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Abstract. Parkinson's disease (PD) is a common progressive 
and multifactorial neurodegenerative disease, characterized 
by the loss of midbrain dopaminergic neurons. Numerous 
pathological processes including, inflammation, oxidative 
stress, mitochondrial dysfunction, neurotransmitter imbalance, 
and apoptosis as well as genetic factors may lead to neuronal 
degeneration. Motor deficits in PD are due mostly to the 
progressive loss of nigrostriatal dopaminergic neurons. 
Neuroprotection of functional neurons is of significance in 
the treatment of PD. G protein‑coupled receptors (GPCRs) 
have been implicated in the neuroprotection against PD 
through the survival of dopaminergic neurons. In addition, 
phosphatidyl‑inositol‑3‑kinase (PI3K)/AKT signaling has also 
been demonstrated to be neuroprotective. Knowledge of the 
mechanisms involved in this cellular protection could be critical 
for developing treatments to prevent this neurodegenerative 
disorder. In this review, we highlight the protective roles of the 
PI3K/AKT signaling pathway in the function of representative 
serotonin GPCRs. Particular attention is given to the molecular 
mechanisms of this pathway proposed to explain the favorable 
effects of food ingredients against neurodegenerative disease.
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1. Introduction

Parkinson's disease (PD) is characterized by neuropsychiatric 
symptoms such as depression and anxiety preceding the onset 
of motor symptoms (1). Major features of PD include the loss 
of dopaminergic neurons in the substantia nigra and Lewy 
body depositions (2). It has been suggested that mitochondrial 
dysfunction, oxidative stress and oxidative damage underlie 
the pathogenesis of PD  (3). Activity of substantia nigra 
dopaminergic neurons is critical for striatal synaptic plasticity 
and associative learning. The degeneration of dopaminergic 
neurons leads to a disinhibition of the subthalamic nucleus 
thus increasing excitatory projections to the substantia nigra. 
In consequence, excessive activity causes excitotoxicity and 
oxidative stress (3,4). Consequently, intracellular accumulation 
of filamentous α‑synuclein (α‑syn) aggregates to form Lewy 
bodies, a pathologic hallmark of PD (4). Lewy body disease 
is also a group of neurodegenerative disorders characterized 
by α‑syn accumulation that includes Lewy body dementia and 
PD symptoms (5). Genetic defects, aging, and environmental 
toxicants have been recognized as risk factors for the 
development of these diseases. Although the pathogenesis is still 
unclear, evidence suggests that oxidative stress plays a central 
role in progession of the disease. In particular, reactive oxygen 
species (ROS) may play an important role in inflammatory 
processes (6). Cellular ROS metabolism is definitely regulated 
by a variety of proteins involved in the redox mechanism 
with the phosphatidyl‑inositol‑3‑kinase  (PI3K)/AKT 
signaling pathway (7) (Fig. 1). Accordingly, the PI3K/AKT 
pathway acts as a pivotal determinant of cell fate regarding 
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senescence and apoptosis, which is mediated by intracellular 
ROS generation  (7). In addition, ROS activate PI3K/AKT 
and inactivate phosphatase and tensin homologue deleted on 
chromosome ten (PTEN) (8,9). High concentrations of ROS 
may induce cellular damage. However at lower concentrations 
ROS may act as intracellular secondary messengers. An excess 
amount of oxidative stress can lead to crushing consequences 
in the nervous system during aging. Therefore, both acute and 
chronic neurodegenerative disorders could be mainly a result 
of oxidative stress (10). ROS regulation and inhibition of the 
apoptotic pathway thereby protecting cells have been shown 
to be controlled by the PI3K/AKT signaling pathway (11). 
The mechanism involved in PI3K/AKT activation exhibits 
stimuli‑specific variations.

