SHMT1, TFRC, UBE3A, STAM, TRRAP,  
	 CAPZB, TMEM126A, NDUFAF2
M4	 CKS2, DLAT, EIF5A, ELAVL1, FDXR, GPX1, GSTP1, HMMR, HNRNPK, TRIAP1, PHB, 	 Mitochondrion
	 DDIT4, BCKDHB, TP53a, BCL2L14, AIFM2
M5	 CPB2, CRYBB2, CTSG, A2M, F2a, F5a, F7a, F8a, F9a, F10, F11, F13A1a, F13B, FGAa, FGBa, 	 Extracell
	 FGG, ANGPT1, SERPIND1, SERPINC1a, SERPINA5, PROCa, PROS1a, TFPIa, THBDa

M6	 CXCL13, FGF2, GDF2, SERPINF1, SERPINA4, BGLAP, TNFSF11	 Extracell
M7	 FAS, FASLG, BID, MAP2K4, TNFSF10, FADD, TNFRSF10D, TNFRSF10C, 	 Plasma
	 TNFRSF10B, TNFRSF10A	 membrane

aDisease-related genes for VTE. VTE, venous thromboembolism.

Table II. The functional category of recurrent risk modules.

	 Functional category
	 ----------------------------------------------------------------------------------------------------
		  Coagulation	 Blood	 Signal
Module	 Cell death	 cascades	 circulation	 transduction

M1	 -	 -	 √	 -
M2	 -	 -	 -	 √
M3	 √	 -	 -	 -
M4	 √	 -	 -	 -
M5	 -	 √	 √	 √
M6	 √	 -	 -	 -
M7	 √	 -	 -	 √

Modules which are marked with a tick (√) indicate that the respective 
module possesses the corresponding functional category. Modules 
which are marked with a dahs (-) indicate that the respective module 
does not possess the corresponding functional category.
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biomarkers  (33). SVM can be used to identify recurrent-
related patients and evaluate the classifying performance 
with RRMs as a classification feature. The average expres-
sion values of RRMs were the classification features of 
SVM classifier to distinguish patients with different stages 
of VTE. We performed a 5-fold cross‑validation on VTE 
stage samples to evaluate the discriminative power of RRMs. 
The AUC values of the 5-fold cross-validation for each two-
stage samples (recurrent/control, recurrent/single and single/
control) were evaluated, respectively (Fig. 1B). As a result, 
the high discriminative power was obtained using RRMs as 
classification features (Table III).

In order to further evaluate the effectiveness of our RRMs, 
the recurrent/control samples were used for training, and the 
recurrent/single and single/control samples were used for 
testing in the GSE19151 dataset. The AUC values derived from 
this model were 0.9062 and 0.7577, respectively (Table IV). The 
high discriminative power suggested that the patients could be 
effectively distinguished using RRMs as classification features.

Furthermore, each RRM from the individual datasets 
as classification features was used to construct a classifier to 
recognize patients with recurrent disease. The discriminative 
power of each RRM was evaluated between different stages 
of VTE patients with the 5-fold across-validation. Moreover, 
the recurrent/control samples were used for training and the 
single/control and recurrent/single samples were used for 
testing in the GSE19151 dataset for each RRM as classification 
features. We found that the RRMs M4, M5 and M7 had good 
classification performance to discriminate patients wtih recur-
rent disease (Tables III and IV). In particular, RRM M5 had 
the best discriminative power among the RRMs. This indicated 
that M5 may be used to construct an individual classifier to 
efficiently distinguish the patients with recurrent disease.

The robustness and stability of our algorithm. Naive Bayes 
and random forests were used to evaluate the robustness and 
stability of our algorithm, which also considered the RRM 
expression values as the classification features to confirm the 
high classification performance for VTE stages. The Naive 
Bayes classifier is based on Bayes' theorem with independence 

assumptions between predictors (34). Random forests are an 
ensemble learning method for classification and regression 
that fits a multitude of decision tree classifiers on various 
sub-samples of the dataset and uses averaging to improve the 
predictive accuracy (35). The RRMs had a high classification 
performance and stability, by not only Naive Bayes but also 
random forests (Table V).