G  protein‑coupled receptors  (GPCRs) are a large 
class of molecules involved in signal transduction across 
cell membranes, which are the most common targets 
of neuro‑pharmacological drugs in the central nervous 
system (12,13). Stimulation of GPCRs leads to activation of 
heterotrimeric G proteins and their intracellular signaling 
pathways. In addition to the signaling via heterotrimeric 
G proteins, GPCRs can also signal by interacting with various 
small G proteins to regulate downstream effector pathways (14). 
Some small G proteins can associate directly with GPCRs, and 
often modulate the GPCR signaling network. It is becoming 
clear that these GPCRs are not only activated by authentic 
agonists but that they also exhibit agonist‑independent 
intrinsic activity. In addition, a hallmark of GPCRs is their 
ability to recognize and respond to chemically diverse ligands, 
which efficiently activate PI3K/AKT signaling in numerous 
cell types  (Fig.  1). As mentioned above, the PI3K/AKT 
signaling pathway transduces a signal regulating a wide range 
of events involved in cell survival and metabolism. Defective 
regulation of the PI3K/AKT pathway has been linked to 
several diseases including cancer, diabetes, atherosclerosis 
and neurodegenerative diseases (15,16) (Fig. 1). Knowledge 
concerning the interplay between GPCRs and PI3K/AKT 
may contribute to improved treatment and prevention of these 
diseases. However, regulation of the interplay appears to be 
complex. Some PI3Ks can be activated by binding of the 
regulatory subunit to specific tyrosine‑phosphorylated domains 
in cell surface receptors. In addition, Ras family proteins 
are important direct activators of PI3Ks, interacting via an 
amino‑terminal Ras‑binding domain (RBD) (17,18). Different 
PI3Ks could also be activated in a receptor‑specific manner 
and by distinct GTPases of the Ras and Rho families (19). 
This review summarizes current understanding of therapeutic 
GPCRs and PI3K/AKT signaling for neurodegenerative 
diseases such as PD. We also address the behavioral relevance 
of GPCRs and PI3K/AKT signaling in PD.

2. Relationship between cell surface GPCRs and PI3K/AKT 
signaling via small GTPases

GPCRs are integral membrane proteins that regulate 
intracellular secondary messenger levels via the coupling of 
activation by extracellular stimuli. For example, activation of 
GPCRs starts a series of molecular events leading to GPCR 
kinase‑mediated receptor phosphorylation (20). In addition, 
GPCRs can stimulate Ras and activate class I PI3Ks depending 

on RasGEF and RasGRP4 (21). Several effector molecules 
for the small GTPases support cancer cell migration and 
invasion by regulating the PI3K/AKT signaling pathway (22). 
Furthermore, it has been shown that Rit and Rin subfamily 
Ras‑related small GTPases are associated with neuronal 
disorders such as PD  (23). Members of the Rho GTPase 
family have important roles in regulating several aspects 
of cytoskeleton‑based functions, including cell migration, 
proliferation, and apoptosis. The Rho‑associated coiled‑coil 
containing protein kinase  (ROCK) is a serine/threonine 
kinase and a major downstream effector of Rho GTPases (24). 
ROCK enhances actin/myosin contraction (25). Furthermore, 
ROCK activates caspase‑dependent apoptosis signaling 
cascades (26). PTEN has been identified as a ROCK substrate 
that is also involved in cell death and survival (27,28). ROCK 
phosphorylates PTEN and stimulates its phosphatase activity. 
PTEN is a negative regulator of the PI3K/AKT pathway by 
dephosphorylating the inositol 3'‑phosphate group, which 
has important roles in cell survival and apoptosis (Fig. 2). 
PTEN decreases the AKT phosphorylation levels induced by 
ROCK activation. Accordingly, ROCK appears to be involved 
in regulation of PI3K/AKT signaling. Hence, inhibition of 
ROCK activation attenuates apoptosis  (29). Furthermore, 
the Rho/ROCK/PTEN pathway may be a key regulatory 
step in cell transformation, and thus plays an essential 
role in Ras‑induced tumorigenesis  (30). In mammals, four 
isoforms of the type I PI3K catalytic p110 subunits have been 
identified (Fig. 2). Activated Ras molecules bind directly to an 
N‑terminal RBD on p110 to appropriately activate lipid kinase 
activity of PI3K following AKT activation (31). There are three 
known AKT isoforms which play critical and diverse roles in 
cells. A type of GPCR agonist could trigger the pro‑survival 
AKT signaling pathway and protect neurons  (32)  (Fig. 2). 
Notably, a novel role for AKT has been found in maintaining 
neuronal serotonin (5‑HT) receptor function (33). In addition, 
5‑HT activates the PI3K/AKT signaling pathway in several 
cancer cell lines  (34). Growing evidence suggests their 
possible roles in the pathogenesis and treatment of PD (35,36). 
The serotonergic system may play a significant role in the 
pathogenesis of PD.

3. Serotonin stimulates GPCRs and PI3K/AKT signaling 
in cells

Human 5‑HT receptor is a seven‑transmembrane‑domain 
GPCR, which activates adenylyl cyclase constitutively 
upon agonist activation (37). A pharmacological model for 
GPCR activation is the ternary complex model in which 
GPCR exists in an equilibrium of dynamic conformational 
states (38). Through the GPCR, 5‑HT activates the PI3K/AKT 
and MAPK signaling pathways (34), which is an important 
intermediate signaling process in the behavioral functions 
of 5‑HT receptors (39) (Fig. 1). 5‑HT also functions as an 
angiokine to promote angiogenesis (40). In endothelial cells, 
5‑HT also activates PI3K/AKT signaling via GPCRs similar 
to that observed with VEGF (40). It has been apparent that 
the interaction of 5‑HT and dopamine plays a key role in the 
behavior. 5‑HT and dopamine levels decrease with age (41). In 
addition, 5‑HT has been postulated as a key neuromodulator 
and neurotransmitter involved in aggression and stress. 5‑HT 



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  39:  253-260,  2017 255

receptors may control dopaminergic neuron activity in a 
region‑dependent manner. Thus, alterations in 5‑HT release 
and a loss of serotonergic neurons may be linked to PD 
symptoms. Recent studies are focusing on agents involving 
neurotransmitters including 5‑HT receptors. In addition, 
among a variety of proteins included in the GPCR family, 
serotonin 5‑HT receptors are attractive as important biological 
targets of PD (42). It has been shown that the role of small 
GTPases of the Rho family in morphogenic signaling linked 
to 5‑HT in neurons may control neuronal morphology and 
motility (43). 5‑HT receptors are widely distributed in the 
central nervous system, especially in the brain region and 
are essential for learning and cognition (44). Among them, 
the basal ganglia are an extremely organized network of 
subcortical nuclei including the striatum and substantia nigra, 
which play a key role in many functions such as emotion, 
cognition, and motor control. These regions are critically 
involved in neurodegenerative diseases including PD and Lewy 

body disease (45,46). Serotonergic neurons of the dorsal raphe 
nucleus are excited at a steady rate during waking (47). Certain 
hallucinogens, antipsychotics, and antidepressants function by 
targeting the 5‑HT receptor in addition to endogenous 5‑HT. 
Through its traditional activity as a GPCR and ligand‑gated 
ion channel, the neurotransmitter 5‑HT has a complicated 
function in the modulation of brain information processing. 
In addition, it can be speculated that local microinjection of 
5‑HT would affect activity of the corresponding neurons (48). 
5‑HT can also exert intricate effects on the activity of 
midbrain dopaminergic neurons mediated by its various 
receptor subtypes. Dopamine‑containing neurons in the 
brain receive an obvious innervation from 5‑HT originating 
in the raphe nuclei of the brainstem  (49). Therefore, the 
significant role of 5‑HT in central dopamine dysfunction has 
been shown (50). Principal control of the interaction between 
5‑HT and dopamine‑containing neurons in the brain appears 
to be mutually inhibitory. When dopamine innervation in 