To better evaluate the discriminative power of the RRMs 
for other independent datasets, the recurrent/control samples of 
GSE19151 were used for training, and the VT sample/normal 
samples of GSE17078 were used for testing (Table VI). High 
AUC values were presented in the VTE stage datasets (the 
AUC values were 0.88 to 0.83). The results indicated that the 
RRMs had a good classification performance for the indepen-
dent datasets. In a word, the RRMs identified by our algorithm 
with high AUC values have a strong discriminative power, 
robustness and stability.

Comparison with average expression value method. The 
expression correlation method was compared with the average 
expression value method. The RRMs for VTE were identi-
fied using the average expression value method. Supposing a 
module M' contains G genes thus the average expression value 
differential score S' was expressed as follows:

where Z and Z' denote the expression values of genes in two 
distinct stages, respectively, U and V denote the numbers of 
samples in two distinct stages, respectively. For a network 
module, we calculated the real average expressed differential 
score  S'. Subsequently, one thousand random modules were 
constructed from the same HSSN with the degree conserved. 
The random average expression value differential scores 
S'1…S'1000 were also calculated. If the random average 
expression value differential scores were significantly less than 
the real average expressed differential score, the module was 
considered as an average expression value differential stage 
module (permutation test, p-values <0.05). The p-values were 
adjusted using the Benjamini-Hochberg method. We then 
defined the average expression value differential stage modules 
existing in control/single, control/recurrent and single/recur-
rent profiles as the average expression value disease risk 
modules to improve the reproducibility.

However, we could not find the average expression value 
disease risk modules among the VTE stage samples. The result 
suggested that expression correlation method outperformed the 
average expression value method, and may better reflect the 
difference between VTE stage samples.

The drug target characteristics of the RRMs. The DrugBank 
database is a comprehensive, high-quality, freely accessible 
and online bioinformatics and cheminformatics resource, 
which contains detailed information about drugs and drug 
targets (36). The drug targets associated with the pathogen-
esis of VTE were searched from the DrugBank database and 
mapped into the RRMs. Nine approved drug targets were 

Table III. Five-fold cross-validation for the RRMs of VTE in 
the HSSNs.

Classification
features	 Datasets	 AUC	 TPR	 FPR

RRMs	 Recurrent/control	 0.8584	 0.9206	 0.2632
	 Recurrent/single	 0.8118	 0.8269	 0.25
	 Single/control	 0.7561	 0.9841	 0.4737
M4	 Recurrent/control	 0.8084	 0.75	 0.1842
M5	 Recurrent/control	 0.868	 0.8254	 0.1842
M7	 Recurrent/control	 0.8129	 0.8571	 0.1579

VTE, venous thromboembolism; RRMs, recurrent risk modules; 
HSSNs, human subcellular signaling networks; FPR, false positive rate; 
TPR, true positive rate; AUC, area under the curve.
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Table IV. Classification performances for the RRMs of VTE in HSSNs.

Classification
features	 Train set	 Test set	 AUC	 TPR	 FPR

RRMs	 Recurrent/control	 Recurrent/single	 0.9062	 0.9048	 0.1875
	 Recurrent/control	 Single/control	 0.7577	 0.9683	 0.4737
M5	 Recurrent/control	 Recurrent/single	 0.872	 0.9524	 0.2188
	 Recurrent/control	 Single/control	 0.7657	 0.9524	 0.4737

RRMs, recurrent risk modules; VTE, venous thromboembolism; HSSNs, human subcellular signaling networks; FPR, false positive rate; 
TPR, true positive rate; AUC, area under the curve.

Table V. Five-fold cross-validation for the RRMs of VTE using Naive Bayes and Random Forest.

Classifier	 Features	 Datasets	 AUC	 TPR	 FPR

Naive Bayes	 RRMs	 Recurrent/control	 0.8496	 0.8571	 0.2368
Naive Bayes	 M5	 Recurrent/control	 0.8634	 0.9048	 0.2105
Random Forest	 RRMs	 Recurrent/control	 0.8375	 0.7937	 0.1842
Random Forest	 M5	 Recurrent/control	 0.8488	 0.8889	 0.2368

RRMs, recurrent risk modules; VTE, venous thromboembolism; FPR, false positive rate; TPR, true positive rate; AUC, area under the curve.