Figure 1. Schematic depiction and overview of GPCR/PI3K/AKT/PTEN signaling in an extracellular 5‑HT response is shown. Example of molecules known 
to act on the GPCR/PI3K/AKT/PTEN signaling pathway are also shown. An arrow (↑) indicates stimulation whereas a hammerhead (⊤) indicates inhibition. 
Note that some critical pathways have been omitted for clarity. GPCR, G protein‑coupled receptor; PI3K, phosphoinositide 3‑kinase; PTEN, phosphatase and 
tensin homolog; 5‑HT, serotonin.

Figure 2. Schematic depiction representing the primary domain structures of human PI3K p110 subunit, AKT, and PTEN proteins. Note that the sizes of pro-
tein are modified for clarity. PI3K, phosphatidyl‑inositol‑3‑kinase; PTEN, phosphatase and tensin homolog; p85BD, p85 binding domain; RBD, Ras‑binding 
domain; C2, C2 domain, a protein structural domain involved in targeting proteins to cell membranes; Helical, helical structured domain; Kinase, kinase 
domain; PH, pleckstrin homology domain; Glycin, glycin-rich domain; Regulatory, regulatory domain; phosphatase, phosphatase domain; PDZ, a common 
structural domain in signaling proteins (PSD95, Dlg and ZO‑1).
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the striatum is critically low, the serotonergic system plays 
an important role in the development of idiopathic PD (51). 
Patients with PD frequently develop dementia, which is 
associated with neocortical deposition of α‑syn in Lewy bodies 
and Lewy neurites (52). Widespread deficits in serotonergic 
and dopamine innervation of neocortical and basal ganglia 
regions have been demonstrated in advanced PD (53). 5‑HT 
has major roles in brain diseases involving abnormal mood and 
cognition. Studies show that 5‑HT receptor‑antagonists have 
antipsychotic and antidepressant properties, whereas agonist 
ligands possess cognition‑enhancing and hallucinogenic 
properties. In addition, the effects of a rapid reduction in 5‑HT 
function have shown a reduction in cognitive status in dementia 
with Lewy bodies (54). Consequently, antidepressants may be 
useful in treating depression in PD (55).

4. Augmentation of the neuroprotective effects of the 
serotonin/GPCR/PI3K/AKT signaling pathway in PD

Therapeutic neuroprotective agents are currently receiving 
increased attention for the treatment of PD patients (32). For 
example, regrowth of axons within the adult nigrostriatal 
projection which is prominently affected in PD can be achieved 
by activation of PI3K/AKT signaling (56). In an attractive 
therapeutic approach, a GPCR and its agonist could trigger 
the pro‑survival PI3K/AKT signaling pathway and protect 
neurons in in vivo and in vitro models against neuronal toxicity. 
Hence, treatment with an AKT inhibitor was found to block 
the neuroprotective effect (57). Medicinal Chinese herbs and 
its active ingredients may play various neuroprotective roles, 
including antioxidant, radical-scavenging, anti-inflammatory, 
and antiapoptotic activity (Fig. 3). For example, curcumin, 
which is a major active polyphenol component extracted from 
the rhizomes of Curcuma longa, has been reported to exert 
neuroprotective effects in an experimental model of PD (58). 
Curcumin ameliorates dopamine neuronal oxidative damage 
via activation of the PI3K/AKT pathway (58) (Fig. 3). The 
effects of curcumin may also be related to increased expres-
sion of PTEN (59). In addition, curcumin similarly protects 
cardiomyocytes against high glucose‑induced apoptosis via 
the PI3K/AKT signaling pathway (60). Danshensu, a main 
hydrophilic component of the Chinese Materia Medica Radix 
Salviae Miltiorrhizae, has ROS scavenging and antioxidant 
activities via activation of the PI3K/Akt signaling pathway (61). 
Puerarin, an active component of Pueraria montana var. 
lobata is well‑known for its anti‑oxidative and neuroprotec-
tive activities via modulation of the PI3K/AKT pathway (62). 
In addition, a novel synthetic squamosamide derivative from 
a Chinese herb has been shown to have neuroprotective 
effects by activating the PI3K/AKT signaling pathway in 
experimental PD models (63). Eucommia ulmoides Oliv. bark 
attenuates oxidative stress through activation of PI3K/AKT, 
thereby protecting cells from neuronal cell death (64). Tyrosol 
exerted a neuroprotective effect via  activation of the 
PI3K/AKT signaling pathway in a model of PD (65). A series 
of oxicam non‑steroidal anti‑inflammatory drugs have been 
shown to be neuroprotective via activation of the PI3K/AKT 
signaling pathway  (66). N‑acetyl‑5‑hydroxytryptamines 
may also attenuate oxidative cytotoxicity via activation of 
PI3K/AKT-dependent signaling (67). Furthermore, previous 

studies have shown the neuroprotective effects of prami-
pexole‑induced hypothermia via the PI3K/AKT signaling 
pathway (68). Drynaria fortunei, a Polydiaceae plant, exerts its 
cell protective effects via the PI3K/AKT pathway (69). IGF‑1 
was found to protect the nigrostriatal pathway in a progressive 
PD model (70). This protection may be preceded by activation 
of the pro‑survival PI3K/AKT signaling cascades. Guanosine 
was found to protect glial cells via the PI3K/AKT signaling 
pathway (71). In contrast, gallic acid, a polyphenol found in 
numerous fruits and vegetables particularly in hickory nuts, 
downregulates AKT phosphorylation but promotes PTEN 
expression (71).

GPCRs also mediate physiological functions fundamental 
for survival  (72). Docosahexaenoic acid  (DHA), an ω‑3 
polyunsaturated fatty acid (n‑3 PUFA), modulates neuronal 
cell membrane properties thereby affecting the behavior of 
GPCRs (Fig. 3). Evidence suggests that DHA affects GPCR 
function by modulating oligomerization  (73). A marked 
susceptibility of DHA has been found for the interaction 
with dopamine D2 receptors, which leads to an increased 
rate of receptor oligomerization (73). The effect of DHA on 
oligomerization is purely kinetic (73). In addition, levels of 
DHA are frequently decreased in several neuropsychiatric 
disorders (74,75). Accordingly, membrane n‑3 PUFA plays 
a key role in GPCR signaling, which may have important 
implications for neuropsychiatric conditions such as PD. 
Furthermore, DHA treatment protects hippocampal neurons 
by increasing AKT phosphorylation  (76). The sweet taste 
receptors T1R2 and T1R3 are GPCRs. Saccharin treatment 
rapidly stimulates the phosphorylation of AKT and 
downstream targets (77). As mentioned above, the receptors 
of 5‑HT and dopamine are GPCRs. While dietary restriction 
maintains healthy behavioral funcioning at least partially by 
sustaining a high 5‑HT level, elevating the 5‑HT level improves 
these behaviors during aging (41). Fluoxetine is a widely used 
antidepressant drug, which upregulates phosphorylation of 
AKT (78). Essential amino acid L‑tryptophan is critical for 
the synthesis of 5‑HT, consequently maintaining an entry-way 
for augmenting brain 5‑HT levels by means of consuming a 
tryptophan‑enriched diet. Accordingly, experimental animals 
fed a tryptophan‑enriched diet exhibited higher serotonergic 
activity (79). Clary sage oil could be developed as a therapeutic 
agent for patients with depression, and the antidepressant‑like 
effect of clary oil is closely associated with modulation of 
the dopamine pathway (80). After inhalation of clary sage 
oil, cortisol levels in menopausal women were significantly 
decreased while the 5‑HT concentration was significantly 
increased (81). 5‑HT receptor antagonists were found to change 
behavioral performance through inhibition of PI3K/AKT (82).