Table VI. Classification performances for the RRMs for the independent datasets.

Classification
features	 Train set	 Test set	 AUC	 TPR	 FPR

RRMs	 Recurrent/control	 VT sample/normal	 0.83	 0.9683	 0.3421
M5	 Recurrent/control	 VT sample/normal	 0.8828	 1	 0.3438

RRMs, recurrent risk modules; FPR, false positive rate; TPR, true positive rate; AUC, area under the curve.

Table VII. The approved drug targets and therapeutic drugs of VTE in the recurrent risk modules.

Modules	 Drug targets	 Drug

M1	 PDE5A	 Dipyridamole
M5	 F2	 Argatroban, bivalirudin, dabigatran etexilate, lepirudin, warfarin
M5	 F10	 Apixaban, certoparin sodium, edoxaban, enoxaparin sodium, fondaparinux sodium, 
		  heparin, otamixaban, rivaroxaban
M5	 FGA	 Alteplase, anistreplase, reteplase
M5	 SERPIND1	 Ardeparin sodium, sulodexide
M5	 SERPINC1	 Ardeparin sodium, certoparin sodium, dalteparin, dalteparin sodium, enoxaparin sodium, 
		  fondaparinux sodium, heparin, nadroparin, nadroparin calcium, sulodexide, tinzaparin sodium
M5	 SERPINA5	 Urokinase
M5	 TFPI	 Dalteparin sodium
M6	 FGF2	 Phenprocoumon

VTE, venous thromboembolism.
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identified in the RRMs (Table VII). In particular, seven drug 
targets for VTE treatment are in M5 and are targeted by many 
of the drugs. M5 has the significant enrichment characteristics 
for the drug targets (p-value <0.01).

The drug target [coagulation factor II, thrombin (F2)] of 
warfarin plays crucial role in M5, interacting with 19 VTE 
disease-related genes (Fig. 1C). In addition, F2 is the drug target 
of other therapeutic drugs for VTE such as argatroban, dabiga-
tran and bivalirudin. Seven of the genes that interacted with F2 
were the approved therapeutic drug targets for VTE, revealing 
that these genes played an important role in the treatment of 
recurrent VTE. Moreover, our results revealed that M5 not 
only had a high discriminative power, but also had significant 
function associated with the pathogenesis of VTE. Therefore, 
we defined the genes coagulation factor XI (F11), alpha-2-mac-
roglobulin (A2M), coagulation factor XIII A chain (F13A1), 
coagulation factor  VIII  (F8), coagulation factor  IX  (F9), 
coagulation factor VII (F7), protein C, inactivator of coagula-
tion factors Va and VIIIa (PROC), coagulation factor XIII B 
chain  (F13B), fibrinogen gamma chain  (FGG), thrombo-

modulin  (THBD), coagulation factor  V  (F5), fibrinogen 
beta chain (FGB), protein S (alpha) (PROS1), carboxypepti-
dase B2 (CPB2) in M5 and the RRM M5 itself as potential 
drug targets  (Fig. 1C). These potential drug targets would 
be promising to further research, exploiting new therapeutic 
drugs to treat VTE patients.

Discussion

In this study, we developed a novel strategy which combined 
both dynamic gene expression and the human subcellular 
signaling networks to identify RRMs. Seven RRMs in the 
HSSNs were identified and mainly annotated in blood coagu-
lation and apoptosis, which were strongly associated with 
the pathogenesis of VTE (29,30). Norris pointed out that the 
activation of coagulation may predispose affected individuals 
to thrombosis (37). White and Kile indicated that the platelet 
activation responses contained components of apoptotic 
machinery which are of particular importance for thrombus 
formation, which highlighted a potential role in apoptotic 

Figure 1. (A) The enriched KEGG pathways for the M5. The venous thromboembolism (VTE) disease genes are marked by an asterisk (*). (B) Five-fold cross-
validation for GSE19151 recurrent/control, recurrent/single and single/control for the recurrent risk modules (RRMs) of VTE in the human subcellular signaling 
networks (HSSNs). (C) The genes and drug targets in M5 for recurrent VTE.
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processes of thrombosis (38). Moreover, our algorithm had a 
good classification performance, robustness and stability. The 
RRMs had strong discriminative power to distinguish patients 
in different stages of disease development. In particulaar, the 
M5 had the best performance. It was suggested that the M5 
was effective in elucidating the pathogenesis of VTE, which 
holds promise for the development of therapeutic strategies for 
the treatment of VTE.