Estradiol was previously found to have an antidepres-
sant‑like effect. The antidepressant‑like effect of estradiol is 
due to estrogen receptor (ER)β activation, whereas blockade 
of the effect of an SSRI by estradiol was mediated by ERα. 
Estradiol shows a potential slowing of 5‑HT clearance medi-
ated by ERβ (83). Maintaining a level of endogenous estrogen 
in females may prevent women from developing PD  (84). 
Tocotrienols, members of the vitamin E family, have anti-
oxidant properties. Tocotrienols are favorable candidates for 
neuroprotection in the pathogenesis of PD, and exhibit not 
only antioxidant properties but also signal‑mediated action 
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following ERβ/PI3K/AKT signaling (85). Related activation 
of ERβ may reduce the progression of PD by precluding α‑syn 
accumulation  (86). The α‑syn, an intrinsically disordered 
presynaptic 14 kDa protein whose fibrillation is a critical 
step in the pathogenesis of PD, affects serotonergic neuronal 
projections within the hippocampus (87). Inhibition of α‑syn 
fibrillation is brought about by a polyphenolic acid known 
as caffeic acid in a dose‑dependent manner (88). Blocking 
PI3K/AKT signaling prevents the expression of α‑syn and 
attenuates neuroprotection  (63). The inhibitory activity of 
caffeic acid against α‑syn fibrillation may guide in the plan-
ning of novel therapeutic treatments for PD.

5. Perspectives

Environmental exposures to toxic mediators such as ROS 
may lead to neurodegenerative disorders that have shared 
clinical findings with PD. It is critical to develop strategies to 
ensure that healthy neurons remain alive following ROS attack 
without using intricate medications. The precise identity and 
functional prototypes of molecular intermediates leading 
to neuronal mortality remain to be deciphered. Recently, 
traditional Chinese medicinal herbs have become popular as 
new approaches for the prevention and treatment of PD and/or 
other neurodegenerative diseases (Fig. 4). Functioning of the 
PI3K/AKT pathway may ensure that neuro‑defense is active in 
order to render neuroprotection by preventing apoptosis and 
neuro‑inflammation. Herbs may facilitate the above process. In 
addition, the recent development of selective ligands for 5‑HT 
receptors will not only allow a detailed understanding of this 
protection but will lead to the development of new treatment 

strategies, appropriate for neurodegenerative disorders 
including PD. However, any therapeutic approach that limits 
itself to drugs against a single pathological process is invalid. 
Accordingly, combinations with various pharmacological 
properties are likely to be more effective. We believe that 
increased knowledge of the molecular details of the nature 
of the GPCR/PI3K/AKT signaling interaction may lead to 

Figure 3. Several modulators linked to the GPCR/PI3K/AKT/PTEN pathway are shown, whose potential molecular targets may be based on the predominant 
sites. An arrow (↑) indicates stimulation whereas a hammerhead (⊤) indicates inhibition, suggesting implication of GPCR/PI3K/AKT/PTEN modulators for 
the therapy of PD via neuronal protection. Note that various critical drugs have been omitted for clarity. GPCR, G protein‑coupled receptor; PI3K, phos-
phoinositide 3‑kinase; PTEN, phosphatase and tensin homolog; PD, Parkinson's disease.

Figure 4. Simplified diagram indicating the possibilities of PD treatment and/or 
prevention. Several herbs, relax flavor, antidepressants, and/or hormones may 
contribute to the improved neuroprotection via GPCR/PI3K/AKT signaling. 
Note that some critical events have been omitted for clarity. PD, Parkinson's 
disease; GPCR, G protein‑coupled receptor; PI3K, phosphoinositide 3‑kinase; 
L-DOPA, levodopa; PTEN, phosphatase and tensin homolog.
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better insight into the overall understanding of the function 
of GPCRs in neurodegenerative disease. Future studies should 
focus on the availability of novel treatments to improve the 
therapeutic efficacy in this field.
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