Warfarin is an effective antithrombotic agent, but non-
compliance and cessation with warfarin therapy for over a 
year are associated with a higher risk of recurrent VTE and the 
therapeutic range is narrow (39). Our results revealed that nine 
approved drug targets in the RRMs were targeted not only by 
warfarin, but also by the other therapeutic drugs (such as apix-
aban and dabigatran) for VTE. In particular, seven approved 
drug target genes in the M5 were targeted by three types of 
drugs (anticoagulant drugs, thrombolytic drugs and antiplatelet 
drugs) for the treatment of VTE. For example, F2 is the anti-
thrombotic and anticoagulant drug target of not only warfarin, 
but also dabigatran, argatroban, lepirudin and bivalirudin. 
Coagulation factor X (F10) is the common anticoagulant drug 
target of apixaban, edoxaban, heparin and enoxaparin sodium.

Among the identified RRM modules, M5 had the best 
discriminative power. Thirteen disease-related genes in M5 are 
associated with the pathogenesis of VTE from OMIM (http://
www.omim.org/) and Genetic Association Database (http://
geneticassociationdb.nih.gov/)  (Table  I). The genes, serpin 
family  C member  1  (SERPINC1), F2, F7 and fibrinogen 
alpha chain (FGA), were not only the disease-related genes, 
but also the approved drug targets. The gene SERPINC1 
encodes antithrombin  III, which is a major risk factor of 
VTE, acting as an inhibitor of thrombin and other coagula-
tion proteinases  (40). Many new drugs, such as dabigatran 

and argatroban, targeting F2 may be used as effective antico-
agulats for the treatment of recurrent VTE (41). The genes, F10, 
serpin family A member 5 (SERPINA5) and serpin family D 
member 1 (SERPIND1), were the approved drug targets. The 
new oral anticoagulant drugs, rivaroxaban, apixaban and 
edoxaban, which are direct inhibitors of F10, have been the 
approved drugs or have entered clinical practice for different 
clinical indications (1). The gene, F5, F7, F8, F9 and PROC, are 
both disease-related genes and the potential drug targets. The 
genes, F5, F9 and PROC, are involved in the blood coagulation 
pathway. The dysfunction of these is associated with VTE (42). 
The combination of F5 with F10 activates F2 to form the effector 
enzyme of the coagulation cascade (43), and the dysfunction of 
this contributes to VTE (4,44).

Multiple therapeutic modes and options exist for VTE 
treatment. The prevention and initial therapy of VTE usually 
begin with the administration of rapidly acting parenteral 
anticoagulants, such as heparin (45). Furthermore, vitamin K 
antagonists (e.g., warfarin) are the commonly available oral 
anticoagulant therapy used for decades (46). However, the risk of 
recurrent VTE also exists following treatment with heparin and 
warfarin (47,48). In the study by Deitelzweig et al, it was demon-
strated that the cessation of warfarin therapy in 1,027 patients 
within three months led to recurrence in 915  (89.1%) 
patients (48). In order to treat the recurrence, alternative drugs 
and drug combination therapy should be considered, as well 
as the drugs for extended VTE treatment (10,49). Long-term 
anticoagulation with low molecular weight heparin (LMWH) 
compared with warfarin appears to be more effective for the 
prevention of recurrent VTE (50). Compared with warfarin, 
dabigatran does not require close monitoring and the adjusting 
of dosage for extended therapy and has a lower rate of major 
or clinically relevant bleeding (51). Pillai et al described that 

Table VIII. The enriched KEGG pathway for RRMs.

RRM	 KEGG pathway	 The enriched genes	 Benjamini

M1	 Long-term depression	 GUCY1A2, GUCY1A3, GUCY1B3, PRKG1	 1.64E-04
M1	 Gap junction	 GUCY1A2, GUCY1A3, GUCY1B3, PRKG1	 1.77E-04
M1	 Vascular smooth muscle	 GUCY1A2, GUCY1A3, GUCY1B3, PRKG1	 2.35E-04
	 contraction
M1	 Purine metabolism	 PDE5A, GUCY1A2, GUCY1A3, GUCY1B3	 4.47E-04
M5	 Complement and	 F11, A2M, F10, F13A1, F8, F9, F7, PROC, F13B, FGG, THBD, 	 2.73E-37
	 coagulation cascades	 F5, FGA, FGB, SERPINA5, F2, SERPINC1, TFPI, 
		  SERPIND1, PROS1, CPB2
M7	 Apoptosis	 TNFRSF10A, BID, TNFSF10, TNFRSF10C, TNFRSF10B, TNFRSF10D, 	 9.41E-13
		  FASLG, FADD, FAS
M7	 Natural killer cell	 TNFRSF10A, BID, TNFSF10, TNFRSF10C, TNFRSF10B, 	 2.47E-09
	 mediated cytotoxicity	 TNFRSF10D, FASLG, FAS
M7	 Cytokine-cytokine	 TNFRSF10A, TNFSF10, TNFRSF10C, TNFRSF10B	 8.69E-06
	 receptor interaction	 TNFRSF10D, FASLG, FAS
M7	 p53 signaling pathway	 BID, TNFRSF10B, FAS	 0.02949

RRMs, recurrent risk modules.
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therapy with dalteparin combined with warfarin effectively 
prevented recurrent VTE (49). Furthermore, these effective 
therapeutic drugs consistently target the crucial drug targets in 
M5, which is significantly associated with VTE.

In total, 87.5% of the genes in the M5 were significantly 
enriched in blood coagulation pathway. The analysis of drug 
targets in M5 may contribute to elucidating the pathogenesis of 
VTE. Furthermore, multiple drug targets and multi therapeutic 
drugs should be considered for VTE therapy. New therapeutic 
drugs may be explored by the analysis of VTE potential drug 
targets, such as F5, F7, F8, F9, which may hold promise for 
improving the safety and effectiveness of VTE treatment (2). 
In addition, the M1 and M7 were significantly enriched in the 
VTE-related pathway, which may bring new insight into VTE 
research, as well as the therapeutic drug targets identifica-
tion (Table VIII). For instance, a recent study indicated that 
atherosclerosis, thrombosis and myocardial infarction were 
significantly associated with vascular smooth muscle contrac-
tion and the apoptotic pathway  (52). Freedman suggested 
that GUCY1A3 mutations were related to thrombosis  (53). 
Zeng et al indicated that miR-20a regulates the PRKG1 gene, 
thereby promoting the proliferation, and contributes to throm-
bosis (54). TNF receptor superfamily members 10B, 10C, 10D 
and TNFSF10 linked to inflammation and coagulation and 
contribute to VTE (55). Although the potential drug targets iden-
tified by our computational biology algorithm are just validated 
by the literature review theoretically, the treatment effectiveness 
of these should be validated by experimental studies.

It is noteworthy that the differentially expressed genes were 
commonly considered as the classification features to discrimi-
nate patients or disease states. However, the differentially 
expressed genes were not identified between different stages of 
the VTE samples, which could not be used to identify patients 
with recurrent disease. The RRMs identified with the expres-
sion dynamic changes of the gene had a better advantage for 
recurrent VTE treatment.

In conclusion, signaling proteins or gene products may play a 
unique role in biological activity and may be intriguing to inves-
tigators in both basic studies and drug development. The RRMs 
based on the signaling network were identified with dynamic 
changes related to VTE recurrence from the system level. The 
RRMs (particularly M5) not only implied a good discriminative 
power to distinguish recurrent patients, but also had the crucial 
drug targets for VTE treatment. Most genes in M5 were proofed 
associated with VTE by the literature review. This suggested 
that the M5 may provide an effective guidance for the investiga-
tion of the mechanisms responsible for recurrent VTE, and for 
therapeutic drug screening and pharmaceutical studies.
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